(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__minus(0', Y) → 0'
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0') → true
a__geq(0', s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0', s(Y)) → 0'
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0')
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0') → 0'
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
a__minus(0', Y) → 0'
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0') → true
a__geq(0', s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0', s(Y)) → 0'
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0')
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0') → 0'
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
Types:
a__minus :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
0' :: 0':s:true:false:minus:div:geq:if
s :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
a__geq :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
true :: 0':s:true:false:minus:div:geq:if
false :: 0':s:true:false:minus:div:geq:if
a__div :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
a__if :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
div :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
minus :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
mark :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
geq :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
if :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
hole_0':s:true:false:minus:div:geq:if1_0 :: 0':s:true:false:minus:div:geq:if
gen_0':s:true:false:minus:div:geq:if2_0 :: Nat → 0':s:true:false:minus:div:geq:if
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
a__minus,
a__geq,
markThey will be analysed ascendingly in the following order:
a__minus < mark
a__geq < mark
(6) Obligation:
Innermost TRS:
Rules:
a__minus(
0',
Y) →
0'a__minus(
s(
X),
s(
Y)) →
a__minus(
X,
Y)
a__geq(
X,
0') →
truea__geq(
0',
s(
Y)) →
falsea__geq(
s(
X),
s(
Y)) →
a__geq(
X,
Y)
a__div(
0',
s(
Y)) →
0'a__div(
s(
X),
s(
Y)) →
a__if(
a__geq(
X,
Y),
s(
div(
minus(
X,
Y),
s(
Y))),
0')
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
mark(
minus(
X1,
X2)) →
a__minus(
X1,
X2)
mark(
geq(
X1,
X2)) →
a__geq(
X1,
X2)
mark(
div(
X1,
X2)) →
a__div(
mark(
X1),
X2)
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
mark(
true) →
truemark(
false) →
falsea__minus(
X1,
X2) →
minus(
X1,
X2)
a__geq(
X1,
X2) →
geq(
X1,
X2)
a__div(
X1,
X2) →
div(
X1,
X2)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
Types:
a__minus :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
0' :: 0':s:true:false:minus:div:geq:if
s :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
a__geq :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
true :: 0':s:true:false:minus:div:geq:if
false :: 0':s:true:false:minus:div:geq:if
a__div :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
a__if :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
div :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
minus :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
mark :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
geq :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
if :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
hole_0':s:true:false:minus:div:geq:if1_0 :: 0':s:true:false:minus:div:geq:if
gen_0':s:true:false:minus:div:geq:if2_0 :: Nat → 0':s:true:false:minus:div:geq:if
Generator Equations:
gen_0':s:true:false:minus:div:geq:if2_0(0) ⇔ 0'
gen_0':s:true:false:minus:div:geq:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:false:minus:div:geq:if2_0(x))
The following defined symbols remain to be analysed:
a__minus, a__geq, mark
They will be analysed ascendingly in the following order:
a__minus < mark
a__geq < mark
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
a__minus(
gen_0':s:true:false:minus:div:geq:if2_0(
