*** 1 Progress [(O(1),O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
        activate(n__from(X)) -> from(activate(X))
        activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
        activate(n__len(X)) -> len(activate(X))
        activate(n__s(X)) -> s(X)
        add(X1,X2) -> n__add(X1,X2)
        add(0(),X) -> X
        add(s(X),Y) -> s(n__add(activate(X),Y))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        fst(X1,X2) -> n__fst(X1,X2)
        fst(0(),Z) -> nil()
        fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z)))
        len(X) -> n__len(X)
        len(cons(X,Z)) -> s(n__len(activate(Z)))
        len(nil()) -> 0()
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
      Obligation:
        Innermost
        basic terms: {activate,add,from,fst,len,s}/{0,cons,n__add,n__from,n__fst,n__len,n__s,nil}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        add(s(X),Y) -> s(n__add(activate(X),Y))
        fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z)))
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
        activate(n__from(X)) -> from(activate(X))
        activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
        activate(n__len(X)) -> len(activate(X))
        activate(n__s(X)) -> s(X)
        add(X1,X2) -> n__add(X1,X2)
        add(0(),X) -> X
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        fst(X1,X2) -> n__fst(X1,X2)
        fst(0(),Z) -> nil()
        len(X) -> n__len(X)
        len(cons(X,Z)) -> s(n__len(activate(Z)))
        len(nil()) -> 0()
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
      Obligation:
        Innermost
        basic terms: {activate,add,from,fst,len,s}/{0,cons,n__add,n__from,n__fst,n__len,n__s,nil}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(add) = {1,2},
          uargs(from) = {1},
          uargs(fst) = {1,2},
          uargs(len) = {1},
          uargs(n__len) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
          p(activate) = [1] x1 + [2]         
               p(add) = [1] x1 + [1] x2 + [0]
              p(cons) = [1] x2 + [3]         
              p(from) = [1] x1 + [0]         
               p(fst) = [1] x1 + [1] x2 + [0]
               p(len) = [1] x1 + [0]         
            p(n__add) = [1] x1 + [1] x2 + [0]
           p(n__from) = [1] x1 + [7]         
            p(n__fst) = [1] x1 + [1] x2 + [0]
            p(n__len) = [1] x1 + [0]         
              p(n__s) = [1] x1 + [2]         
               p(nil) = [0]                  
                 p(s) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
                 activate(X) = [1] X + [2]           
                             > [1] X + [0]           
                             = X                     
        
        activate(n__from(X)) = [1] X + [9]           
                             > [1] X + [2]           
                             = from(activate(X))     
        
           activate(n__s(X)) = [1] X + [4]           
                             > [1] X + [0]           
                             = s(X)                  
        
              len(cons(X,Z)) = [1] Z + [3]           
                             > [1] Z + [2]           
                             = s(n__len(activate(Z)))
        
        
        Following rules are (at-least) weakly oriented:
        activate(n__add(X1,X2)) =  [1] X1 + [1] X2 + [2]         
                                >= [1] X1 + [1] X2 + [4]         
                                =  add(activate(X1),activate(X2))
        
        activate(n__fst(X1,X2)) =  [1] X1 + [1] X2 + [2]         
                                >= [1] X1 + [1] X2 + [4]         
                                =  fst(activate(X1),activate(X2))
        
            activate(n__len(X)) =  [1] X + [2]                   
                                >= [1] X + [2]                   
                                =  len(activate(X))              
        
                     add(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                >= [1] X1 + [1] X2 + [0]         
                                =  n__add(X1,X2)                 
        
                     add(0(),X) =  [1] X + [0]                   
                                >= [1] X + [0]                   
                                =  X                             
        
                        from(X) =  [1] X + [0]                   
                                >= [1] X + [12]                  
                                =  cons(X,n__from(n__s(X)))      
        
                        from(X) =  [1] X + [0]                   
                                >= [1] X + [7]                   
                                =  n__from(X)                    
        
                     fst(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                >= [1] X1 + [1] X2 + [0]         
                                =  n__fst(X1,X2)                 
        
                     fst(0(),Z) =  [1] Z + [0]                   
                                >= [0]                           
                                =  nil()                         
        
                         len(X) =  [1] X + [0]                   
                                >= [1] X + [0]                   
                                =  n__len(X)                     
        
                     len(nil()) =  [0]                           
                                >= [0]                           
                                =  0()                           
        
                           s(X) =  [1] X + [0]                   
                                >= [1] X + [2]                   
                                =  n__s(X)                       
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
        activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
        activate(n__len(X)) -> len(activate(X))
        add(X1,X2) -> n__add(X1,X2)
        add(0(),X) -> X
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        fst(X1,X2) -> n__fst(X1,X2)
        fst(0(),Z) -> nil()
        len(X) -> n__len(X)
        len(nil()) -> 0()
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(X)
        len(cons(X,Z)) -> s(n__len(activate(Z)))
      Signature:
        {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
      Obligation:
        Innermost
        basic terms: {activate,add,from,fst,len,s}/{0,cons,n__add,n__from,n__fst,n__len,n__s,nil}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(add) = {1,2},
          uargs(from) = {1},
          uargs(fst) = {1,2},
          uargs(len) = {1},
          uargs(n__len) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [8]                  
          p(activate) = [1] x1 + [2]         
               p(add) = [1] x1 + [1] x2 + [2]
              p(cons) = [1] x2 + [4]         
              p(from) = [1] x1 + [0]         
               p(fst) = [1] x1 + [1] x2 + [0]
               p(len) = [1] x1 + [0]         
            p(n__add) = [1] x1 + [1] x2 + [0]
           p(n__from) = [1] x1 + [0]         
            p(n__fst) = [1] x1 + [1] x2 + [0]
            p(n__len) = [1] x1 + [1]         
              p(n__s) = [1] x1 + [9]         
               p(nil) = [0]                  
                 p(s) = [1] x1 + [1]         
        
