*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__add(X1,X2)) -> add(X1,X2)
        activate(n__from(X)) -> from(X)
        activate(n__fst(X1,X2)) -> fst(X1,X2)
        activate(n__len(X)) -> len(X)
        add(X1,X2) -> n__add(X1,X2)
        add(0(),X) -> X
        add(s(X),Y) -> s(n__add(activate(X),Y))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        fst(X1,X2) -> n__fst(X1,X2)
        fst(0(),Z) -> nil()
        fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z)))
        len(X) -> n__len(X)
        len(cons(X,Z)) -> s(n__len(activate(Z)))
        len(nil()) -> 0()
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,add/2,from/1,fst/2,len/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {activate,add,from,fst,len}/{0,cons,n__add,n__from,n__fst,n__len,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {2},
          uargs(n__add) = {1},
          uargs(n__fst) = {1,2},
          uargs(n__len) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [1]                    
          p(activate) = [10] x1 + [0]          
               p(add) = [10] x1 + [10] x2 + [4]
              p(cons) = [1] x2 + [0]           
              p(from) = [0]                    
               p(fst) = [10] x1 + [10] x2 + [0]
               p(len) = [10] x1 + [0]          
            p(n__add) = [1] x1 + [1] x2 + [0]  
           p(n__from) = [0]                    
            p(n__fst) = [1] x1 + [1] x2 + [1]  
            p(n__len) = [1] x1 + [0]           
               p(nil) = [0]                    
                 p(s) = [1] x1 + [1]           
        
        Following rules are strictly oriented:
        activate(n__fst(X1,X2)) = [10] X1 + [10] X2 + [10] 
                                > [10] X1 + [10] X2 + [0]  
                                = fst(X1,X2)               
        
                     add(X1,X2) = [10] X1 + [10] X2 + [4]  
                                > [1] X1 + [1] X2 + [0]    
                                = n__add(X1,X2)            
        
                     add(0(),X) = [10] X + [14]            
                                > [1] X + [0]              
                                = X                        
        
                    add(s(X),Y) = [10] X + [10] Y + [14]   
                                > [10] X + [1] Y + [1]     
                                = s(n__add(activate(X),Y)) 
        
                     fst(0(),Z) = [10] Z + [10]            
                                > [0]                      
                                = nil()                    
        
            fst(s(X),cons(Y,Z)) = [10] X + [10] Z + [10]   
                                > [10] X + [10] Z + [1]    
                                = cons(Y                   
                                      ,n__fst(activate(X)  
                                             ,activate(Z)))
        
        
        Following rules are (at-least) weakly oriented:
                    activate(X) =  [10] X + [0]           
                                >= [1] X + [0]            
                                =  X                      
        
        activate(n__add(X1,X2)) =  [10] X1 + [10] X2 + [0]
                                >= [10] X1 + [10] X2 + [4]
                                =  add(X1,X2)             
        
           activate(n__from(X)) =  [0]                    
                                >= [0]                    
                                =  from(X)                
        
            activate(n__len(X)) =  [10] X + [0]           
                                >= [10] X + [0]           
                                =  len(X)                 
        
                        from(X) =  [0]                    
                                >= [0]                    
                                =  cons(X,n__from(s(X)))  
        
                        from(X) =  [0]                    
                                >= [0]                    
                                =  n__from(X)             
        
                     fst(X1,X2) =  [10] X1 + [10] X2 + [0]
                                >= [1] X1 + [1] X2 + [1]  
                                =  n__fst(X1,X2)          
        
