*** 1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__div(X1,X2)) -> div(activate(X1),X2)
        activate(n__minus(X1,X2)) -> minus(X1,X2)
        activate(n__s(X)) -> s(activate(X))
        div(X1,X2) -> n__div(X1,X2)
        div(0(),n__s(Y)) -> 0()
        div(s(X),n__s(Y)) -> if(geq(X,activate(Y)),n__s(n__div(n__minus(X,activate(Y)),n__s(activate(Y)))),n__0())
        geq(X,n__0()) -> true()
        geq(n__0(),n__s(Y)) -> false()
        geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
        if(false(),X,Y) -> activate(Y)
        if(true(),X,Y) -> activate(X)
        minus(X1,X2) -> n__minus(X1,X2)
        minus(n__0(),Y) -> 0()
        minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__div/2,n__minus/2,n__s/1,true/0}
      Obligation:
        Innermost
        basic terms: {0,activate,div,geq,if,minus,s}/{false,n__0,n__div,n__minus,n__s,true}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        div(0(),n__s(Y)) -> 0()
        div(s(X),n__s(Y)) -> if(geq(X,activate(Y)),n__s(n__div(n__minus(X,activate(Y)),n__s(activate(Y)))),n__0())
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__div(X1,X2)) -> div(activate(X1),X2)
        activate(n__minus(X1,X2)) -> minus(X1,X2)
        activate(n__s(X)) -> s(activate(X))
        div(X1,X2) -> n__div(X1,X2)
        geq(X,n__0()) -> true()
        geq(n__0(),n__s(Y)) -> false()
        geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
        if(false(),X,Y) -> activate(Y)
        if(true(),X,Y) -> activate(X)
        minus(X1,X2) -> n__minus(X1,X2)
        minus(n__0(),Y) -> 0()
        minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__div/2,n__minus/2,n__s/1,true/0}
      Obligation:
        Innermost
        basic terms: {0,activate,div,geq,if,minus,s}/{false,n__0,n__div,n__minus,n__s,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(div) = {1},
          uargs(geq) = {1,2},
          uargs(minus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
          p(activate) = [1] x1 + [2]                  
               p(div) = [1] x1 + [1] x2 + [0]         
             p(false) = [5]                           
               p(geq) = [1] x1 + [1] x2 + [7]         
                p(if) = [5] x1 + [1] x2 + [1] x3 + [0]
             p(minus) = [1] x1 + [1] x2 + [7]         
              p(n__0) = [0]                           
            p(n__div) = [1] x1 + [1] x2 + [0]         
          p(n__minus) = [1] x1 + [1] x2 + [0]         
              p(n__s) = [1] x1 + [0]                  
                 p(s) = [1] x1 + [0]                  
              p(true) = [0]                           
        
        Following rules are strictly oriented:
                activate(X) = [1] X + [2]          
                            > [1] X + [0]          
                            = X                    
        
           activate(n__0()) = [2]                  
                            > [0]                  
                            = 0()                  
        
              geq(X,n__0()) = [1] X + [7]          
                            > [0]                  
                            = true()               
        
        geq(n__0(),n__s(Y)) = [1] Y + [7]          
                            > [5]                  
                            = false()              
        
            if(false(),X,Y) = [1] X + [1] Y + [25] 
                            > [1] Y + [2]          
                            = activate(Y)          
        
               minus(X1,X2) = [1] X1 + [1] X2 + [7]
                            > [1] X1 + [1] X2 + [0]
                            = n__minus(X1,X2)      
        
            minus(n__0(),Y) = [1] Y + [7]          
                            > [0]                  
                            = 0()                  
        