        Following rules are strictly oriented:
        activate(n__len(X)) = [1] X + [3]          
                            > [1] X + [2]          
                            = len(activate(X))     
        
                 add(X1,X2) = [1] X1 + [1] X2 + [2]
                            > [1] X1 + [1] X2 + [0]
                            = n__add(X1,X2)        
        
                 add(0(),X) = [1] X + [10]         
                            > [1] X + [0]          
                            = X                    
        
                 fst(0(),Z) = [1] Z + [8]          
                            > [0]                  
                            = nil()                
        
        
        Following rules are (at-least) weakly oriented:
                    activate(X) =  [1] X + [2]                   
                                >= [1] X + [0]                   
                                =  X                             
        
        activate(n__add(X1,X2)) =  [1] X1 + [1] X2 + [2]         
                                >= [1] X1 + [1] X2 + [6]         
                                =  add(activate(X1),activate(X2))
        
           activate(n__from(X)) =  [1] X + [2]                   
                                >= [1] X + [2]                   
                                =  from(activate(X))             
        
        activate(n__fst(X1,X2)) =  [1] X1 + [1] X2 + [2]         
                                >= [1] X1 + [1] X2 + [4]         
                                =  fst(activate(X1),activate(X2))
        
              activate(n__s(X)) =  [1] X + [11]                  
                                >= [1] X + [1]                   
                                =  s(X)                          
        
                        from(X) =  [1] X + [0]                   
                                >= [1] X + [13]                  
                                =  cons(X,n__from(n__s(X)))      
        
                        from(X) =  [1] X + [0]                   
                                >= [1] X + [0]                   
                                =  n__from(X)                    
        
                     fst(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                >= [1] X1 + [1] X2 + [0]         
                                =  n__fst(X1,X2)                 
        
                         len(X) =  [1] X + [0]                   
                                >= [1] X + [1]                   
                                =  n__len(X)                     
        
                 len(cons(X,Z)) =  [1] Z + [4]                   
                                >= [1] Z + [4]                   
                                =  s(n__len(activate(Z)))        
        
                     len(nil()) =  [0]                           
                                >= [8]                           
                                =  0()                           
        
                           s(X) =  [1] X + [1]                   
                                >= [1] X + [9]                   
                                =  n__s(X)                       
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
        activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        fst(X1,X2) -> n__fst(X1,X2)
        len(X) -> n__len(X)
        len(nil()) -> 0()
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(activate(X))
        activate(n__len(X)) -> len(activate(X))
        activate(n__s(X)) -> s(X)
        add(X1,X2) -> n__add(X1,X2)
        add(0(),X) -> X
        fst(0(),Z) -> nil()
        len(cons(X,Z)) -> s(n__len(activate(Z)))
      Signature:
        {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
      Obligation:
        Innermost
        basic terms: {activate,add,from,fst,len,s}/{0,cons,n__add,n__from,n__fst,n__len,n__s,nil}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(add) = {1,2},
          uargs(from) = {1},
          uargs(fst) = {1,2},
          uargs(len) = {1},
          uargs(n__len) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [1]                  
          p(activate) = [1] x1 + [6]         
               p(add) = [1] x1 + [1] x2 + [0]
              p(cons) = [1] x2 + [7]         
              p(from) = [1] x1 + [1]         
               p(fst) = [1] x1 + [1] x2 + [1]
               p(len) = [1] x1 + [1]         
            p(n__add) = [1] x1 + [1] x2 + [0]
           p(n__from) = [1] x1 + [4]         
            p(n__fst) = [1] x1 + [1] x2 + [0]
            p(n__len) = [1] x1 + [2]         
              p(n__s) = [1] x1 + [2]         
               p(nil) = [1]                  
                 p(s) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
        fst(X1,X2) = [1] X1 + [1] X2 + [1]
                   > [1] X1 + [1] X2 + [0]
                   = n__fst(X1,X2)        
        
        len(nil()) = [2]                  
                   > [1]                  
                   = 0()                  
        
        
        Following rules are (at-least) weakly oriented:
                    activate(X) =  [1] X + [6]                   
                                >= [1] X + [0]                   
                                =  X                             
        
        activate(n__add(X1,X2)) =  [1] X1 + [1] X2 + [6]         
                                >= [1] X1 + [1] X2 + [12]        
                                =  add(activate(X1),activate(X2))
        
           activate(n__from(X)) =  [1] X + [10]                  
                                >= [1] X + [7]                   
                                =  from(activate(X))             
        
        activate(n__fst(X1,X2)) =  [1] X1 + [1] X2 + [6]         
                                >= [1] X1 + [1] X2 + [13]        
                                =  fst(activate(X1),activate(X2))
        
            activate(n__len(X)) =  [1] X + [8]                   
                                >= [1] X + [7]                   
                                =  len(activate(X))              
        
              activate(n__s(X)) =  [1] X + [8]                   
                                >= [1] X + [0]                   
                                =  s(X)                          
        
                     add(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                >= [1] X1 + [1] X2 + [0]         
                                =  n__add(X1,X2)                 
        
                     add(0(),X) =  [1] X + [1]                   
                                >= [1] X + [0]                   
                                =  X                             
        
                        from(X) =  [1] X + [1]                   
                                >= [1] X + [13]                  
                                =  cons(X,n__from(n__s(X)))      
        
                        from(X) =  [1] X + [1]                   
                                >= [1] X + [4]                   
                                =  n__from(X)                    
        
                     fst(0(),Z) =  [1] Z + [2]                   
                                >= [1]                           
                                =  nil()                         
        
                         len(X) =  [1] X + [1]                   
                                >= [1] X + [2]                   
                                =  n__len(X)                     
        
                 len(cons(X,Z)) =  [1] Z + [8]                   
                                >= [1] Z + [8]                   
                                =  s(n__len(activate(Z)))        
        