                         len(X) =  [10] X + [0]           
                                >= [1] X + [0]            
                                =  n__len(X)              
        
                 len(cons(X,Z)) =  [10] Z + [0]           
                                >= [10] Z + [1]           
                                =  s(n__len(activate(Z))) 
        
                     len(nil()) =  [0]                    
                                >= [1]                    
                                =  0()                    
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__add(X1,X2)) -> add(X1,X2)
        activate(n__from(X)) -> from(X)
        activate(n__len(X)) -> len(X)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        fst(X1,X2) -> n__fst(X1,X2)
        len(X) -> n__len(X)
        len(cons(X,Z)) -> s(n__len(activate(Z)))
        len(nil()) -> 0()
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(n__fst(X1,X2)) -> fst(X1,X2)
        add(X1,X2) -> n__add(X1,X2)
        add(0(),X) -> X
        add(s(X),Y) -> s(n__add(activate(X),Y))
        fst(0(),Z) -> nil()
        fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z)))
      Signature:
        {activate/1,add/2,from/1,fst/2,len/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {activate,add,from,fst,len}/{0,cons,n__add,n__from,n__fst,n__len,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {2},
          uargs(n__add) = {1},
          uargs(n__fst) = {1,2},
          uargs(n__len) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [4]                  
          p(activate) = [1] x1 + [0]         
               p(add) = [1] x1 + [1] x2 + [4]
              p(cons) = [1] x2 + [0]         
              p(from) = [0]                  
               p(fst) = [1] x1 + [1] x2 + [7]
               p(len) = [1] x1 + [3]         
            p(n__add) = [1] x1 + [1] x2 + [2]
           p(n__from) = [0]                  
            p(n__fst) = [1] x1 + [1] x2 + [7]
            p(n__len) = [1] x1 + [5]         
               p(nil) = [0]                  
                 p(s) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
        activate(n__len(X)) = [1] X + [5]
                            > [1] X + [3]
                            = len(X)     
        
        
        Following rules are (at-least) weakly oriented:
                    activate(X) =  [1] X + [0]              
                                >= [1] X + [0]              
                                =  X                        
        
        activate(n__add(X1,X2)) =  [1] X1 + [1] X2 + [2]    
                                >= [1] X1 + [1] X2 + [4]    
                                =  add(X1,X2)               
        
           activate(n__from(X)) =  [0]                      
                                >= [0]                      
                                =  from(X)                  
        
        activate(n__fst(X1,X2)) =  [1] X1 + [1] X2 + [7]    
                                >= [1] X1 + [1] X2 + [7]    
                                =  fst(X1,X2)               
        
                     add(X1,X2) =  [1] X1 + [1] X2 + [4]    
                                >= [1] X1 + [1] X2 + [2]    
                                =  n__add(X1,X2)            
        
                     add(0(),X) =  [1] X + [8]              
                                >= [1] X + [0]              
                                =  X                        
        
                    add(s(X),Y) =  [1] X + [1] Y + [4]      
                                >= [1] X + [1] Y + [2]      
                                =  s(n__add(activate(X),Y)) 
        
                        from(X) =  [0]                      
                                >= [0]                      
                                =  cons(X,n__from(s(X)))    
        
                        from(X) =  [0]                      
                                >= [0]                      
                                =  n__from(X)               
        
                     fst(X1,X2) =  [1] X1 + [1] X2 + [7]    
                                >= [1] X1 + [1] X2 + [7]    
                                =  n__fst(X1,X2)            
        
                     fst(0(),Z) =  [1] Z + [11]             
                                >= [0]                      
                                =  nil()                    
        
            fst(s(X),cons(Y,Z)) =  [1] X + [1] Z + [7]      
                                >= [1] X + [1] Z + [7]      
                                =  cons(Y                   
                                       ,n__fst(activate(X)  
                                              ,activate(Z)))
        
                         len(X) =  [1] X + [3]              
                                >= [1] X + [5]              
                                =  n__len(X)                
        
                 len(cons(X,Z)) =  [1] Z + [3]              
                                >= [1] Z + [5]              
                                =  s(n__len(activate(Z)))   
        
