*** 1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__terms(X)) -> terms(X)
        add(0(),X) -> X
        add(s(X),Y) -> s(add(X,Y))
        dbl(0()) -> 0()
        dbl(s(X)) -> s(s(dbl(X)))
        first(X1,X2) -> n__first(X1,X2)
        first(0(),X) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        sqr(0()) -> 0()
        sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        terms(N) -> cons(recip(sqr(N)),n__terms(s(N)))
        terms(X) -> n__terms(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1}
      Obligation:
        Innermost
        basic terms: {activate,add,dbl,first,sqr,terms}/{0,cons,n__first,n__terms,nil,recip,s}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        activate#(X) -> c_1()
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__terms(X)) -> c_3(terms#(X))
        add#(0(),X) -> c_4()
        add#(s(X),Y) -> c_5(add#(X,Y))
        dbl#(0()) -> c_6()
        dbl#(s(X)) -> c_7(dbl#(X))
        first#(X1,X2) -> c_8()
        first#(0(),X) -> c_9()
        first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
        sqr#(0()) -> c_11()
        sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        terms#(N) -> c_13(sqr#(N))
        terms#(X) -> c_14()
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1()
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__terms(X)) -> c_3(terms#(X))
        add#(0(),X) -> c_4()
        add#(s(X),Y) -> c_5(add#(X,Y))
        dbl#(0()) -> c_6()
        dbl#(s(X)) -> c_7(dbl#(X))
        first#(X1,X2) -> c_8()
        first#(0(),X) -> c_9()
        first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
        sqr#(0()) -> c_11()
        sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        terms#(N) -> c_13(sqr#(N))
        terms#(X) -> c_14()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__terms(X)) -> terms(X)
        add(0(),X) -> X
        add(s(X),Y) -> s(add(X,Y))
        dbl(0()) -> 0()
        dbl(s(X)) -> s(s(dbl(X)))
        first(X1,X2) -> n__first(X1,X2)
        first(0(),X) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        sqr(0()) -> 0()
        sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        terms(N) -> cons(recip(sqr(N)),n__terms(s(N)))
        terms(X) -> n__terms(X)
      Signature:
        {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/3,c_13/1,c_14/0}
      Obligation:
        Innermost
        basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        add(0(),X) -> X
        add(s(X),Y) -> s(add(X,Y))
        dbl(0()) -> 0()
        dbl(s(X)) -> s(s(dbl(X)))
        sqr(0()) -> 0()
        sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        activate#(X) -> c_1()
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__terms(X)) -> c_3(terms#(X))
        add#(0(),X) -> c_4()
        add#(s(X),Y) -> c_5(add#(X,Y))
        dbl#(0()) -> c_6()
        dbl#(s(X)) -> c_7(dbl#(X))
        first#(X1,X2) -> c_8()
        first#(0(),X) -> c_9()
        first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
        sqr#(0()) -> c_11()
        sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        terms#(N) -> c_13(sqr#(N))
        terms#(X) -> c_14()
*** 1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1()
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__terms(X)) -> c_3(terms#(X))
        add#(0(),X) -> c_4()
        add#(s(X),Y) -> c_5(add#(X,Y))
        dbl#(0()) -> c_6()
        dbl#(s(X)) -> c_7(dbl#(X))
        first#(X1,X2) -> c_8()
        first#(0(),X) -> c_9()
        first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
        sqr#(0()) -> c_11()
        sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        terms#(N) -> c_13(sqr#(N))
        terms#(X) -> c_14()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        add(0(),X) -> X
        add(s(X),Y) -> s(add(X,Y))
        dbl(0()) -> 0()
        dbl(s(X)) -> s(s(dbl(X)))
        sqr(0()) -> 0()
        sqr(s(X)) -> s(add(sqr(X),dbl(X)))
      Signature:
        {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/3,c_13/1,c_14/0}
      Obligation:
        Innermost
        basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,4,6,8,9,11,14}
      by application of
        Pre({1,4,6,8,9,11,14}) = {2,3,5,7,10,12,13}.
      Here rules are labelled as follows:
        1:  activate#(X) -> c_1()          
        2:  activate#(n__first(X1,X2)) ->  
              c_2(first#(X1,X2))           
        3:  activate#(n__terms(X)) ->      
              c_3(terms#(X))               
        4:  add#(0(),X) -> c_4()           
        5:  add#(s(X),Y) -> c_5(add#(X,Y)) 
        6:  dbl#(0()) -> c_6()             
        7:  dbl#(s(X)) -> c_7(dbl#(X))     
        8:  first#(X1,X2) -> c_8()         
        9:  first#(0(),X) -> c_9()         
        10: first#(s(X),cons(Y,Z)) ->      
              c_10(activate#(Z))           
        11: sqr#(0()) -> c_11()            
        12: sqr#(s(X)) -> c_12(add#(sqr(X) 
                                   ,dbl(X))
                              ,sqr#(X)     
                              ,dbl#(X))    
        13: terms#(N) -> c_13(sqr#(N))     
        14: terms#(X) -> c_14()            
*** 1.1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__terms(X)) -> c_3(terms#(X))
        add#(s(X),Y) -> c_5(add#(X,Y))
        dbl#(s(X)) -> c_7(dbl#(X))
        first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
        sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        terms#(N) -> c_13(sqr#(N))
      Strict TRS Rules:
        
