We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , if(true(), X, Y) -> X , if(false(), X, Y) -> activate(Y) , true() -> n__true() , activate(X) -> X , activate(n__f(X)) -> f(activate(X)) , activate(n__true()) -> true() } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) Arguments of following rules are not normal-forms: { if(true(), X, Y) -> X } All above mentioned rules can be savely removed. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { f(X) -> if(X, c(), n__f(n__true())) , f(X) -> n__f(X) , if(false(), X, Y) -> activate(Y) , true() -> n__true() , activate(X) -> X , activate(n__f(X)) -> f(activate(X)) , activate(n__true()) -> true() } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The problem is match-bounded by 4. The enriched problem is compatible with the following automaton. { f_0(2) -> 1 , f_1(1) -> 1 , f_2(6) -> 1 , if_0(2, 2, 2) -> 1 , if_1(2, 3, 4) -> 1 , if_2(1, 7, 8) -> 1 , if_3(6, 10, 11) -> 1 , c_0() -> 1 , c_0() -> 2 , c_1() -> 3 , c_2() -> 7 , c_3() -> 10 , n__f_0(2) -> 1 , n__f_0(2) -> 2 , n__f_1(2) -> 1 , n__f_1(5) -> 1 , n__f_1(5) -> 4 , n__f_2(1) -> 1 , n__f_2(9) -> 1 , n__f_2(9) -> 8 , n__f_3(6) -> 1 , n__f_3(12) -> 11 , n__true_0() -> 1 , n__true_0() -> 2 , n__true_1() -> 1 , n__true_1() -> 5 , n__true_1() -> 6 , n__true_2() -> 1 , n__true_2() -> 6 , n__true_2() -> 9 , n__true_3() -> 6 , n__true_3() -> 12 , n__true_4() -> 6 , true_0() -> 1 , true_1() -> 1 , true_2() -> 6 , true_3() -> 6 , false_0() -> 1 , false_0() -> 2 , activate_0(2) -> 1 , activate_1(2) -> 1 , activate_1(4) -> 1 , activate_1(8) -> 1 , activate_2(5) -> 6 , activate_2(9) -> 6 } Hurray, we answered YES(?,O(n^1))