                     len(nil()) =  [3]                      
                                >= [4]                      
                                =  0()                      
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__add(X1,X2)) -> add(X1,X2)
        activate(n__from(X)) -> from(X)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        fst(X1,X2) -> n__fst(X1,X2)
        len(X) -> n__len(X)
        len(cons(X,Z)) -> s(n__len(activate(Z)))
        len(nil()) -> 0()
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(n__fst(X1,X2)) -> fst(X1,X2)
        activate(n__len(X)) -> len(X)
        add(X1,X2) -> n__add(X1,X2)
        add(0(),X) -> X
        add(s(X),Y) -> s(n__add(activate(X),Y))
        fst(0(),Z) -> nil()
        fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z)))
      Signature:
        {activate/1,add/2,from/1,fst/2,len/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {activate,add,from,fst,len}/{0,cons,n__add,n__from,n__fst,n__len,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {2},
          uargs(n__add) = {1},
          uargs(n__fst) = {1,2},
          uargs(n__len) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [2]                  
          p(activate) = [2] x1 + [2]         
               p(add) = [2] x1 + [1] x2 + [1]
              p(cons) = [1] x1 + [1] x2 + [0]
              p(from) = [2] x1 + [0]         
               p(fst) = [2] x1 + [2] x2 + [2]
               p(len) = [2] x1 + [0]         
            p(n__add) = [1] x1 + [1] x2 + [0]
           p(n__from) = [1] x1 + [0]         
            p(n__fst) = [1] x1 + [1] x2 + [0]
            p(n__len) = [1] x1 + [0]         
               p(nil) = [0]                  
                 p(s) = [1] x1 + [1]         
        
        Following rules are strictly oriented:
                    activate(X) = [2] X + [2]          
                                > [1] X + [0]          
                                = X                    
        
        activate(n__add(X1,X2)) = [2] X1 + [2] X2 + [2]
                                > [2] X1 + [1] X2 + [1]
                                = add(X1,X2)           
        
           activate(n__from(X)) = [2] X + [2]          
                                > [2] X + [0]          
                                = from(X)              
        
                     fst(X1,X2) = [2] X1 + [2] X2 + [2]
                                > [1] X1 + [1] X2 + [0]
                                = n__fst(X1,X2)        
        
        
        Following rules are (at-least) weakly oriented:
        activate(n__fst(X1,X2)) =  [2] X1 + [2] X2 + [2]      
                                >= [2] X1 + [2] X2 + [2]      
                                =  fst(X1,X2)                 
        
            activate(n__len(X)) =  [2] X + [2]                
                                >= [2] X + [0]                
                                =  len(X)                     
        
                     add(X1,X2) =  [2] X1 + [1] X2 + [1]      
                                >= [1] X1 + [1] X2 + [0]      
                                =  n__add(X1,X2)              
        
                     add(0(),X) =  [1] X + [5]                
                                >= [1] X + [0]                
                                =  X                          
        
                    add(s(X),Y) =  [2] X + [1] Y + [3]        
                                >= [2] X + [1] Y + [3]        
                                =  s(n__add(activate(X),Y))   
        
                        from(X) =  [2] X + [0]                
                                >= [2] X + [1]                
                                =  cons(X,n__from(s(X)))      
        
                        from(X) =  [2] X + [0]                
                                >= [1] X + [0]                
                                =  n__from(X)                 
        
                     fst(0(),Z) =  [2] Z + [6]                
                                >= [0]                        
                                =  nil()                      
        
            fst(s(X),cons(Y,Z)) =  [2] X + [2] Y + [2] Z + [4]
                                >= [2] X + [1] Y + [2] Z + [4]
                                =  cons(Y                     
                                       ,n__fst(activate(X)    
                                              ,activate(Z)))  
        
                         len(X) =  [2] X + [0]                
                                >= [1] X + [0]                
                                =  n__len(X)                  
        
                 len(cons(X,Z)) =  [2] X + [2] Z + [0]        
                                >= [2] Z + [3]                
                                =  s(n__len(activate(Z)))     
        