      Weak DP Rules:
        activate#(X) -> c_1()
        add#(0(),X) -> c_4()
        dbl#(0()) -> c_6()
        first#(X1,X2) -> c_8()
        first#(0(),X) -> c_9()
        sqr#(0()) -> c_11()
        terms#(X) -> c_14()
      Weak TRS Rules:
        add(0(),X) -> X
        add(s(X),Y) -> s(add(X,Y))
        dbl(0()) -> 0()
        dbl(s(X)) -> s(s(dbl(X)))
        sqr(0()) -> 0()
        sqr(s(X)) -> s(add(sqr(X),dbl(X)))
      Signature:
        {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/3,c_13/1,c_14/0}
      Obligation:
        Innermost
        basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
           -->_1 first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)):5
           -->_1 first#(0(),X) -> c_9():12
           -->_1 first#(X1,X2) -> c_8():11
        
        2:S:activate#(n__terms(X)) -> c_3(terms#(X))
           -->_1 terms#(N) -> c_13(sqr#(N)):7
           -->_1 terms#(X) -> c_14():14
        
        3:S:add#(s(X),Y) -> c_5(add#(X,Y))
           -->_1 add#(0(),X) -> c_4():9
           -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):3
        
        4:S:dbl#(s(X)) -> c_7(dbl#(X))
           -->_1 dbl#(0()) -> c_6():10
           -->_1 dbl#(s(X)) -> c_7(dbl#(X)):4
        
        5:S:first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
           -->_1 activate#(X) -> c_1():8
           -->_1 activate#(n__terms(X)) -> c_3(terms#(X)):2
           -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):1
        
        6:S:sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
           -->_2 sqr#(0()) -> c_11():13
           -->_3 dbl#(0()) -> c_6():10
           -->_1 add#(0(),X) -> c_4():9
           -->_2 sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):6
           -->_3 dbl#(s(X)) -> c_7(dbl#(X)):4
           -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):3
        
        7:S:terms#(N) -> c_13(sqr#(N))
           -->_1 sqr#(0()) -> c_11():13
           -->_1 sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):6
        
        8:W:activate#(X) -> c_1()
           
        
        9:W:add#(0(),X) -> c_4()
           
        
        10:W:dbl#(0()) -> c_6()
           
        
        11:W:first#(X1,X2) -> c_8()
           
        
        12:W:first#(0(),X) -> c_9()
           
        
        13:W:sqr#(0()) -> c_11()
           
