*** 1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: add(0(),X) -> X add(s(),Y) -> s() from(X) -> cons(X) fst(0(),Z) -> nil() fst(s(),cons(Y)) -> cons(Y) len(cons(X)) -> s() len(nil()) -> 0() Weak DP Rules: Weak TRS Rules: Signature: {add/2,from/1,fst/2,len/1} / {0/0,cons/1,nil/0,s/0} Obligation: Innermost basic terms: {add,from,fst,len}/{0,cons,nil,s} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs add#(0(),X) -> c_1() add#(s(),Y) -> c_2() from#(X) -> c_3() fst#(0(),Z) -> c_4() fst#(s(),cons(Y)) -> c_5() len#(cons(X)) -> c_6() len#(nil()) -> c_7() Weak DPs and mark the set of starting terms. *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: add#(0(),X) -> c_1() add#(s(),Y) -> c_2() from#(X) -> c_3() fst#(0(),Z) -> c_4() fst#(s(),cons(Y)) -> c_5() len#(cons(X)) -> c_6() len#(nil()) -> c_7() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: add(0(),X) -> X add(s(),Y) -> s() from(X) -> cons(X) fst(0(),Z) -> nil() fst(s(),cons(Y)) -> cons(Y) len(cons(X)) -> s() len(nil()) -> 0() Signature: {add/2,from/1,fst/2,len/1,add#/2,from#/1,fst#/2,len#/1} / {0/0,cons/1,nil/0,s/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {add#,from#,fst#,len#}/{0,cons,nil,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: add#(0(),X) -> c_1() add#(s(),Y) -> c_2() from#(X) -> c_3() fst#(0(),Z) -> c_4() fst#(s(),cons(Y)) -> c_5() len#(cons(X)) -> c_6() len#(nil()) -> c_7() *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: add#(0(),X) -> c_1() add#(s(),Y) -> c_2() from#(X) -> c_3() fst#(0(),Z) -> c_4() fst#(s(),cons(Y)) -> c_5() len#(cons(X)) -> c_6() len#(nil()) -> c_7() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {add/2,from/1,fst/2,len/1,add#/2,from#/1,fst#/2,len#/1} / {0/0,cons/1,nil/0,s/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {add#,from#,fst#,len#}/{0,cons,nil,s} Applied Processor: Trivial Proof: Consider the dependency graph 1:S:add#(0(),X) -> c_1() 2:S:add#(s(),Y) -> c_2() 3:S:from#(X) -> c_3() 4:S:fst#(0(),Z) -> c_4() 5:S:fst#(s(),cons(Y)) -> c_5() 6:S:len#(cons(X)) -> c_6() 7:S:len#(nil()) -> c_7() The dependency graph contains no loops, we remove all dependency pairs. *** 1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {add/2,from/1,fst/2,len/1,add#/2,from#/1,fst#/2,len#/1} / {0/0,cons/1,nil/0,s/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0} Obligation: Innermost basic terms: {add#,from#,fst#,len#}/{0,cons,nil,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).