        
        Following rules are (at-least) weakly oriented:
                              0() =  [0]                           
                                  >= [0]                           
                                  =  n__0()                        
        
          activate(n__div(X1,X2)) =  [1] X1 + [1] X2 + [2]         
                                  >= [1] X1 + [1] X2 + [2]         
                                  =  div(activate(X1),X2)          
        
        activate(n__minus(X1,X2)) =  [1] X1 + [1] X2 + [2]         
                                  >= [1] X1 + [1] X2 + [7]         
                                  =  minus(X1,X2)                  
        
                activate(n__s(X)) =  [1] X + [2]                   
                                  >= [1] X + [2]                   
                                  =  s(activate(X))                
        
                       div(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                  >= [1] X1 + [1] X2 + [0]         
                                  =  n__div(X1,X2)                 
        
             geq(n__s(X),n__s(Y)) =  [1] X + [1] Y + [7]           
                                  >= [1] X + [1] Y + [11]          
                                  =  geq(activate(X),activate(Y))  
        
                   if(true(),X,Y) =  [1] X + [1] Y + [0]           
                                  >= [1] X + [2]                   
                                  =  activate(X)                   
        
           minus(n__s(X),n__s(Y)) =  [1] X + [1] Y + [7]           
                                  >= [1] X + [1] Y + [11]          
                                  =  minus(activate(X),activate(Y))
        
                             s(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  n__s(X)                       
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        0() -> n__0()
        activate(n__div(X1,X2)) -> div(activate(X1),X2)
        activate(n__minus(X1,X2)) -> minus(X1,X2)
        activate(n__s(X)) -> s(activate(X))
        div(X1,X2) -> n__div(X1,X2)
        geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
        if(true(),X,Y) -> activate(X)
        minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__0()) -> 0()
        geq(X,n__0()) -> true()
        geq(n__0(),n__s(Y)) -> false()
        if(false(),X,Y) -> activate(Y)
        minus(X1,X2) -> n__minus(X1,X2)
        minus(n__0(),Y) -> 0()
      Signature:
        {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__div/2,n__minus/2,n__s/1,true/0}
      Obligation:
        Innermost
        basic terms: {0,activate,div,geq,if,minus,s}/{false,n__0,n__div,n__minus,n__s,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(div) = {1},
          uargs(geq) = {1,2},
          uargs(minus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [2]                            
          p(activate) = [1] x1 + [14]                  
               p(div) = [1] x1 + [1] x2 + [0]          
             p(false) = [1]                            
               p(geq) = [1] x1 + [1] x2 + [0]          
                p(if) = [13] x1 + [1] x2 + [1] x3 + [1]
             p(minus) = [1] x1 + [1] x2 + [1]          
              p(n__0) = [1]                            
            p(n__div) = [1] x1 + [1] x2 + [0]          
          p(n__minus) = [1] x1 + [1] x2 + [1]          
              p(n__s) = [1] x1 + [0]                   
                 p(s) = [1] x1 + [0]                   
              p(true) = [1]                            
        
        Following rules are strictly oriented:
                              0() = [2]                   
                                  > [1]                   
                                  = n__0()                
        
        activate(n__minus(X1,X2)) = [1] X1 + [1] X2 + [15]
                                  > [1] X1 + [1] X2 + [1] 
                                  = minus(X1,X2)          
        
        
        Following rules are (at-least) weakly oriented:
                    activate(X) =  [1] X + [14]                  
                                >= [1] X + [0]                   
                                =  X                             
        
               activate(n__0()) =  [15]                          
                                >= [2]                           
                                =  0()                           
        
        activate(n__div(X1,X2)) =  [1] X1 + [1] X2 + [14]        
                                >= [1] X1 + [1] X2 + [14]        
                                =  div(activate(X1),X2)          
        
              activate(n__s(X)) =  [1] X + [14]                  
                                >= [1] X + [14]                  
                                =  s(activate(X))                
        
                     div(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                >= [1] X1 + [1] X2 + [0]         
                                =  n__div(X1,X2)                 
        
                  geq(X,n__0()) =  [1] X + [1]                   
                                >= [1]                           
                                =  true()                        
        
            geq(n__0(),n__s(Y)) =  [1] Y + [1]                   
                                >= [1]                           
                                =  false()                       
        
           geq(n__s(X),n__s(Y)) =  [1] X + [1] Y + [0]           
                                >= [1] X + [1] Y + [28]          
                                =  geq(activate(X),activate(Y))  
        
                if(false(),X,Y) =  [1] X + [1] Y + [14]          
                                >= [1] Y + [14]                  
                                =  activate(Y)                   
        
                 if(true(),X,Y) =  [1] X + [1] Y + [14]          
                                >= [1] X + [14]                  
                                =  activate(X)                   
        
                   minus(X1,X2) =  [1] X1 + [1] X2 + [1]         
                                >= [1] X1 + [1] X2 + [1]         
                                =  n__minus(X1,X2)               
        
                minus(n__0(),Y) =  [1] Y + [2]                   
                                >= [2]                           
                                =  0()                           
        
         minus(n__s(X),n__s(Y)) =  [1] X + [1] Y + [1]           
                                >= [1] X + [1] Y + [29]          
                                =  minus(activate(X),activate(Y))
        