                     len(nil()) =  [0]                        
                                >= [2]                        
                                =  0()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        len(X) -> n__len(X)
        len(cons(X,Z)) -> s(n__len(activate(Z)))
        len(nil()) -> 0()
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__add(X1,X2)) -> add(X1,X2)
        activate(n__from(X)) -> from(X)
        activate(n__fst(X1,X2)) -> fst(X1,X2)
        activate(n__len(X)) -> len(X)
        add(X1,X2) -> n__add(X1,X2)
        add(0(),X) -> X
        add(s(X),Y) -> s(n__add(activate(X),Y))
        fst(X1,X2) -> n__fst(X1,X2)
        fst(0(),Z) -> nil()
        fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z)))
      Signature:
        {activate/1,add/2,from/1,fst/2,len/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {activate,add,from,fst,len}/{0,cons,n__add,n__from,n__fst,n__len,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {2},
          uargs(n__add) = {1},
          uargs(n__fst) = {1,2},
          uargs(n__len) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [2]                  
          p(activate) = [2] x1 + [0]         
               p(add) = [2] x1 + [1] x2 + [3]
              p(cons) = [1] x2 + [1]         
              p(from) = [7]                  
               p(fst) = [2] x1 + [2] x2 + [0]
               p(len) = [2] x1 + [0]         
            p(n__add) = [1] x1 + [1] x2 + [2]
           p(n__from) = [4]                  
            p(n__fst) = [1] x1 + [1] x2 + [0]
            p(n__len) = [1] x1 + [3]         
               p(nil) = [4]                  
                 p(s) = [1] x1 + [2]         
        
        Following rules are strictly oriented:
           from(X) = [7]                  
                   > [5]                  
                   = cons(X,n__from(s(X)))
        
           from(X) = [7]                  
                   > [4]                  
                   = n__from(X)           
        
        len(nil()) = [8]                  
                   > [2]                  
                   = 0()                  
        
        
        Following rules are (at-least) weakly oriented:
                    activate(X) =  [2] X + [0]              
                                >= [1] X + [0]              
                                =  X                        
        
        activate(n__add(X1,X2)) =  [2] X1 + [2] X2 + [4]    
                                >= [2] X1 + [1] X2 + [3]    
                                =  add(X1,X2)               
        
           activate(n__from(X)) =  [8]                      
                                >= [7]                      
                                =  from(X)                  
        
        activate(n__fst(X1,X2)) =  [2] X1 + [2] X2 + [0]    
                                >= [2] X1 + [2] X2 + [0]    
                                =  fst(X1,X2)               
        
            activate(n__len(X)) =  [2] X + [6]              
                                >= [2] X + [0]              
                                =  len(X)                   
        
                     add(X1,X2) =  [2] X1 + [1] X2 + [3]    
                                >= [1] X1 + [1] X2 + [2]    
                                =  n__add(X1,X2)            
        
                     add(0(),X) =  [1] X + [7]              
                                >= [1] X + [0]              
                                =  X                        
        
                    add(s(X),Y) =  [2] X + [1] Y + [7]      
                                >= [2] X + [1] Y + [4]      
                                =  s(n__add(activate(X),Y)) 
        
                     fst(X1,X2) =  [2] X1 + [2] X2 + [0]    
                                >= [1] X1 + [1] X2 + [0]    
                                =  n__fst(X1,X2)            
        
                     fst(0(),Z) =  [2] Z + [4]              
                                >= [4]                      
                                =  nil()                    
        
            fst(s(X),cons(Y,Z)) =  [2] X + [2] Z + [6]      
                                >= [2] X + [2] Z + [1]      
                                =  cons(Y                   
                                       ,n__fst(activate(X)  
                                              ,activate(Z)))
        
                         len(X) =  [2] X + [0]              
                                >= [1] X + [3]              
                                =  n__len(X)                
        