                           s(X) =  [1] X + [0]                   
                                >= [1] X + [2]                   
                                =  n__s(X)                       
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
        activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        len(X) -> n__len(X)
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(activate(X))
        activate(n__len(X)) -> len(activate(X))
        activate(n__s(X)) -> s(X)
        add(X1,X2) -> n__add(X1,X2)
        add(0(),X) -> X
        fst(X1,X2) -> n__fst(X1,X2)
        fst(0(),Z) -> nil()
        len(cons(X,Z)) -> s(n__len(activate(Z)))
        len(nil()) -> 0()
      Signature:
        {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
      Obligation:
        Innermost
        basic terms: {activate,add,from,fst,len,s}/{0,cons,n__add,n__from,n__fst,n__len,n__s,nil}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(add) = {1,2},
          uargs(from) = {1},
          uargs(fst) = {1,2},
          uargs(len) = {1},
          uargs(n__len) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [2]                  
          p(activate) = [1] x1 + [2]         
               p(add) = [1] x1 + [1] x2 + [0]
              p(cons) = [1] x2 + [5]         
              p(from) = [1] x1 + [0]         
               p(fst) = [1] x1 + [1] x2 + [0]
               p(len) = [1] x1 + [0]         
            p(n__add) = [1] x1 + [1] x2 + [0]
           p(n__from) = [1] x1 + [0]         
            p(n__fst) = [1] x1 + [1] x2 + [0]
            p(n__len) = [1] x1 + [2]         
              p(n__s) = [1] x1 + [0]         
               p(nil) = [2]                  
                 p(s) = [1] x1 + [1]         
        
        Following rules are strictly oriented:
        s(X) = [1] X + [1]
             > [1] X + [0]
             = n__s(X)    
        
        
        Following rules are (at-least) weakly oriented:
                    activate(X) =  [1] X + [2]                   
                                >= [1] X + [0]                   
                                =  X                             
        
        activate(n__add(X1,X2)) =  [1] X1 + [1] X2 + [2]         
                                >= [1] X1 + [1] X2 + [4]         
                                =  add(activate(X1),activate(X2))
        
           activate(n__from(X)) =  [1] X + [2]                   
                                >= [1] X + [2]                   
                                =  from(activate(X))             
        
        activate(n__fst(X1,X2)) =  [1] X1 + [1] X2 + [2]         
                                >= [1] X1 + [1] X2 + [4]         
                                =  fst(activate(X1),activate(X2))
        
            activate(n__len(X)) =  [1] X + [4]                   
                                >= [1] X + [2]                   
                                =  len(activate(X))              
        
              activate(n__s(X)) =  [1] X + [2]                   
                                >= [1] X + [1]                   
                                =  s(X)                          
        
                     add(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                >= [1] X1 + [1] X2 + [0]         
                                =  n__add(X1,X2)                 
        
                     add(0(),X) =  [1] X + [2]                   
                                >= [1] X + [0]                   
                                =  X                             
        
                        from(X) =  [1] X + [0]                   
                                >= [1] X + [5]                   
                                =  cons(X,n__from(n__s(X)))      
        
                        from(X) =  [1] X + [0]                   
                                >= [1] X + [0]                   
                                =  n__from(X)                    
        
                     fst(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                >= [1] X1 + [1] X2 + [0]         
                                =  n__fst(X1,X2)                 
        
                     fst(0(),Z) =  [1] Z + [2]                   
                                >= [2]                           
                                =  nil()                         
        
                         len(X) =  [1] X + [0]                   
                                >= [1] X + [2]                   
                                =  n__len(X)                     
        
                 len(cons(X,Z)) =  [1] Z + [5]                   
                                >= [1] Z + [5]                   
                                =  s(n__len(activate(Z)))        
        
                     len(nil()) =  [2]                           
                                >= [2]                           
                                =  0()                           
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
        activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        len(X) -> n__len(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(activate(X))
        activate(n__len(X)) -> len(activate(X))
        activate(n__s(X)) -> s(X)
        add(X1,X2) -> n__add(X1,X2)
        add(0(),X) -> X
        fst(X1,X2) -> n__fst(X1,X2)
        fst(0(),Z) -> nil()
        len(cons(X,Z)) -> s(n__len(activate(Z)))
        len(nil()) -> 0()
        s(X) -> n__s(X)
      Signature:
        {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
      Obligation:
        Innermost
        basic terms: {activate,add,from,fst,len,s}/{0,cons,n__add,n__from,n__fst,n__len,n__s,nil}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(add) = {1,2},
        uargs(from) = {1},
        uargs(fst) = {1,2},
        uargs(len) = {1},
        uargs(n__len) = {1},
        uargs(s) = {1}
      
      Following symbols are considered usable:
        {activate,add,from,fst,len,s}
      TcT has computed the following interpretation:
               p(0) = [3]                      
                      [7]                      
        p(activate) = [1 1] x1 + [0]           
                      [0 4]      [0]           
             p(add) = [1 0] x1 + [1 0] x2 + [3]
                      [0 1]      [0 1]      [0]
            p(cons) = [0 0] x1 + [1 1] x2 + [0]
                      [0 1]      [0 0]      [0]
            p(from) = [1 0] x1 + [0]           
                      [0 1]      [0]           
             p(fst) = [1 0] x1 + [1 0] x2 + [0]
                      [0 1]      [0 1]      [0]
             p(len) = [1 0] x1 + [4]           
                      [0 1]      [6]           
          p(n__add) = [1 0] x1 + [1 0] x2 + [3]
                      [0 1]      [0 1]      [0]
         p(n__from) = [1 0] x1 + [0]           
                      [0 1]      [0]           
          p(n__fst) = [1 0] x1 + [1 0] x2 + [0]
                      [0 1]      [0 1]      [0]
          p(n__len) = [1 0] x1 + [2]           
                      [0 1]      [2]           
            p(n__s) = [1 0] x1 + [0]           
                      [0 0]      [0]           
             p(nil) = [0]                      
                      [6]                      
               p(s) = [1 0] x1 + [0]           
                      [0 0]      [0]           
      
      Following rules are strictly oriented:
      len(X) = [1 0] X + [4]
               [0 1]     [6]
             > [1 0] X + [2]
               [0 1]     [2]
             = n__len(X)    
      