n4_0),
gen_0':s:true:false:minus:div:geq:if2_0(
n4_0)) →
gen_0':s:true:false:minus:div:geq:if2_0(
0), rt ∈ Ω(1 + n4
0)
Induction Base:
a__minus(gen_0':s:true:false:minus:div:geq:if2_0(0), gen_0':s:true:false:minus:div:geq:if2_0(0)) →RΩ(1)
0'
Induction Step:
a__minus(gen_0':s:true:false:minus:div:geq:if2_0(+(n4_0, 1)), gen_0':s:true:false:minus:div:geq:if2_0(+(n4_0, 1))) →RΩ(1)
a__minus(gen_0':s:true:false:minus:div:geq:if2_0(n4_0), gen_0':s:true:false:minus:div:geq:if2_0(n4_0)) →IH
gen_0':s:true:false:minus:div:geq:if2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
a__minus(
0',
Y) →
0'a__minus(
s(
X),
s(
Y)) →
a__minus(
X,
Y)
a__geq(
X,
0') →
truea__geq(
0',
s(
Y)) →
falsea__geq(
s(
X),
s(
Y)) →
a__geq(
X,
Y)
a__div(
0',
s(
Y)) →
0'a__div(
s(
X),
s(
Y)) →
a__if(
a__geq(
X,
Y),
s(
div(
minus(
X,
Y),
s(
Y))),
0')
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
mark(
minus(
X1,
X2)) →
a__minus(
X1,
X2)
mark(
geq(
X1,
X2)) →
a__geq(
X1,
X2)
mark(
div(
X1,
X2)) →
a__div(
mark(
X1),
X2)
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
mark(
true) →
truemark(
false) →
falsea__minus(
X1,
X2) →
minus(
X1,
X2)
a__geq(
X1,
X2) →
geq(
X1,
X2)
a__div(
X1,
X2) →
div(
X1,
X2)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
Types:
a__minus :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
0' :: 0':s:true:false:minus:div:geq:if
s :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
a__geq :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
true :: 0':s:true:false:minus:div:geq:if
false :: 0':s:true:false:minus:div:geq:if
a__div :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
a__if :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
div :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
minus :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
mark :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
geq :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
if :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
hole_0':s:true:false:minus:div:geq:if1_0 :: 0':s:true:false:minus:div:geq:if
gen_0':s:true:false:minus:div:geq:if2_0 :: Nat → 0':s:true:false:minus:div:geq:if
Lemmas:
a__minus(gen_0':s:true:false:minus:div:geq:if2_0(n4_0), gen_0':s:true:false:minus:div:geq:if2_0(n4_0)) → gen_0':s:true:false:minus:div:geq:if2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s:true:false:minus:div:geq:if2_0(0) ⇔ 0'
gen_0':s:true:false:minus:div:geq:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:false:minus:div:geq:if2_0(x))
The following defined symbols remain to be analysed:
a__geq, mark
They will be analysed ascendingly in the following order:
a__geq < mark
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
a__geq(
gen_0':s:true:false:minus:div:geq:if2_0(
n764_0),
gen_0':s:true:false:minus:div:geq:if2_0(
n764_0)) →
true, rt ∈ Ω(1 + n764
0)
Induction Base:
a__geq(gen_0':s:true:false:minus:div:geq:if2_0(0), gen_0':s:true:false:minus:div:geq:if2_0(0)) →RΩ(1)
true
Induction Step:
a__geq(gen_0':s:true:false:minus:div:geq:if2_0(+(n764_0, 1)), gen_0':s:true:false:minus:div:geq:if2_0(+(n764_0, 1))) →RΩ(1)
a__geq(gen_0':s:true:false:minus:div:geq:if2_0(n764_0), gen_0':s:true:false:minus:div:geq:if2_0(n764_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
a__minus(
0',
Y) →
0'a__minus(
s(
X),
s(
Y)) →
a__minus(
X,
Y)
a__geq(
X,
0') →
truea__geq(
0',
s(
Y)) →
falsea__geq(
s(
X),
s(
Y)) →
a__geq(
X,
Y)
a__div(
0',
s(
Y)) →
0'a__div(
s(
X),
s(
Y)) →
a__if(
a__geq(
X,
Y),
s(
div(
minus(
X,
Y),
s(
Y))),
0')
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
mark(
minus(
X1,
X2)) →
a__minus(
X1,
X2)
mark(
geq(
X1,
X2)) →
a__geq(
X1,
X2)
mark(
div(
X1,
X2)) →
a__div(
mark(
X1),
X2)
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
mark(
true) →
truemark(
false) →
falsea__minus(
X1,
X2) →
minus(
X1,
X2)
a__geq(
X1,
X2) →
geq(