                           s(X) =  [1] X + [0]                   
                                >= [1] X + [0]                   
                                =  n__s(X)                       
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__div(X1,X2)) -> div(activate(X1),X2)
        activate(n__s(X)) -> s(activate(X))
        div(X1,X2) -> n__div(X1,X2)
        geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
        if(true(),X,Y) -> activate(X)
        minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__minus(X1,X2)) -> minus(X1,X2)
        geq(X,n__0()) -> true()
        geq(n__0(),n__s(Y)) -> false()
        if(false(),X,Y) -> activate(Y)
        minus(X1,X2) -> n__minus(X1,X2)
        minus(n__0(),Y) -> 0()
      Signature:
        {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__div/2,n__minus/2,n__s/1,true/0}
      Obligation:
        Innermost
        basic terms: {0,activate,div,geq,if,minus,s}/{false,n__0,n__div,n__minus,n__s,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(div) = {1},
          uargs(geq) = {1,2},
          uargs(minus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
          p(activate) = [1] x1 + [0]                  
               p(div) = [1] x1 + [1]                  
             p(false) = [4]                           
               p(geq) = [1] x1 + [1] x2 + [4]         
                p(if) = [1] x1 + [1] x2 + [9] x3 + [5]
             p(minus) = [1] x1 + [1] x2 + [1]         
              p(n__0) = [0]                           
            p(n__div) = [1] x1 + [0]                  
          p(n__minus) = [1] x1 + [1] x2 + [1]         
              p(n__s) = [1] x1 + [0]                  
                 p(s) = [1] x1 + [0]                  
              p(true) = [4]                           
        
        Following rules are strictly oriented:
            div(X1,X2) = [1] X1 + [1]       
                       > [1] X1 + [0]       
                       = n__div(X1,X2)      
        
        if(true(),X,Y) = [1] X + [9] Y + [9]
                       > [1] X + [0]        
                       = activate(X)        
        
        
        Following rules are (at-least) weakly oriented:
                              0() =  [0]                           
                                  >= [0]                           
                                  =  n__0()                        
        
                      activate(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                 activate(n__0()) =  [0]                           
                                  >= [0]                           
                                  =  0()                           
        
          activate(n__div(X1,X2)) =  [1] X1 + [0]                  
                                  >= [1] X1 + [1]                  
                                  =  div(activate(X1),X2)          
        
        activate(n__minus(X1,X2)) =  [1] X1 + [1] X2 + [1]         
                                  >= [1] X1 + [1] X2 + [1]         
                                  =  minus(X1,X2)                  
        
                activate(n__s(X)) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  s(activate(X))                
        
                    geq(X,n__0()) =  [1] X + [4]                   
                                  >= [4]                           
                                  =  true()                        
        
              geq(n__0(),n__s(Y)) =  [1] Y + [4]                   
                                  >= [4]                           
                                  =  false()                       
        
             geq(n__s(X),n__s(Y)) =  [1] X + [1] Y + [4]           
                                  >= [1] X + [1] Y + [4]           
                                  =  geq(activate(X),activate(Y))  
        
                  if(false(),X,Y) =  [1] X + [9] Y + [9]           
                                  >= [1] Y + [0]                   
                                  =  activate(Y)                   
        
                     minus(X1,X2) =  [1] X1 + [1] X2 + [1]         
                                  >= [1] X1 + [1] X2 + [1]         
                                  =  n__minus(X1,X2)               
        
                  minus(n__0(),Y) =  [1] Y + [1]                   
                                  >= [0]                           
                                  =  0()                           
        
           minus(n__s(X),n__s(Y)) =  [1] X + [1] Y + [1]           
                                  >= [1] X + [1] Y + [1]           
                                  =  minus(activate(X),activate(Y))
        