      
      Following rules are (at-least) weakly oriented:
                  activate(X) =  [1 1] X + [0]                 
                                 [0 4]     [0]                 
                              >= [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              =  X                             
      
      activate(n__add(X1,X2)) =  [1 1] X1 + [1 1] X2 + [3]     
                                 [0 4]      [0 4]      [0]     
                              >= [1 1] X1 + [1 1] X2 + [3]     
                                 [0 4]      [0 4]      [0]     
                              =  add(activate(X1),activate(X2))
      
         activate(n__from(X)) =  [1 1] X + [0]                 
                                 [0 4]     [0]                 
                              >= [1 1] X + [0]                 
                                 [0 4]     [0]                 
                              =  from(activate(X))             
      
      activate(n__fst(X1,X2)) =  [1 1] X1 + [1 1] X2 + [0]     
                                 [0 4]      [0 4]      [0]     
                              >= [1 1] X1 + [1 1] X2 + [0]     
                                 [0 4]      [0 4]      [0]     
                              =  fst(activate(X1),activate(X2))
      
          activate(n__len(X)) =  [1 1] X + [4]                 
                                 [0 4]     [8]                 
                              >= [1 1] X + [4]                 
                                 [0 4]     [6]                 
                              =  len(activate(X))              
      
            activate(n__s(X)) =  [1 0] X + [0]                 
                                 [0 0]     [0]                 
                              >= [1 0] X + [0]                 
                                 [0 0]     [0]                 
                              =  s(X)                          
      
                   add(X1,X2) =  [1 0] X1 + [1 0] X2 + [3]     
                                 [0 1]      [0 1]      [0]     
                              >= [1 0] X1 + [1 0] X2 + [3]     
                                 [0 1]      [0 1]      [0]     
                              =  n__add(X1,X2)                 
      
                   add(0(),X) =  [1 0] X + [6]                 
                                 [0 1]     [7]                 
                              >= [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              =  X                             
      
                      from(X) =  [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              >= [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              =  cons(X,n__from(n__s(X)))      
      
                      from(X) =  [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              >= [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              =  n__from(X)                    
      
                   fst(X1,X2) =  [1 0] X1 + [1 0] X2 + [0]     
                                 [0 1]      [0 1]      [0]     
                              >= [1 0] X1 + [1 0] X2 + [0]     
                                 [0 1]      [0 1]      [0]     
                              =  n__fst(X1,X2)                 
      
                   fst(0(),Z) =  [1 0] Z + [3]                 
                                 [0 1]     [7]                 
                              >= [0]                           
                                 [6]                           
                              =  nil()                         
      
               len(cons(X,Z)) =  [0 0] X + [1 1] Z + [4]       
                                 [0 1]     [0 0]     [6]       
                              >= [1 1] Z + [2]                 
                                 [0 0]     [0]                 
                              =  s(n__len(activate(Z)))        
      
                   len(nil()) =  [4]                           
                                 [12]                          
                              >= [3]                           
                                 [7]                           
                              =  0()                           
      
                         s(X) =  [1 0] X + [0]                 
                                 [0 0]     [0]                 
                              >= [1 0] X + [0]                 
                                 [0 0]     [0]                 
                              =  n__s(X)                       
      
*** 1.1.1.1.1.1.1 Progress [(O(1),O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
        activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(activate(X))
        activate(n__len(X)) -> len(activate(X))
        activate(n__s(X)) -> s(X)
        add(X1,X2) -> n__add(X1,X2)
        add(0(),X) -> X
        fst(X1,X2) -> n__fst(X1,X2)
        fst(0(),Z) -> nil()
        len(X) -> n__len(X)
        len(cons(X,Z)) -> s(n__len(activate(Z)))
        len(nil()) -> 0()
        s(X) -> n__s(X)
      Signature:
        {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
      Obligation:
        Innermost
        basic terms: {activate,add,from,fst,len,s}/{0,cons,n__add,n__from,n__fst,n__len,n__s,nil}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(add) = {1,2},
        uargs(from) = {1},
        uargs(fst) = {1,2},
        uargs(len) = {1},
        uargs(n__len) = {1},
        uargs(s) = {1}
      
      Following symbols are considered usable:
        {activate,add,from,fst,len,s}
      TcT has computed the following interpretation:
               p(0) = [5]                      
                      [0]                      
        p(activate) = [1 1] x1 + [0]           
                      [0 1]      [0]           
             p(add) = [1 0] x1 + [1 0] x2 + [1]
                      [0 1]      [0 1]      [2]
            p(cons) = [0 7] x1 + [1 4] x2 + [0]
                      [0 1]      [0 1]      [0]
            p(from) = [1 7] x1 + [4]           
                      [0 1]      [0]           
             p(fst) = [1 5] x1 + [1 0] x2 + [0]
                      [0 1]      [0 1]      [0]
             p(len) = [1 0] x1 + [2]           
                      [0 1]      [1]           
          p(n__add) = [1 0] x1 + [1 0] x2 + [1]
                      [0 1]      [0 1]      [2]
         p(n__from) = [1 7] x1 + [4]           
                      [0 1]      [0]           
          p(n__fst) = [1 5] x1 + [1 0] x2 + [0]
                      [0 1]      [0 1]      [0]
          p(n__len) = [1 0] x1 + [2]           
                      [0 1]      [1]           
            p(n__s) = [1 0] x1 + [0]           
                      [0 0]      [0]           
             p(nil) = [4]                      
                      [0]                      
               p(s) = [1 0] x1 + [0]           
                      [0 0]      [0]           
      
      Following rules are strictly oriented:
      activate(n__add(X1,X2)) = [1 1] X1 + [1 1] X2 + [3]     
                                [0 1]      [0 1]      [2]     
                              > [1 1] X1 + [1 1] X2 + [1]     
                                [0 1]      [0 1]      [2]     
                              = add(activate(X1),activate(X2))
      