X1,
X2)
a__div(
X1,
X2) →
div(
X1,
X2)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
Types:
a__minus :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
0' :: 0':s:true:false:minus:div:geq:if
s :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
a__geq :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
true :: 0':s:true:false:minus:div:geq:if
false :: 0':s:true:false:minus:div:geq:if
a__div :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
a__if :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
div :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
minus :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
mark :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
geq :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
if :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
hole_0':s:true:false:minus:div:geq:if1_0 :: 0':s:true:false:minus:div:geq:if
gen_0':s:true:false:minus:div:geq:if2_0 :: Nat → 0':s:true:false:minus:div:geq:if
Lemmas:
a__minus(gen_0':s:true:false:minus:div:geq:if2_0(n4_0), gen_0':s:true:false:minus:div:geq:if2_0(n4_0)) → gen_0':s:true:false:minus:div:geq:if2_0(0), rt ∈ Ω(1 + n40)
a__geq(gen_0':s:true:false:minus:div:geq:if2_0(n764_0), gen_0':s:true:false:minus:div:geq:if2_0(n764_0)) → true, rt ∈ Ω(1 + n7640)
Generator Equations:
gen_0':s:true:false:minus:div:geq:if2_0(0) ⇔ 0'
gen_0':s:true:false:minus:div:geq:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:false:minus:div:geq:if2_0(x))
The following defined symbols remain to be analysed:
mark
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mark(
gen_0':s:true:false:minus:div:geq:if2_0(
n1629_0)) →
gen_0':s:true:false:minus:div:geq:if2_0(
n1629_0), rt ∈ Ω(1 + n1629
0)
Induction Base:
mark(gen_0':s:true:false:minus:div:geq:if2_0(0)) →RΩ(1)
0'
Induction Step:
mark(gen_0':s:true:false:minus:div:geq:if2_0(+(n1629_0, 1))) →RΩ(1)
s(mark(gen_0':s:true:false:minus:div:geq:if2_0(n1629_0))) →IH
s(gen_0':s:true:false:minus:div:geq:if2_0(c1630_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
Innermost TRS:
Rules:
a__minus(
0',
Y) →
0'a__minus(
s(
X),
s(
Y)) →
a__minus(
X,
Y)
a__geq(
X,
0') →
truea__geq(
0',
s(
Y)) →
falsea__geq(
s(
X),
s(
Y)) →
a__geq(
X,
Y)
a__div(
0',
s(
Y)) →
0'a__div(
s(
X),
s(
Y)) →
a__if(
a__geq(
X,
Y),
s(
div(
minus(
X,
Y),
s(
Y))),
0')
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
mark(
minus(
X1,
X2)) →
a__minus(
X1,
X2)
mark(
geq(
X1,
X2)) →
a__geq(
X1,
X2)
mark(
div(
X1,
X2)) →
a__div(
mark(
X1),
X2)
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
mark(
true) →
truemark(
false) →
falsea__minus(
X1,
X2) →
minus(
X1,
X2)
a__geq(
X1,
X2) →
geq(
X1,
X2)
a__div(
X1,
X2) →
div(
X1,
X2)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
Types:
a__minus :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
0' :: 0':s:true:false:minus:div:geq:if
s :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
a__geq :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
true :: 0':s:true:false:minus:div:geq:if
false :: 0':s:true:false:minus:div:geq:if
a__div :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
a__if :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
div :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
minus :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
mark :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
geq :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
if :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
hole_0':s:true:false:minus:div:geq:if1_0 :: 0':s:true:false:minus:div:geq:if
gen_0':s:true:false:minus:div:geq:if2_0 :: Nat → 0':s:true:false:minus:div:geq:if
Lemmas:
a__minus(gen_0':s:true:false:minus:div:geq:if2_0(n4_0), gen_0':s:true:false:minus:div:geq:if2_0(n4_0)) → gen_0':s:true:false:minus:div:geq:if2_0(0), rt ∈ Ω(1 + n40)