                 len(cons(X,Z)) =  [2] Z + [2]              
                                >= [2] Z + [5]              
                                =  s(n__len(activate(Z)))   
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        len(X) -> n__len(X)
        len(cons(X,Z)) -> s(n__len(activate(Z)))
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__add(X1,X2)) -> add(X1,X2)
        activate(n__from(X)) -> from(X)
        activate(n__fst(X1,X2)) -> fst(X1,X2)
        activate(n__len(X)) -> len(X)
        add(X1,X2) -> n__add(X1,X2)
        add(0(),X) -> X
        add(s(X),Y) -> s(n__add(activate(X),Y))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        fst(X1,X2) -> n__fst(X1,X2)
        fst(0(),Z) -> nil()
        fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z)))
        len(nil()) -> 0()
      Signature:
        {activate/1,add/2,from/1,fst/2,len/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {activate,add,from,fst,len}/{0,cons,n__add,n__from,n__fst,n__len,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {2},
          uargs(n__add) = {1},
          uargs(n__fst) = {1,2},
          uargs(n__len) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [6]                  
          p(activate) = [1] x1 + [1]         
               p(add) = [1] x1 + [1] x2 + [1]
              p(cons) = [1] x2 + [0]         
              p(from) = [1]                  
               p(fst) = [1] x1 + [1] x2 + [0]
               p(len) = [1] x1 + [7]         
            p(n__add) = [1] x1 + [1] x2 + [0]
           p(n__from) = [1]                  
            p(n__fst) = [1] x1 + [1] x2 + [0]
            p(n__len) = [1] x1 + [6]         
               p(nil) = [0]                  
                 p(s) = [1] x1 + [2]         
        
        Following rules are strictly oriented:
        len(X) = [1] X + [7]
               > [1] X + [6]
               = n__len(X)  
        
        
        Following rules are (at-least) weakly oriented:
                    activate(X) =  [1] X + [1]              
                                >= [1] X + [0]              
                                =  X                        
        
        activate(n__add(X1,X2)) =  [1] X1 + [1] X2 + [1]    
                                >= [1] X1 + [1] X2 + [1]    
                                =  add(X1,X2)               
        
           activate(n__from(X)) =  [2]                      
                                >= [1]                      
                                =  from(X)                  
        
        activate(n__fst(X1,X2)) =  [1] X1 + [1] X2 + [1]    
                                >= [1] X1 + [1] X2 + [0]    
                                =  fst(X1,X2)               
        
            activate(n__len(X)) =  [1] X + [7]              
                                >= [1] X + [7]              
                                =  len(X)                   
        
                     add(X1,X2) =  [1] X1 + [1] X2 + [1]    
                                >= [1] X1 + [1] X2 + [0]    
                                =  n__add(X1,X2)            
        
                     add(0(),X) =  [1] X + [7]              
                                >= [1] X + [0]              
                                =  X                        
        
                    add(s(X),Y) =  [1] X + [1] Y + [3]      
                                >= [1] X + [1] Y + [3]      
                                =  s(n__add(activate(X),Y)) 
        
                        from(X) =  [1]                      
                                >= [1]                      
                                =  cons(X,n__from(s(X)))    
        
                        from(X) =  [1]                      
                                >= [1]                      
                                =  n__from(X)               
        
                     fst(X1,X2) =  [1] X1 + [1] X2 + [0]    
                                >= [1] X1 + [1] X2 + [0]    
                                =  n__fst(X1,X2)            
        
                     fst(0(),Z) =  [1] Z + [6]              
                                >= [0]                      
                                =  nil()                    
        
            fst(s(X),cons(Y,Z)) =  [1] X + [1] Z + [2]      
                                >= [1] X + [1] Z + [2]      
                                =  cons(Y                   
                                       ,n__fst(activate(X)  
                                              ,activate(Z)))
        
                 len(cons(X,Z)) =  [1] Z + [7]              
                                >= [1] Z + [9]              
                                =  s(n__len(activate(Z)))   
        