      
      Following rules are (at-least) weakly oriented:
                  activate(X) =  [1 1] X + [0]                 
                                 [0 1]     [0]                 
                              >= [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              =  X                             
      
         activate(n__from(X)) =  [1 8] X + [4]                 
                                 [0 1]     [0]                 
                              >= [1 8] X + [4]                 
                                 [0 1]     [0]                 
                              =  from(activate(X))             
      
      activate(n__fst(X1,X2)) =  [1 6] X1 + [1 1] X2 + [0]     
                                 [0 1]      [0 1]      [0]     
                              >= [1 6] X1 + [1 1] X2 + [0]     
                                 [0 1]      [0 1]      [0]     
                              =  fst(activate(X1),activate(X2))
      
          activate(n__len(X)) =  [1 1] X + [3]                 
                                 [0 1]     [1]                 
                              >= [1 1] X + [2]                 
                                 [0 1]     [1]                 
                              =  len(activate(X))              
      
            activate(n__s(X)) =  [1 0] X + [0]                 
                                 [0 0]     [0]                 
                              >= [1 0] X + [0]                 
                                 [0 0]     [0]                 
                              =  s(X)                          
      
                   add(X1,X2) =  [1 0] X1 + [1 0] X2 + [1]     
                                 [0 1]      [0 1]      [2]     
                              >= [1 0] X1 + [1 0] X2 + [1]     
                                 [0 1]      [0 1]      [2]     
                              =  n__add(X1,X2)                 
      
                   add(0(),X) =  [1 0] X + [6]                 
                                 [0 1]     [2]                 
                              >= [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              =  X                             
      
                      from(X) =  [1 7] X + [4]                 
                                 [0 1]     [0]                 
                              >= [1 7] X + [4]                 
                                 [0 1]     [0]                 
                              =  cons(X,n__from(n__s(X)))      
      
                      from(X) =  [1 7] X + [4]                 
                                 [0 1]     [0]                 
                              >= [1 7] X + [4]                 
                                 [0 1]     [0]                 
                              =  n__from(X)                    
      
                   fst(X1,X2) =  [1 5] X1 + [1 0] X2 + [0]     
                                 [0 1]      [0 1]      [0]     
                              >= [1 5] X1 + [1 0] X2 + [0]     
                                 [0 1]      [0 1]      [0]     
                              =  n__fst(X1,X2)                 
      
                   fst(0(),Z) =  [1 0] Z + [5]                 
                                 [0 1]     [0]                 
                              >= [4]                           
                                 [0]                           
                              =  nil()                         
      
                       len(X) =  [1 0] X + [2]                 
                                 [0 1]     [1]                 
                              >= [1 0] X + [2]                 
                                 [0 1]     [1]                 
                              =  n__len(X)                     
      
               len(cons(X,Z)) =  [0 7] X + [1 4] Z + [2]       
                                 [0 1]     [0 1]     [1]       
                              >= [1 1] Z + [2]                 
                                 [0 0]     [0]                 
                              =  s(n__len(activate(Z)))        
      
                   len(nil()) =  [6]                           
                                 [1]                           
                              >= [5]                           
                                 [0]                           
                              =  0()                           
      
                         s(X) =  [1 0] X + [0]                 
                                 [0 0]     [0]                 
                              >= [1 0] X + [0]                 
                                 [0 0]     [0]                 
                              =  n__s(X)                       
      
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
        activate(n__from(X)) -> from(activate(X))
        activate(n__len(X)) -> len(activate(X))
        activate(n__s(X)) -> s(X)
        add(X1,X2) -> n__add(X1,X2)
        add(0(),X) -> X
        fst(X1,X2) -> n__fst(X1,X2)
        fst(0(),Z) -> nil()
        len(X) -> n__len(X)
        len(cons(X,Z)) -> s(n__len(activate(Z)))
        len(nil()) -> 0()
        s(X) -> n__s(X)
      Signature:
        {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
      Obligation:
        Innermost
        basic terms: {activate,add,from,fst,len,s}/{0,cons,n__add,n__from,n__fst,n__len,n__s,nil}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(add) = {1,2},
        uargs(from) = {1},
        uargs(fst) = {1,2},
        uargs(len) = {1},
        uargs(n__len) = {1},
        uargs(s) = {1}
      
      Following symbols are considered usable:
        {activate,add,from,fst,len,s}
      TcT has computed the following interpretation:
               p(0) = [2]                      
                      [1]                      
        p(activate) = [1 2] x1 + [0]           
                      [4 1]      [0]           
             p(add) = [1 0] x1 + [1 0] x2 + [0]
                      [0 1]      [0 1]      [4]
            p(cons) = [0 0] x1 + [1 4] x2 + [0]
                      [0 1]      [0 1]      [0]
            p(from) = [1 0] x1 + [0]           
                      [0 1]      [0]           
             p(fst) = [1 0] x1 + [1 0] x2 + [4]
                      [0 1]      [0 1]      [4]
             p(len) = [1 0] x1 + [0]           
                      [0 1]      [0]           
          p(n__add) = [1 0] x1 + [1 0] x2 + [0]
                      [0 1]      [0 1]      [4]
         p(n__from) = [1 0] x1 + [0]           
                      [0 1]      [0]           
          p(n__fst) = [1 0] x1 + [1 0] x2 + [0]
                      [0 1]      [0 1]      [4]
          p(n__len) = [1 0] x1 + [0]           
                      [0 1]      [0]           
            p(n__s) = [1 0] x1 + [0]           
                      [0 0]      [0]           
             p(nil) = [6]                      
                      [2]                      
               p(s) = [1 0] x1 + [0]           
                      [0 0]      [0]           
      
      Following rules are strictly oriented:
      activate(n__fst(X1,X2)) = [1 2] X1 + [1 2] X2 + [8]     
                                [4 1]      [4 1]      [4]     
                              > [1 2] X1 + [1 2] X2 + [4]     
                                [4 1]      [4 1]      [4]     
                              = fst(activate(X1),activate(X2))
      