a__geq(gen_0':s:true:false:minus:div:geq:if2_0(n764_0), gen_0':s:true:false:minus:div:geq:if2_0(n764_0)) → true, rt ∈ Ω(1 + n7640)
mark(gen_0':s:true:false:minus:div:geq:if2_0(n1629_0)) → gen_0':s:true:false:minus:div:geq:if2_0(n1629_0), rt ∈ Ω(1 + n16290)
Generator Equations:
gen_0':s:true:false:minus:div:geq:if2_0(0) ⇔ 0'
gen_0':s:true:false:minus:div:geq:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:false:minus:div:geq:if2_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
a__minus(gen_0':s:true:false:minus:div:geq:if2_0(n4_0), gen_0':s:true:false:minus:div:geq:if2_0(n4_0)) → gen_0':s:true:false:minus:div:geq:if2_0(0), rt ∈ Ω(1 + n40)
(17) BOUNDS(n^1, INF)
(18) Obligation:
Innermost TRS:
Rules:
a__minus(
0',
Y) →
0'a__minus(
s(
X),
s(
Y)) →
a__minus(
X,
Y)
a__geq(
X,
0') →
truea__geq(
0',
s(
Y)) →
falsea__geq(
s(
X),
s(
Y)) →
a__geq(
X,
Y)
a__div(
0',
s(
Y)) →
0'a__div(
s(
X),
s(
Y)) →
a__if(
a__geq(
X,
Y),
s(
div(
minus(
X,
Y),
s(
Y))),
0')
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
mark(
minus(
X1,
X2)) →
a__minus(
X1,
X2)
mark(
geq(
X1,
X2)) →
a__geq(
X1,
X2)
mark(
div(
X1,
X2)) →
a__div(
mark(
X1),
X2)
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
mark(
true) →
truemark(
false) →
falsea__minus(
X1,
X2) →
minus(
X1,
X2)
a__geq(
X1,
X2) →
geq(
X1,
X2)
a__div(
X1,
X2) →
div(
X1,
X2)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
Types:
a__minus :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
0' :: 0':s:true:false:minus:div:geq:if
s :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
a__geq :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
true :: 0':s:true:false:minus:div:geq:if
false :: 0':s:true:false:minus:div:geq:if
a__div :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
a__if :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
div :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
minus :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
mark :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
geq :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
if :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
hole_0':s:true:false:minus:div:geq:if1_0 :: 0':s:true:false:minus:div:geq:if
gen_0':s:true:false:minus:div:geq:if2_0 :: Nat → 0':s:true:false:minus:div:geq:if
Lemmas:
a__minus(gen_0':s:true:false:minus:div:geq:if2_0(n4_0), gen_0':s:true:false:minus:div:geq:if2_0(n4_0)) → gen_0':s:true:false:minus:div:geq:if2_0(0), rt ∈ Ω(1 + n40)
a__geq(gen_0':s:true:false:minus:div:geq:if2_0(n764_0), gen_0':s:true:false:minus:div:geq:if2_0(n764_0)) → true, rt ∈ Ω(1 + n7640)
mark(gen_0':s:true:false:minus:div:geq:if2_0(n1629_0)) → gen_0':s:true:false:minus:div:geq:if2_0(n1629_0), rt ∈ Ω(1 + n16290)
Generator Equations:
gen_0':s:true:false:minus:div:geq:if2_0(0) ⇔ 0'
gen_0':s:true:false:minus:div:geq:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:false:minus:div:geq:if2_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
a__minus(gen_0':s:true:false:minus:div:geq:if2_0(n4_0), gen_0':s:true:false:minus:div:geq:if2_0(n4_0)) → gen_0':s:true:false:minus:div:geq:if2_0(0), rt ∈ Ω(1 + n40)
(20) BOUNDS(n^1, INF)
(21) Obligation:
Innermost TRS:
Rules:
a__minus(
0',
Y) →
0'a__minus(
s(
X),
s(
Y)) →
a__minus(
X,
Y)
a__geq(
X,
0') →
truea__geq(
0',
s(
Y)) →
falsea__geq(
s(
X),
s(
Y)) →
a__geq(
X,
Y)
a__div(
0',
s(
Y)) →
0'a__div(
s(
X),
s(
Y)) →
a__if(
a__geq(
X,
Y),
s(
div(
minus(
X,
Y),
s(
Y))),
0')
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
mark(
minus(
X1,
X2)) →
a__minus(
X1,
X2)
mark(
geq(
X1,
X2)) →
a__geq(
X1,
X2)
mark(
div(
X1,
X2)) →
a__div(
mark(
X1),
X2)
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
mark(
true) →
truemark(
false) →
falsea__minus(
X1,
X2) →
minus(
X1,
X2)
a__geq(
X1,
X2) →
geq(
X1,
X2)
a__div(
X1,
X2) →
div(
X1,
X2)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
Types:
