We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Strict Trs:
{ fst(0(), Z) -> nil()
, fst(s(), cons(Y)) -> cons(Y)
, from(X) -> cons(X)
, add(0(), X) -> X
, add(s(), Y) -> s()
, len(nil()) -> 0()
, len(cons(X)) -> s() }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
We add the following weak dependency pairs:
Strict DPs:
{ fst^#(0(), Z) -> c_1()
, fst^#(s(), cons(Y)) -> c_2()
, from^#(X) -> c_3()
, add^#(0(), X) -> c_4()
, add^#(s(), Y) -> c_5()
, len^#(nil()) -> c_6()
, len^#(cons(X)) -> c_7() }
and mark the set of starting terms.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Strict DPs:
{ fst^#(0(), Z) -> c_1()
, fst^#(s(), cons(Y)) -> c_2()
, from^#(X) -> c_3()
, add^#(0(), X) -> c_4()
, add^#(s(), Y) -> c_5()
, len^#(nil()) -> c_6()
, len^#(cons(X)) -> c_7() }
Strict Trs:
{ fst(0(), Z) -> nil()
, fst(s(), cons(Y)) -> cons(Y)
, from(X) -> cons(X)
, add(0(), X) -> X
, add(s(), Y) -> s()
, len(nil()) -> 0()
, len(cons(X)) -> s() }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
No rule is usable, rules are removed from the input problem.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Strict DPs:
{ fst^#(0(), Z) -> c_1()
, fst^#(s(), cons(Y)) -> c_2()
, from^#(X) -> c_3()
, add^#(0(), X) -> c_4()
, add^#(s(), Y) -> c_5()
, len^#(nil()) -> c_6()
, len^#(cons(X)) -> c_7() }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
The weightgap principle applies (using the following constant
growth matrix-interpretation)
The following argument positions are usable:
none
TcT has computed the following constructor-restricted matrix
interpretation.
[0] = [1]
[0]
[nil] = [0]
[1]
[s] = [0]
[0]
[cons](x1) = [0]
[0]
[fst^#](x1, x2) = [0 0] x1 + [0]
[2 0] [0]
[c_1] = [0]
[0]
[c_2] = [0]
[0]
[from^#](x1) = [1]
[0]
[c_3] = [0]
[0]
[add^#](x1, x2) = [0 1] x1 + [0]
[0 0] [0]
[c_4] = [0]
[0]
[c_5] = [0]
[0]
[len^#](x1) = [0]
[0]
[c_6] = [0]
[0]
[c_7] = [0]
[0]
The order satisfies the following ordering constraints:
[fst^#(0(), Z)] = [0]
[2]
>= [0]
[0]
= [c_1()]
[fst^#(s(), cons(Y))] = [0]
[0]
>= [0]
[0]
= [c_2()]
[from^#(X)] = [1]
[0]
> [0]
[0]
= [c_3()]
[add^#(0(), X)] = [0]
[0]
>= [0]
[0]
= [c_4()]
[add^#(s(), Y)] = [0]
[0]
>= [0]
[0]
= [c_5()]
[len^#(nil())] = [0]
[0]
>= [0]
[0]
= [c_6()]
[len^#(cons(X))] = [0]
[0]
>= [0]
[0]
= [c_7()]
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Strict DPs:
{ fst^#(0(), Z) -> c_1()
, fst^#(s(), cons(Y)) -> c_2()
, add^#(0(), X) -> c_4()
, add^#(s(), Y) -> c_5()
, len^#(nil()) -> c_6()
, len^#(cons(X)) -> c_7() }
Weak DPs: { from^#(X) -> c_3() }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
We estimate the number of application of {1,2,3,4,5,6} by
applications of Pre({1,2,3,4,5,6}) = {}. Here rules are labeled as
follows:
DPs:
{ 1: fst^#(0(), Z) -> c_1()
, 2: fst^#(s(), cons(Y)) -> c_2()
, 3: add^#(0(), X) -> c_4()
, 4: add^#(s(), Y) -> c_5()
, 5: len^#(nil()) -> c_6()
, 6: len^#(cons(X)) -> c_7()
, 7: from^#(X) -> c_3() }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Weak DPs:
{ fst^#(0(), Z) -> c_1()
, fst^#(s(), cons(Y)) -> c_2()
, from^#(X) -> c_3()
, add^#(0(), X) -> c_4()
, add^#(s(), Y) -> c_5()
, len^#(nil()) -> c_6()
, len^#(cons(X)) -> c_7() }
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.
{ fst^#(0(), Z) -> c_1()
, fst^#(s(), cons(Y)) -> c_2()
, from^#(X) -> c_3()
, add^#(0(), X) -> c_4()
, add^#(s(), Y) -> c_5()
, len^#(nil()) -> c_6()
, len^#(cons(X)) -> c_7() }
We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).
Rules: Empty
Obligation:
innermost runtime complexity
Answer:
YES(O(1),O(1))
Empty rules are trivially bounded
Hurray, we answered YES(O(1),O(1))