      
      Following rules are (at-least) weakly oriented:
                  activate(X) =  [1 2] X + [0]                 
                                 [4 1]     [0]                 
                              >= [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              =  X                             
      
      activate(n__add(X1,X2)) =  [1 2] X1 + [1 2] X2 + [8]     
                                 [4 1]      [4 1]      [4]     
                              >= [1 2] X1 + [1 2] X2 + [0]     
                                 [4 1]      [4 1]      [4]     
                              =  add(activate(X1),activate(X2))
      
         activate(n__from(X)) =  [1 2] X + [0]                 
                                 [4 1]     [0]                 
                              >= [1 2] X + [0]                 
                                 [4 1]     [0]                 
                              =  from(activate(X))             
      
          activate(n__len(X)) =  [1 2] X + [0]                 
                                 [4 1]     [0]                 
                              >= [1 2] X + [0]                 
                                 [4 1]     [0]                 
                              =  len(activate(X))              
      
            activate(n__s(X)) =  [1 0] X + [0]                 
                                 [4 0]     [0]                 
                              >= [1 0] X + [0]                 
                                 [0 0]     [0]                 
                              =  s(X)                          
      
                   add(X1,X2) =  [1 0] X1 + [1 0] X2 + [0]     
                                 [0 1]      [0 1]      [4]     
                              >= [1 0] X1 + [1 0] X2 + [0]     
                                 [0 1]      [0 1]      [4]     
                              =  n__add(X1,X2)                 
      
                   add(0(),X) =  [1 0] X + [2]                 
                                 [0 1]     [5]                 
                              >= [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              =  X                             
      
                      from(X) =  [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              >= [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              =  cons(X,n__from(n__s(X)))      
      
                      from(X) =  [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              >= [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              =  n__from(X)                    
      
                   fst(X1,X2) =  [1 0] X1 + [1 0] X2 + [4]     
                                 [0 1]      [0 1]      [4]     
                              >= [1 0] X1 + [1 0] X2 + [0]     
                                 [0 1]      [0 1]      [4]     
                              =  n__fst(X1,X2)                 
      
                   fst(0(),Z) =  [1 0] Z + [6]                 
                                 [0 1]     [5]                 
                              >= [6]                           
                                 [2]                           
                              =  nil()                         
      
                       len(X) =  [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              >= [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              =  n__len(X)                     
      
               len(cons(X,Z)) =  [0 0] X + [1 4] Z + [0]       
                                 [0 1]     [0 1]     [0]       
                              >= [1 2] Z + [0]                 
                                 [0 0]     [0]                 
                              =  s(n__len(activate(Z)))        
      
                   len(nil()) =  [6]                           
                                 [2]                           
                              >= [2]                           
                                 [1]                           
                              =  0()                           
      
                         s(X) =  [1 0] X + [0]                 
                                 [0 0]     [0]                 
                              >= [1 0] X + [0]                 
                                 [0 0]     [0]                 
                              =  n__s(X)                       
      
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
        activate(n__from(X)) -> from(activate(X))
        activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
        activate(n__len(X)) -> len(activate(X))
        activate(n__s(X)) -> s(X)
        add(X1,X2) -> n__add(X1,X2)
        add(0(),X) -> X
        fst(X1,X2) -> n__fst(X1,X2)
        fst(0(),Z) -> nil()
        len(X) -> n__len(X)
        len(cons(X,Z)) -> s(n__len(activate(Z)))
        len(nil()) -> 0()
        s(X) -> n__s(X)
      Signature:
        {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
      Obligation:
        Innermost
        basic terms: {activate,add,from,fst,len,s}/{0,cons,n__add,n__from,n__fst,n__len,n__s,nil}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(add) = {1,2},
        uargs(from) = {1},
        uargs(fst) = {1,2},
        uargs(len) = {1},
        uargs(n__len) = {1},
        uargs(s) = {1}
      
      Following symbols are considered usable:
        {activate,add,from,fst,len,s}
      TcT has computed the following interpretation:
               p(0) = [1]                      
                      [5]                      
        p(activate) = [1 1] x1 + [0]           
                      [0 4]      [0]           
             p(add) = [1 0] x1 + [1 0] x2 + [0]
                      [0 1]      [0 1]      [4]
            p(cons) = [1 1] x2 + [0]           
                      [0 0]      [2]           
            p(from) = [1 0] x1 + [1]           
                      [0 1]      [4]           
             p(fst) = [1 0] x1 + [1 0] x2 + [3]
                      [0 1]      [0 1]      [3]
             p(len) = [1 0] x1 + [0]           
                      [0 1]      [0]           
          p(n__add) = [1 0] x1 + [1 0] x2 + [0]
                      [0 1]      [0 1]      [1]
         p(n__from) = [1 0] x1 + [0]           
                      [0 1]      [1]           
          p(n__fst) = [1 0] x1 + [1 0] x2 + [0]
                      [0 1]      [0 1]      [3]
          p(n__len) = [1 0] x1 + [0]           
                      [0 1]      [0]           
            p(n__s) = [1 0] x1 + [0]           
                      [0 0]      [0]           
             p(nil) = [4]                      
                      [5]                      
               p(s) = [1 0] x1 + [0]           
                      [0 0]      [0]           
      
      Following rules are strictly oriented:
      from(X) = [1 0] X + [1]
                [0 1]     [4]
              > [1 0] X + [0]
                [0 1]     [1]
              = n__from(X)   
      
      
      Following rules are (at-least) weakly oriented:
                  activate(X) =  [1 1] X + [0]                 
                                 [0 4]     [0]                 
                              >= [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              =  X                             
      
      activate(n__add(X1,X2)) =  [1 1] X1 + [1 1] X2 + [1]     
                                 [0 4]      [0 4]      [4]     
                              >= [1 1] X1 + [1 1] X2 + [0]     
                                 [0 4]      [0 4]      [4]     
                              =  add(activate(X1),activate(X2))
      
         activate(n__from(X)) =  [1 1] X + [1]                 
                                 [0 4]     [4]                 
                              >= [1 1] X + [1]                 
                                 [0 4]     [4]                 
                              =  from(activate(X))             
      
      activate(n__fst(X1,X2)) =  [1 1] X1 + [1 1] X2 + [3]     
                                 [0 4]      [0 4]      [12]    
                              >= [1 1] X1 + [1 1] X2 + [3]     
                                 [0 4]      [0 4]      [3]     
                              =  fst(activate(X1),activate(X2))
      