        
        14:W:terms#(X) -> c_14()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        11: first#(X1,X2) -> c_8()
        12: first#(0(),X) -> c_9()
        14: terms#(X) -> c_14()   
        9:  add#(0(),X) -> c_4()  
        10: dbl#(0()) -> c_6()    
        13: sqr#(0()) -> c_11()   
        8:  activate#(X) -> c_1() 
*** 1.1.1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__terms(X)) -> c_3(terms#(X))
        add#(s(X),Y) -> c_5(add#(X,Y))
        dbl#(s(X)) -> c_7(dbl#(X))
        first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
        sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
        terms#(N) -> c_13(sqr#(N))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        add(0(),X) -> X
        add(s(X),Y) -> s(add(X,Y))
        dbl(0()) -> 0()
        dbl(s(X)) -> s(s(dbl(X)))
        sqr(0()) -> 0()
        sqr(s(X)) -> s(add(sqr(X),dbl(X)))
      Signature:
        {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/3,c_13/1,c_14/0}
      Obligation:
        Innermost
        basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
    Applied Processor:
      PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
    Proof:
      We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
        1: activate#(n__first(X1,X2)) ->  
             c_2(first#(X1,X2))           
        2: activate#(n__terms(X)) ->      
             c_3(terms#(X))               
        4: dbl#(s(X)) -> c_7(dbl#(X))     
        5: first#(s(X),cons(Y,Z)) ->      
             c_10(activate#(Z))           
        6: sqr#(s(X)) -> c_12(add#(sqr(X) 
                                  ,dbl(X))
                             ,sqr#(X)     
                             ,dbl#(X))    
        7: terms#(N) -> c_13(sqr#(N))     
        
      The strictly oriented rules are moved into the weak component.
  *** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          activate#(n__terms(X)) -> c_3(terms#(X))
          add#(s(X),Y) -> c_5(add#(X,Y))
          dbl#(s(X)) -> c_7(dbl#(X))
          first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
          sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          terms#(N) -> c_13(sqr#(N))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          add(0(),X) -> X
          add(s(X),Y) -> s(add(X,Y))
          dbl(0()) -> 0()
          dbl(s(X)) -> s(s(dbl(X)))
          sqr(0()) -> 0()
          sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        Signature:
          {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/3,c_13/1,c_14/0}
        Obligation:
          Innermost
          basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
      Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
      Proof:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_5) = {1},
          uargs(c_7) = {1},
          uargs(c_10) = {1},
          uargs(c_12) = {1,2,3},
          uargs(c_13) = {1}
        
        Following symbols are considered usable:
          {activate#,add#,dbl#,first#,sqr#,terms#}
        TcT has computed the following interpretation:
                  p(0) = 0                
           p(activate) = 4                
                p(add) = 0                
               p(cons) = 1 + x1 + x2      
                p(dbl) = 0                
              p(first) = 1 + 2*x2 + x2^2  
           p(n__first) = x2               
           p(n__terms) = x1               
                p(nil) = 1                
              p(recip) = 0                
                  p(s) = 1 + x1           
                p(sqr) = 0                
              p(terms) = x1^2             
          p(activate#) = 6 + 6*x1 + 5*x1^2
               p(add#) = 0                
               p(dbl#) = 1 + 4*x1         
             p(first#) = 4 + x2 + 5*x2^2  
               p(sqr#) = x1 + 5*x1^2      
             p(terms#) = 2 + 4*x1 + 5*x1^2
                p(c_1) = 0                
                p(c_2) = x1               
                p(c_3) = x1               
                p(c_4) = 1                
                p(c_5) = x1               
                p(c_6) = 1                
                p(c_7) = x1               
                p(c_8) = 1                
                p(c_9) = 0                
               p(c_10) = x1               
               p(c_11) = 0                
               p(c_12) = 1 + x1 + x2 + x3 
               p(c_13) = x1               
               p(c_14) = 0                
        
        Following rules are strictly oriented:
        activate#(n__first(X1,X2)) = 6 + 6*X2 + 5*X2^2                        
                                   > 4 + X2 + 5*X2^2                          
                                   = c_2(first#(X1,X2))                       
        
            activate#(n__terms(X)) = 6 + 6*X + 5*X^2                          
                                   > 2 + 4*X + 5*X^2                          
                                   = c_3(terms#(X))                           
        