a__minus :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
0' :: 0':s:true:false:minus:div:geq:if
s :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
a__geq :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
true :: 0':s:true:false:minus:div:geq:if
false :: 0':s:true:false:minus:div:geq:if
a__div :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
a__if :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
div :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
minus :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
mark :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
geq :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
if :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
hole_0':s:true:false:minus:div:geq:if1_0 :: 0':s:true:false:minus:div:geq:if
gen_0':s:true:false:minus:div:geq:if2_0 :: Nat → 0':s:true:false:minus:div:geq:if
Lemmas:
a__minus(gen_0':s:true:false:minus:div:geq:if2_0(n4_0), gen_0':s:true:false:minus:div:geq:if2_0(n4_0)) → gen_0':s:true:false:minus:div:geq:if2_0(0), rt ∈ Ω(1 + n40)
a__geq(gen_0':s:true:false:minus:div:geq:if2_0(n764_0), gen_0':s:true:false:minus:div:geq:if2_0(n764_0)) → true, rt ∈ Ω(1 + n7640)
Generator Equations:
gen_0':s:true:false:minus:div:geq:if2_0(0) ⇔ 0'
gen_0':s:true:false:minus:div:geq:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:false:minus:div:geq:if2_0(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
a__minus(gen_0':s:true:false:minus:div:geq:if2_0(n4_0), gen_0':s:true:false:minus:div:geq:if2_0(n4_0)) → gen_0':s:true:false:minus:div:geq:if2_0(0), rt ∈ Ω(1 + n40)
(23) BOUNDS(n^1, INF)
(24) Obligation:
Innermost TRS:
Rules:
a__minus(
0',
Y) →
0'a__minus(
s(
X),
s(
Y)) →
a__minus(
X,
Y)
a__geq(
X,
0') →
truea__geq(
0',
s(
Y)) →
falsea__geq(
s(
X),
s(
Y)) →
a__geq(
X,
Y)
a__div(
0',
s(
Y)) →
0'a__div(
s(
X),
s(
Y)) →
a__if(
a__geq(
X,
Y),
s(
div(
minus(
X,
Y),
s(
Y))),
0')
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
mark(
minus(
X1,
X2)) →
a__minus(
X1,
X2)
mark(
geq(
X1,
X2)) →
a__geq(
X1,
X2)
mark(
div(
X1,
X2)) →
a__div(
mark(
X1),
X2)
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
mark(
true) →
truemark(
false) →
falsea__minus(
X1,
X2) →
minus(
X1,
X2)
a__geq(
X1,
X2) →
geq(
X1,
X2)
a__div(
X1,
X2) →
div(
X1,
X2)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
Types:
a__minus :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
0' :: 0':s:true:false:minus:div:geq:if
s :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
a__geq :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
true :: 0':s:true:false:minus:div:geq:if
false :: 0':s:true:false:minus:div:geq:if
a__div :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
a__if :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
div :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
minus :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
mark :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
geq :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
if :: 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if → 0':s:true:false:minus:div:geq:if
hole_0':s:true:false:minus:div:geq:if1_0 :: 0':s:true:false:minus:div:geq:if
gen_0':s:true:false:minus:div:geq:if2_0 :: Nat → 0':s:true:false:minus:div:geq:if
Lemmas:
a__minus(gen_0':s:true:false:minus:div:geq:if2_0(n4_0), gen_0':s:true:false:minus:div:geq:if2_0(n4_0)) → gen_0':s:true:false:minus:div:geq:if2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s:true:false:minus:div:geq:if2_0(0) ⇔ 0'
gen_0':s:true:false:minus:div:geq:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:false:minus:div:geq:if2_0(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
a__minus(gen_0':s:true:false:minus:div:geq:if2_0(n4_0), gen_0':s:true:false:minus:div:geq:if2_0(n4_0)) → gen_0':s:true:false:minus:div:geq:if2_0(0), rt ∈ Ω(1 + n40)
(26) BOUNDS(n^1, INF)