          activate(n__len(X)) =  [1 1] X + [0]                 
                                 [0 4]     [0]                 
                              >= [1 1] X + [0]                 
                                 [0 4]     [0]                 
                              =  len(activate(X))              
      
            activate(n__s(X)) =  [1 0] X + [0]                 
                                 [0 0]     [0]                 
                              >= [1 0] X + [0]                 
                                 [0 0]     [0]                 
                              =  s(X)                          
      
                   add(X1,X2) =  [1 0] X1 + [1 0] X2 + [0]     
                                 [0 1]      [0 1]      [4]     
                              >= [1 0] X1 + [1 0] X2 + [0]     
                                 [0 1]      [0 1]      [1]     
                              =  n__add(X1,X2)                 
      
                   add(0(),X) =  [1 0] X + [1]                 
                                 [0 1]     [9]                 
                              >= [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              =  X                             
      
                      from(X) =  [1 0] X + [1]                 
                                 [0 1]     [4]                 
                              >= [1 0] X + [1]                 
                                 [0 0]     [2]                 
                              =  cons(X,n__from(n__s(X)))      
      
                   fst(X1,X2) =  [1 0] X1 + [1 0] X2 + [3]     
                                 [0 1]      [0 1]      [3]     
                              >= [1 0] X1 + [1 0] X2 + [0]     
                                 [0 1]      [0 1]      [3]     
                              =  n__fst(X1,X2)                 
      
                   fst(0(),Z) =  [1 0] Z + [4]                 
                                 [0 1]     [8]                 
                              >= [4]                           
                                 [5]                           
                              =  nil()                         
      
                       len(X) =  [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              >= [1 0] X + [0]                 
                                 [0 1]     [0]                 
                              =  n__len(X)                     
      
               len(cons(X,Z)) =  [1 1] Z + [0]                 
                                 [0 0]     [2]                 
                              >= [1 1] Z + [0]                 
                                 [0 0]     [0]                 
                              =  s(n__len(activate(Z)))        
      
                   len(nil()) =  [4]                           
                                 [5]                           
                              >= [1]                           
                                 [5]                           
                              =  0()                           
      
                         s(X) =  [1 0] X + [0]                 
                                 [0 0]     [0]                 
                              >= [1 0] X + [0]                 
                                 [0 0]     [0]                 
                              =  n__s(X)                       
      
*** 1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        from(X) -> cons(X,n__from(n__s(X)))
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
        activate(n__from(X)) -> from(activate(X))
        activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
        activate(n__len(X)) -> len(activate(X))
        activate(n__s(X)) -> s(X)
        add(X1,X2) -> n__add(X1,X2)
        add(0(),X) -> X
        from(X) -> n__from(X)
        fst(X1,X2) -> n__fst(X1,X2)
        fst(0(),Z) -> nil()
        len(X) -> n__len(X)
        len(cons(X,Z)) -> s(n__len(activate(Z)))
        len(nil()) -> 0()
        s(X) -> n__s(X)
      Signature:
        {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
      Obligation:
        Innermost
        basic terms: {activate,add,from,fst,len,s}/{0,cons,n__add,n__from,n__fst,n__len,n__s,nil}
    Applied Processor:
      NaturalMI {miDimension = 3, miDegree = 3, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(add) = {1,2},
        uargs(from) = {1},
        uargs(fst) = {1,2},
        uargs(len) = {1},
        uargs(n__len) = {1},
        uargs(s) = {1}
      
      Following symbols are considered usable:
        {activate,add,from,fst,len,s}
      TcT has computed the following interpretation:
               p(0) = [0]                          
                      [2]                          
                      [0]                          
        p(activate) = [1 0 2]      [0]             
                      [0 1 0] x1 + [1]             
                      [2 0 1]      [0]             
             p(add) = [1 0 0]      [1 2 0]      [1]
                      [0 0 0] x1 + [0 1 0] x2 + [1]
                      [0 0 1]      [0 0 1]      [3]
            p(cons) = [1 2 0]      [0]             
                      [0 0 1] x2 + [0]             
                      [0 0 0]      [0]             
            p(from) = [1 1 0]      [3]             
                      [0 0 0] x1 + [2]             
                      [0 0 1]      [2]             
             p(fst) = [1 0 0]      [1 0 0]      [1]
                      [0 0 0] x1 + [0 1 0] x2 + [0]
                      [0 0 1]      [0 0 1]      [1]
             p(len) = [1 2 0]      [3]             
                      [0 0 0] x1 + [2]             
                      [0 0 1]      [3]             
          p(n__add) = [1 0 0]      [1 2 0]      [1]
                      [0 0 0] x1 + [0 1 0] x2 + [1]
                      [0 0 1]      [0 0 1]      [2]
         p(n__from) = [1 1 0]      [0]             
                      [0 0 0] x1 + [1]             
                      [0 0 1]      [2]             
          p(n__fst) = [1 0 0]      [1 0 0]      [1]
                      [0 0 0] x1 + [0 1 0] x2 + [0]
                      [0 0 1]      [0 0 1]      [0]
          p(n__len) = [1 2 0]      [1]             
                      [0 0 0] x1 + [2]             
                      [0 0 1]      [3]             
            p(n__s) = [1 0 0]      [0]             
                      [0 0 0] x1 + [0]             
                      [0 0 0]      [0]             
             p(nil) = [0]                          
                      [0]                          
                      [1]                          
               p(s) = [1 0 0]      [0]             
                      [0 0 0] x1 + [0]             
                      [0 0 0]      [0]             
      
      Following rules are strictly oriented:
      from(X) = [1 1 0]     [3]         
                [0 0 0] X + [2]         
                [0 0 1]     [2]         
              > [1 0 0]     [2]         
                [0 0 0] X + [2]         
                [0 0 0]     [0]         
              = cons(X,n__from(n__s(X)))
      