                     len(nil()) =  [7]                      
                                >= [6]                      
                                =  0()                      
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        len(cons(X,Z)) -> s(n__len(activate(Z)))
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__add(X1,X2)) -> add(X1,X2)
        activate(n__from(X)) -> from(X)
        activate(n__fst(X1,X2)) -> fst(X1,X2)
        activate(n__len(X)) -> len(X)
        add(X1,X2) -> n__add(X1,X2)
        add(0(),X) -> X
        add(s(X),Y) -> s(n__add(activate(X),Y))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        fst(X1,X2) -> n__fst(X1,X2)
        fst(0(),Z) -> nil()
        fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z)))
        len(X) -> n__len(X)
        len(nil()) -> 0()
      Signature:
        {activate/1,add/2,from/1,fst/2,len/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {activate,add,from,fst,len}/{0,cons,n__add,n__from,n__fst,n__len,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {2},
          uargs(n__add) = {1},
          uargs(n__fst) = {1,2},
          uargs(n__len) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
          p(activate) = [4] x1 + [0]         
               p(add) = [4] x1 + [4] x2 + [0]
              p(cons) = [1] x2 + [0]         
              p(from) = [0]                  
               p(fst) = [4] x1 + [4] x2 + [5]
               p(len) = [4] x1 + [4]         
            p(n__add) = [1] x1 + [1] x2 + [0]
           p(n__from) = [0]                  
            p(n__fst) = [1] x1 + [1] x2 + [2]
            p(n__len) = [1] x1 + [1]         
               p(nil) = [2]                  
                 p(s) = [1] x1 + [2]         
        
        Following rules are strictly oriented:
        len(cons(X,Z)) = [4] Z + [4]           
                       > [4] Z + [3]           
                       = s(n__len(activate(Z)))
        
        
        Following rules are (at-least) weakly oriented:
                    activate(X) =  [4] X + [0]              
                                >= [1] X + [0]              
                                =  X                        
        
        activate(n__add(X1,X2)) =  [4] X1 + [4] X2 + [0]    
                                >= [4] X1 + [4] X2 + [0]    
                                =  add(X1,X2)               
        
           activate(n__from(X)) =  [0]                      
                                >= [0]                      
                                =  from(X)                  
        
        activate(n__fst(X1,X2)) =  [4] X1 + [4] X2 + [8]    
                                >= [4] X1 + [4] X2 + [5]    
                                =  fst(X1,X2)               
        
            activate(n__len(X)) =  [4] X + [4]              
                                >= [4] X + [4]              
                                =  len(X)                   
        
                     add(X1,X2) =  [4] X1 + [4] X2 + [0]    
                                >= [1] X1 + [1] X2 + [0]    
                                =  n__add(X1,X2)            
        
                     add(0(),X) =  [4] X + [0]              
                                >= [1] X + [0]              
                                =  X                        
        
                    add(s(X),Y) =  [4] X + [4] Y + [8]      
                                >= [4] X + [1] Y + [2]      
                                =  s(n__add(activate(X),Y)) 
        
                        from(X) =  [0]                      
                                >= [0]                      
                                =  cons(X,n__from(s(X)))    
        
                        from(X) =  [0]                      
                                >= [0]                      
                                =  n__from(X)               
        
                     fst(X1,X2) =  [4] X1 + [4] X2 + [5]    
                                >= [1] X1 + [1] X2 + [2]    
                                =  n__fst(X1,X2)            
        
                     fst(0(),Z) =  [4] Z + [5]              
                                >= [2]                      
                                =  nil()                    
        
            fst(s(X),cons(Y,Z)) =  [4] X + [4] Z + [13]     
                                >= [4] X + [4] Z + [2]      
                                =  cons(Y                   
                                       ,n__fst(activate(X)  
                                              ,activate(Z)))
        
                         len(X) =  [4] X + [4]              
                                >= [1] X + [1]              
                                =  n__len(X)                
        
                     len(nil()) =  [12]                     
                                >= [0]                      
                                =  0()                      
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__add(X1,X2)) -> add(X1,X2)
        activate(n__from(X)) -> from(X)
        activate(n__fst(X1,X2)) -> fst(X1,X2)
        activate(n__len(X)) -> len(X)
        add(X1,X2) -> n__add(X1,X2)
        add(0(),X) -> X
        add(s(X),Y) -> s(n__add(activate(X),Y))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        fst(X1,X2) -> n__fst(X1,X2)
        fst(0(),Z) -> nil()
        fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z)))
        len(X) -> n__len(X)
        len(cons(X,Z)) -> s(n__len(activate(Z)))
        len(nil()) -> 0()
      Signature:
        {activate/1,add/2,from/1,fst/2,len/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {activate,add,from,fst,len}/{0,cons,n__add,n__from,n__fst,n__len,nil,s}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).