                             s(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  n__s(X)                       
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__div(X1,X2)) -> div(activate(X1),X2)
        activate(n__s(X)) -> s(activate(X))
        geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
        minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__minus(X1,X2)) -> minus(X1,X2)
        div(X1,X2) -> n__div(X1,X2)
        geq(X,n__0()) -> true()
        geq(n__0(),n__s(Y)) -> false()
        if(false(),X,Y) -> activate(Y)
        if(true(),X,Y) -> activate(X)
        minus(X1,X2) -> n__minus(X1,X2)
        minus(n__0(),Y) -> 0()
      Signature:
        {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__div/2,n__minus/2,n__s/1,true/0}
      Obligation:
        Innermost
        basic terms: {0,activate,div,geq,if,minus,s}/{false,n__0,n__div,n__minus,n__s,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(div) = {1},
          uargs(geq) = {1,2},
          uargs(minus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
          p(activate) = [1] x1 + [0]                  
               p(div) = [1] x1 + [0]                  
             p(false) = [2]                           
               p(geq) = [1] x1 + [1] x2 + [2]         
                p(if) = [4] x1 + [1] x2 + [1] x3 + [5]
             p(minus) = [1] x1 + [1] x2 + [0]         
              p(n__0) = [0]                           
            p(n__div) = [1] x1 + [0]                  
          p(n__minus) = [1] x1 + [1] x2 + [0]         
              p(n__s) = [1] x1 + [0]                  
                 p(s) = [1] x1 + [4]                  
              p(true) = [1]                           
        
        Following rules are strictly oriented:
        s(X) = [1] X + [4]
             > [1] X + [0]
             = n__s(X)    
        
        
        Following rules are (at-least) weakly oriented:
                              0() =  [0]                           
                                  >= [0]                           
                                  =  n__0()                        
        
                      activate(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                 activate(n__0()) =  [0]                           
                                  >= [0]                           
                                  =  0()                           
        
          activate(n__div(X1,X2)) =  [1] X1 + [0]                  
                                  >= [1] X1 + [0]                  
                                  =  div(activate(X1),X2)          
        
        activate(n__minus(X1,X2)) =  [1] X1 + [1] X2 + [0]         
                                  >= [1] X1 + [1] X2 + [0]         
                                  =  minus(X1,X2)                  
        
                activate(n__s(X)) =  [1] X + [0]                   
                                  >= [1] X + [4]                   
                                  =  s(activate(X))                
        
                       div(X1,X2) =  [1] X1 + [0]                  
                                  >= [1] X1 + [0]                  
                                  =  n__div(X1,X2)                 
        
                    geq(X,n__0()) =  [1] X + [2]                   
                                  >= [1]                           
                                  =  true()                        
        
              geq(n__0(),n__s(Y)) =  [1] Y + [2]                   
                                  >= [2]                           
                                  =  false()                       
        
             geq(n__s(X),n__s(Y)) =  [1] X + [1] Y + [2]           
                                  >= [1] X + [1] Y + [2]           
                                  =  geq(activate(X),activate(Y))  
        
                  if(false(),X,Y) =  [1] X + [1] Y + [13]          
                                  >= [1] Y + [0]                   
                                  =  activate(Y)                   
        
                   if(true(),X,Y) =  [1] X + [1] Y + [9]           
                                  >= [1] X + [0]                   
                                  =  activate(X)                   
        
                     minus(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                  >= [1] X1 + [1] X2 + [0]         
                                  =  n__minus(X1,X2)               
        
                  minus(n__0(),Y) =  [1] Y + [0]                   
                                  >= [0]                           
                                  =  0()                           
        