      
      Following rules are (at-least) weakly oriented:
                  activate(X) =  [1 0 2]     [0]               
                                 [0 1 0] X + [1]               
                                 [2 0 1]     [0]               
                              >= [1 0 0]     [0]               
                                 [0 1 0] X + [0]               
                                 [0 0 1]     [0]               
                              =  X                             
      
      activate(n__add(X1,X2)) =  [1 0 2]      [1 2 2]      [5] 
                                 [0 0 0] X1 + [0 1 0] X2 + [2] 
                                 [2 0 1]      [2 4 1]      [4] 
                              >= [1 0 2]      [1 2 2]      [3] 
                                 [0 0 0] X1 + [0 1 0] X2 + [2] 
                                 [2 0 1]      [2 0 1]      [3] 
                              =  add(activate(X1),activate(X2))
      
         activate(n__from(X)) =  [1 1 2]     [4]               
                                 [0 0 0] X + [2]               
                                 [2 2 1]     [2]               
                              >= [1 1 2]     [4]               
                                 [0 0 0] X + [2]               
                                 [2 0 1]     [2]               
                              =  from(activate(X))             
      
      activate(n__fst(X1,X2)) =  [1 0 2]      [1 0 2]      [1] 
                                 [0 0 0] X1 + [0 1 0] X2 + [1] 
                                 [2 0 1]      [2 0 1]      [2] 
                              >= [1 0 2]      [1 0 2]      [1] 
                                 [0 0 0] X1 + [0 1 0] X2 + [1] 
                                 [2 0 1]      [2 0 1]      [1] 
                              =  fst(activate(X1),activate(X2))
      
          activate(n__len(X)) =  [1 2 2]     [7]               
                                 [0 0 0] X + [3]               
                                 [2 4 1]     [5]               
                              >= [1 2 2]     [5]               
                                 [0 0 0] X + [2]               
                                 [2 0 1]     [3]               
                              =  len(activate(X))              
      
            activate(n__s(X)) =  [1 0 0]     [0]               
                                 [0 0 0] X + [1]               
                                 [2 0 0]     [0]               
                              >= [1 0 0]     [0]               
                                 [0 0 0] X + [0]               
                                 [0 0 0]     [0]               
                              =  s(X)                          
      
                   add(X1,X2) =  [1 0 0]      [1 2 0]      [1] 
                                 [0 0 0] X1 + [0 1 0] X2 + [1] 
                                 [0 0 1]      [0 0 1]      [3] 
                              >= [1 0 0]      [1 2 0]      [1] 
                                 [0 0 0] X1 + [0 1 0] X2 + [1] 
                                 [0 0 1]      [0 0 1]      [2] 
                              =  n__add(X1,X2)                 
      
                   add(0(),X) =  [1 2 0]     [1]               
                                 [0 1 0] X + [1]               
                                 [0 0 1]     [3]               
                              >= [1 0 0]     [0]               
                                 [0 1 0] X + [0]               
                                 [0 0 1]     [0]               
                              =  X                             
      
                      from(X) =  [1 1 0]     [3]               
                                 [0 0 0] X + [2]               
                                 [0 0 1]     [2]               
                              >= [1 1 0]     [0]               
                                 [0 0 0] X + [1]               
                                 [0 0 1]     [2]               
                              =  n__from(X)                    
      
                   fst(X1,X2) =  [1 0 0]      [1 0 0]      [1] 
                                 [0 0 0] X1 + [0 1 0] X2 + [0] 
                                 [0 0 1]      [0 0 1]      [1] 
                              >= [1 0 0]      [1 0 0]      [1] 
                                 [0 0 0] X1 + [0 1 0] X2 + [0] 
                                 [0 0 1]      [0 0 1]      [0] 
                              =  n__fst(X1,X2)                 
      
                   fst(0(),Z) =  [1 0 0]     [1]               
                                 [0 1 0] Z + [0]               
                                 [0 0 1]     [1]               
                              >= [0]                           
                                 [0]                           
                                 [1]                           
                              =  nil()                         
      
                       len(X) =  [1 2 0]     [3]               
                                 [0 0 0] X + [2]               
                                 [0 0 1]     [3]               
                              >= [1 2 0]     [1]               
                                 [0 0 0] X + [2]               
                                 [0 0 1]     [3]               
                              =  n__len(X)                     
      
               len(cons(X,Z)) =  [1 2 2]     [3]               
                                 [0 0 0] Z + [2]               
                                 [0 0 0]     [3]               
                              >= [1 2 2]     [3]               
                                 [0 0 0] Z + [0]               
                                 [0 0 0]     [0]               
                              =  s(n__len(activate(Z)))        
      
                   len(nil()) =  [3]                           
                                 [2]                           
                                 [4]                           
                              >= [0]                           
                                 [2]                           
                                 [0]                           
                              =  0()                           
      
                         s(X) =  [1 0 0]     [0]               
                                 [0 0 0] X + [0]               
                                 [0 0 0]     [0]               
                              >= [1 0 0]     [0]               
                                 [0 0 0] X + [0]               
                                 [0 0 0]     [0]               
                              =  n__s(X)                       
      
*** 1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__add(X1,X2)) -> add(activate(X1),activate(X2))
        activate(n__from(X)) -> from(activate(X))
        activate(n__fst(X1,X2)) -> fst(activate(X1),activate(X2))
        activate(n__len(X)) -> len(activate(X))
        activate(n__s(X)) -> s(X)
        add(X1,X2) -> n__add(X1,X2)
        add(0(),X) -> X
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        fst(X1,X2) -> n__fst(X1,X2)
        fst(0(),Z) -> nil()
        len(X) -> n__len(X)
        len(cons(X,Z)) -> s(n__len(activate(Z)))
        len(nil()) -> 0()
        s(X) -> n__s(X)
      Signature:
        {activate/1,add/2,from/1,fst/2,len/1,s/1} / {0/0,cons/2,n__add/2,n__from/1,n__fst/2,n__len/1,n__s/1,nil/0}
      Obligation:
        Innermost
        basic terms: {activate,add,from,fst,len,s}/{0,cons,n__add,n__from,n__fst,n__len,n__s,nil}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).