           minus(n__s(X),n__s(Y)) =  [1] X + [1] Y + [0]           
                                  >= [1] X + [1] Y + [0]           
                                  =  minus(activate(X),activate(Y))
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__div(X1,X2)) -> div(activate(X1),X2)
        activate(n__s(X)) -> s(activate(X))
        geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
        minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__minus(X1,X2)) -> minus(X1,X2)
        div(X1,X2) -> n__div(X1,X2)
        geq(X,n__0()) -> true()
        geq(n__0(),n__s(Y)) -> false()
        if(false(),X,Y) -> activate(Y)
        if(true(),X,Y) -> activate(X)
        minus(X1,X2) -> n__minus(X1,X2)
        minus(n__0(),Y) -> 0()
        s(X) -> n__s(X)
      Signature:
        {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__div/2,n__minus/2,n__s/1,true/0}
      Obligation:
        Innermost
        basic terms: {0,activate,div,geq,if,minus,s}/{false,n__0,n__div,n__minus,n__s,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(div) = {1},
          uargs(geq) = {1,2},
          uargs(minus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
          p(activate) = [1] x1 + [0]         
               p(div) = [1] x1 + [1] x2 + [5]
             p(false) = [1]                  
               p(geq) = [1] x1 + [1] x2 + [0]
                p(if) = [1] x2 + [1] x3 + [5]
             p(minus) = [1] x1 + [1] x2 + [0]
              p(n__0) = [0]                  
            p(n__div) = [1] x1 + [1] x2 + [5]
          p(n__minus) = [1] x1 + [1] x2 + [0]
              p(n__s) = [1] x1 + [1]         
                 p(s) = [1] x1 + [4]         
              p(true) = [0]                  
        
        Following rules are strictly oriented:
          geq(n__s(X),n__s(Y)) = [1] X + [1] Y + [2]           
                               > [1] X + [1] Y + [0]           
                               = geq(activate(X),activate(Y))  
        
        minus(n__s(X),n__s(Y)) = [1] X + [1] Y + [2]           
                               > [1] X + [1] Y + [0]           
                               = minus(activate(X),activate(Y))
        
        
        Following rules are (at-least) weakly oriented:
                              0() =  [0]                  
                                  >= [0]                  
                                  =  n__0()               
        
                      activate(X) =  [1] X + [0]          
                                  >= [1] X + [0]          
                                  =  X                    
        
                 activate(n__0()) =  [0]                  
                                  >= [0]                  
                                  =  0()                  
        
          activate(n__div(X1,X2)) =  [1] X1 + [1] X2 + [5]
                                  >= [1] X1 + [1] X2 + [5]
                                  =  div(activate(X1),X2) 
        
        activate(n__minus(X1,X2)) =  [1] X1 + [1] X2 + [0]
                                  >= [1] X1 + [1] X2 + [0]
                                  =  minus(X1,X2)         
        
                activate(n__s(X)) =  [1] X + [1]          
                                  >= [1] X + [4]          
                                  =  s(activate(X))       
        
                       div(X1,X2) =  [1] X1 + [1] X2 + [5]
                                  >= [1] X1 + [1] X2 + [5]
                                  =  n__div(X1,X2)        
        
                    geq(X,n__0()) =  [1] X + [0]          
                                  >= [0]                  
                                  =  true()               
        
              geq(n__0(),n__s(Y)) =  [1] Y + [1]          
                                  >= [1]                  
                                  =  false()              
        
                  if(false(),X,Y) =  [1] X + [1] Y + [5]  
                                  >= [1] Y + [0]          
                                  =  activate(Y)          
        
                   if(true(),X,Y) =  [1] X + [1] Y + [5]  
                                  >= [1] X + [0]          
                                  =  activate(X)          
        
                     minus(X1,X2) =  [1] X1 + [1] X2 + [0]
                                  >= [1] X1 + [1] X2 + [0]
                                  =  n__minus(X1,X2)      
        
                  minus(n__0(),Y) =  [1] Y + [0]          
                                  >= [0]                  
                                  =  0()                  
        
                             s(X) =  [1] X + [4]          
                                  >= [1] X + [1]          
                                  =  n__s(X)              
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__div(X1,X2)) -> div(activate(X1),X2)
        activate(n__s(X)) -> s(activate(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__minus(X1,X2)) -> minus(X1,X2)
        div(X1,X2) -> n__div(X1,X2)
        geq(X,n__0()) -> true()
        geq(n__0(),n__s(Y)) -> false()
        geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
        if(false(),X,Y) -> activate(Y)
        if(true(),X,Y) -> activate(X)
        minus(X1,X2) -> n__minus(X1,X2)
        minus(n__0(),Y) -> 0()
        minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
        s(X) -> n__s(X)
      Signature:
        {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__div/2,n__minus/2,n__s/1,true/0}
      Obligation:
        Innermost
        basic terms: {0,activate,div,geq,if,minus,s}/{false,n__0,n__div,n__minus,n__s,true}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(div) = {1},
        uargs(geq) = {1,2},
        uargs(minus) = {1,2},
        uargs(s) = {1}
      
      Following symbols are considered usable:
        {0,activate,div,geq,if,minus,s}
      TcT has computed the following interpretation:
               p(0) = [0]                      
                      [0]                      
        p(activate) = [1 1] x1 + [0]           
                      [0 1]      [0]           
             p(div) = [1 0] x1 + [1 2] x2 + [0]
                      [0 1]      [0 0]      [0]
           p(false) = [1]                      
                      [1]                      
             p(geq) = [4 4] x1 + [4 0] x2 + [4]
                      [2 2]      [2 1]      [0]
              p(if) = [6 0] x1 + [4 1] x2 + [1 
                      4] x3 + [4]              
                      [0 1]      [0 1]      [0 
                      1]      [1]              
           p(minus) = [1 0] x1 + [1 1] x2 + [0]
                      [0 0]      [0 0]      [0]
            p(n__0) = [0]                      
                      [0]                      
          p(n__div) = [1 0] x1 + [1 2] x2 + [0]
                      [0 1]      [0 0]      [0]
        p(n__minus) = [1 0] x1 + [1 1] x2 + [0]
                      [0 0]      [0 0]      [0]
            p(n__s) = [1 1] x1 + [0]           
                      [0 1]      [2]           
               p(s) = [1 1] x1 + [0]           
                      [0 1]      [2]           
            p(true) = [0]                      
                      [0]                      
      
      Following rules are strictly oriented:
      activate(n__s(X)) = [1 2] X + [2] 
                          [0 1]     [2] 
                        > [1 2] X + [0] 
                          [0 1]     [2] 
                        = s(activate(X))
      
      
      Following rules are (at-least) weakly oriented:
                            0() =  [0]                           
                                   [0]                           
                                >= [0]                           
                                   [0]                           
                                =  n__0()                        
      
                    activate(X) =  [1 1] X + [0]                 
                                   [0 1]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  X                             
      
               activate(n__0()) =  [0]                           
                                   [0]                           
                                >= [0]                           
                                   [0]                           
                                =  0()                           
      
        activate(n__div(X1,X2)) =  [1 1] X1 + [1 2] X2 + [0]     
                                   [0 1]      [0 0]      [0]     
                                >= [1 1] X1 + [1 2] X2 + [0]     
                                   [0 1]      [0 0]      [0]     
                                =  div(activate(X1),X2)          
      
      activate(n__minus(X1,X2)) =  [1 0] X1 + [1 1] X2 + [0]     
                                   [0 0]      [0 0]      [0]     
                                >= [1 0] X1 + [1 1] X2 + [0]     
                                   [0 0]      [0 0]      [0]     
                                =  minus(X1,X2)                  
      
                     div(X1,X2) =  [1 0] X1 + [1 2] X2 + [0]     
                                   [0 1]      [0 0]      [0]     
                                >= [1 0] X1 + [1 2] X2 + [0]     
                                   [0 1]      [0 0]      [0]     
                                =  n__div(X1,X2)                 
      
                  geq(X,n__0()) =  [4 4] X + [4]                 
                                   [2 2]     [0]                 
                                >= [0]                           
                                   [0]                           
                                =  true()                        
      
            geq(n__0(),n__s(Y)) =  [4 4] Y + [4]                 
                                   [2 3]     [2]                 
                                >= [1]                           
                                   [1]                           
                                =  false()                       
      
           geq(n__s(X),n__s(Y)) =  [4 8] X + [4 4] Y + [12]      
                                   [2 4]     [2 3]     [6]       
                                >= [4 8] X + [4 4] Y + [4]       
                                   [2 4]     [2 3]     [0]       
                                =  geq(activate(X),activate(Y))  
      
                if(false(),X,Y) =  [4 1] X + [1 4] Y + [10]      
                                   [0 1]     [0 1]     [2]       
                                >= [1 1] Y + [0]                 
                                   [0 1]     [0]                 
                                =  activate(Y)                   
      
                 if(true(),X,Y) =  [4 1] X + [1 4] Y + [4]       
                                   [0 1]     [0 1]     [1]       
                                >= [1 1] X + [0]                 
                                   [0 1]     [0]                 
                                =  activate(X)                   
      
                   minus(X1,X2) =  [1 0] X1 + [1 1] X2 + [0]     
                                   [0 0]      [0 0]      [0]     
                                >= [1 0] X1 + [1 1] X2 + [0]     
                                   [0 0]      [0 0]      [0]     
                                =  n__minus(X1,X2)               
      
                minus(n__0(),Y) =  [1 1] Y + [0]                 
                                   [0 0]     [0]                 
                                >= [0]                           
                                   [0]                           
                                =  0()                           
      
         minus(n__s(X),n__s(Y)) =  [1 1] X + [1 2] Y + [2]       
                                   [0 0]     [0 0]     [0]       
                                >= [1 1] X + [1 2] Y + [0]       
                                   [0 0]     [0 0]     [0]       
                                =  minus(activate(X),activate(Y))
      
                           s(X) =  [1 1] X + [0]                 
                                   [0 1]     [2]                 
                                >= [1 1] X + [0]                 
                                   [0 1]     [2]                 
                                =  n__s(X)                       
      
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__div(X1,X2)) -> div(activate(X1),X2)
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__minus(X1,X2)) -> minus(X1,X2)
        activate(n__s(X)) -> s(activate(X))
        div(X1,X2) -> n__div(X1,X2)
        geq(X,n__0()) -> true()
        geq(n__0(),n__s(Y)) -> false()
        geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
        if(false(),X,Y) -> activate(Y)
        if(true(),X,Y) -> activate(X)
        minus(X1,X2) -> n__minus(X1,X2)
        minus(n__0(),Y) -> 0()
        minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
        s(X) -> n__s(X)
      Signature:
        {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__div/2,n__minus/2,n__s/1,true/0}
      Obligation:
        Innermost
        basic terms: {0,activate,div,geq,if,minus,s}/{false,n__0,n__div,n__minus,n__s,true}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(div) = {1},
        uargs(geq) = {1,2},
        uargs(minus) = {1,2},
        uargs(s) = {1}
      
      Following symbols are considered usable:
        {0,activate,div,geq,if,minus,s}
      TcT has computed the following interpretation:
               p(0) = [4]                      
                      [2]                      
        p(activate) = [1 2] x1 + [0]           
                      [0 1]      [3]           
             p(div) = [1 0] x1 + [1 1] x2 + [4]
                      [0 1]      [0 1]      [2]
           p(false) = [5]                      
                      [4]                      
             p(geq) = [1 0] x1 + [1 2] x2 + [2]
                      [0 0]      [0 1]      [3]
              p(if) = [1 1] x1 + [1 4] x2 + [2 
                      2] x3 + [3]              
                      [0 0]      [0 1]      [4 
                      4]      [6]              
           p(minus) = [1 0] x1 + [1 0] x2 + [4]
                      [0 0]      [0 0]      [5]
            p(n__0) = [0]                      
                      [2]                      
          p(n__div) = [1 0] x1 + [1 0] x2 + [1]
                      [0 1]      [0 1]      [2]
        p(n__minus) = [1 0] x1 + [1 0] x2 + [0]
                      [0 0]      [0 0]      [2]
            p(n__s) = [1 2] x1 + [0]           
                      [0 1]      [4]           
               p(s) = [1 2] x1 + [0]           
                      [0 1]      [4]           
            p(true) = [5]                      
                      [0]                      
      
      Following rules are strictly oriented:
      activate(n__div(X1,X2)) = [1 2] X1 + [1 2] X2 + [5]
                                [0 1]      [0 1]      [5]
                              > [1 2] X1 + [1 1] X2 + [4]
                                [0 1]      [0 1]      [5]
                              = div(activate(X1),X2)     
      
      
      Following rules are (at-least) weakly oriented:
                            0() =  [4]                           
                                   [2]                           
                                >= [0]                           
                                   [2]                           
                                =  n__0()                        
      
                    activate(X) =  [1 2] X + [0]                 
                                   [0 1]     [3]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  X                             
      
               activate(n__0()) =  [4]                           
                                   [5]                           
                                >= [4]                           
                                   [2]                           
                                =  0()                           
      
      activate(n__minus(X1,X2)) =  [1 0] X1 + [1 0] X2 + [4]     
                                   [0 0]      [0 0]      [5]     
                                >= [1 0] X1 + [1 0] X2 + [4]     
                                   [0 0]      [0 0]      [5]     
                                =  minus(X1,X2)                  
      
              activate(n__s(X)) =  [1 4] X + [8]                 
                                   [0 1]     [7]                 
                                >= [1 4] X + [6]                 
                                   [0 1]     [7]                 
                                =  s(activate(X))                
      
                     div(X1,X2) =  [1 0] X1 + [1 1] X2 + [4]     
                                   [0 1]      [0 1]      [2]     
                                >= [1 0] X1 + [1 0] X2 + [1]     
                                   [0 1]      [0 1]      [2]     
                                =  n__div(X1,X2)                 
      
                  geq(X,n__0()) =  [1 0] X + [6]                 
                                   [0 0]     [5]                 
                                >= [5]                           
                                   [0]                           
                                =  true()                        
      
            geq(n__0(),n__s(Y)) =  [1 4] Y + [10]                
                                   [0 1]     [7]                 
                                >= [5]                           
                                   [4]                           
                                =  false()                       
      
           geq(n__s(X),n__s(Y)) =  [1 2] X + [1 4] Y + [10]      
                                   [0 0]     [0 1]     [7]       
                                >= [1 2] X + [1 4] Y + [8]       
                                   [0 0]     [0 1]     [6]       
                                =  geq(activate(X),activate(Y))  
      
                if(false(),X,Y) =  [1 4] X + [2 2] Y + [12]      
                                   [0 1]     [4 4]     [6]       
                                >= [1 2] Y + [0]                 
                                   [0 1]     [3]                 
                                =  activate(Y)                   
      
                 if(true(),X,Y) =  [1 4] X + [2 2] Y + [8]       
                                   [0 1]     [4 4]     [6]       
                                >= [1 2] X + [0]                 
                                   [0 1]     [3]                 
                                =  activate(X)                   
      
                   minus(X1,X2) =  [1 0] X1 + [1 0] X2 + [4]     
                                   [0 0]      [0 0]      [5]     
                                >= [1 0] X1 + [1 0] X2 + [0]     
                                   [0 0]      [0 0]      [2]     
                                =  n__minus(X1,X2)               
      
                minus(n__0(),Y) =  [1 0] Y + [4]                 
                                   [0 0]     [5]                 
                                >= [4]                           
                                   [2]                           
                                =  0()                           
      
         minus(n__s(X),n__s(Y)) =  [1 2] X + [1 2] Y + [4]       
                                   [0 0]     [0 0]     [5]       
                                >= [1 2] X + [1 2] Y + [4]       
                                   [0 0]     [0 0]     [5]       
                                =  minus(activate(X),activate(Y))
      
                           s(X) =  [1 2] X + [0]                 
                                   [0 1]     [4]                 
                                >= [1 2] X + [0]                 
                                   [0 1]     [4]                 
                                =  n__s(X)                       
      
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        0() -> n__0()
        activate(X) -> X
        activate(n__0()) -> 0()
        activate(n__div(X1,X2)) -> div(activate(X1),X2)
        activate(n__minus(X1,X2)) -> minus(X1,X2)
        activate(n__s(X)) -> s(activate(X))
        div(X1,X2) -> n__div(X1,X2)
        geq(X,n__0()) -> true()
        geq(n__0(),n__s(Y)) -> false()
        geq(n__s(X),n__s(Y)) -> geq(activate(X),activate(Y))
        if(false(),X,Y) -> activate(Y)
        if(true(),X,Y) -> activate(X)
        minus(X1,X2) -> n__minus(X1,X2)
        minus(n__0(),Y) -> 0()
        minus(n__s(X),n__s(Y)) -> minus(activate(X),activate(Y))
        s(X) -> n__s(X)
      Signature:
        {0/0,activate/1,div/2,geq/2,if/3,minus/2,s/1} / {false/0,n__0/0,n__div/2,n__minus/2,n__s/1,true/0}
      Obligation:
        Innermost
        basic terms: {0,activate,div,geq,if,minus,s}/{false,n__0,n__div,n__minus,n__s,true}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).