                        dbl#(s(X)) = 5 + 4*X                                  
                                   > 1 + 4*X                                  
                                   = c_7(dbl#(X))                             
        
            first#(s(X),cons(Y,Z)) = 10 + 11*Y + 10*Y*Z + 5*Y^2 + 11*Z + 5*Z^2
                                   > 6 + 6*Z + 5*Z^2                          
                                   = c_10(activate#(Z))                       
        
                        sqr#(s(X)) = 6 + 11*X + 5*X^2                         
                                   > 2 + 5*X + 5*X^2                          
                                   = c_12(add#(sqr(X),dbl(X))                 
                                         ,sqr#(X)                             
                                         ,dbl#(X))                            
        
                         terms#(N) = 2 + 4*N + 5*N^2                          
                                   > N + 5*N^2                                
                                   = c_13(sqr#(N))                            
        
        
        Following rules are (at-least) weakly oriented:
        add#(s(X),Y) =  0             
                     >= 0             
                     =  c_5(add#(X,Y))
        
  *** 1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          add#(s(X),Y) -> c_5(add#(X,Y))
        Strict TRS Rules:
          
        Weak DP Rules:
          activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          activate#(n__terms(X)) -> c_3(terms#(X))
          dbl#(s(X)) -> c_7(dbl#(X))
          first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
          sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          terms#(N) -> c_13(sqr#(N))
        Weak TRS Rules:
          add(0(),X) -> X
          add(s(X),Y) -> s(add(X,Y))
          dbl(0()) -> 0()
          dbl(s(X)) -> s(s(dbl(X)))
          sqr(0()) -> 0()
          sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        Signature:
          {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/3,c_13/1,c_14/0}
        Obligation:
          Innermost
          basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
      Applied Processor:
        Assumption
      Proof:
        ()
  
  *** 1.1.1.1.1.2 Progress [(?,O(n^3))]  ***
      Considered Problem:
        Strict DP Rules:
          add#(s(X),Y) -> c_5(add#(X,Y))
        Strict TRS Rules:
          
        Weak DP Rules:
          activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          activate#(n__terms(X)) -> c_3(terms#(X))
          dbl#(s(X)) -> c_7(dbl#(X))
          first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
          sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          terms#(N) -> c_13(sqr#(N))
        Weak TRS Rules:
          add(0(),X) -> X
          add(s(X),Y) -> s(add(X,Y))
          dbl(0()) -> 0()
          dbl(s(X)) -> s(s(dbl(X)))
          sqr(0()) -> 0()
          sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        Signature:
          {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/3,c_13/1,c_14/0}
        Obligation:
          Innermost
          basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:add#(s(X),Y) -> c_5(add#(X,Y))
             -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):1
          
          2:W:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
             -->_1 first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)):5
          
          3:W:activate#(n__terms(X)) -> c_3(terms#(X))
             -->_1 terms#(N) -> c_13(sqr#(N)):7
          
          4:W:dbl#(s(X)) -> c_7(dbl#(X))
             -->_1 dbl#(s(X)) -> c_7(dbl#(X)):4
          
          5:W:first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
             -->_1 activate#(n__terms(X)) -> c_3(terms#(X)):3
             -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):2
          
          6:W:sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
             -->_2 sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):6
             -->_3 dbl#(s(X)) -> c_7(dbl#(X)):4
             -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):1
          
          7:W:terms#(N) -> c_13(sqr#(N))
             -->_1 sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):6
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: dbl#(s(X)) -> c_7(dbl#(X))
  *** 1.1.1.1.1.2.1 Progress [(?,O(n^3))]  ***
      Considered Problem:
        Strict DP Rules:
          add#(s(X),Y) -> c_5(add#(X,Y))
        Strict TRS Rules:
          
        Weak DP Rules:
          activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          activate#(n__terms(X)) -> c_3(terms#(X))
          first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
          sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
          terms#(N) -> c_13(sqr#(N))
        Weak TRS Rules:
          add(0(),X) -> X
          add(s(X),Y) -> s(add(X,Y))
          dbl(0()) -> 0()
          dbl(s(X)) -> s(s(dbl(X)))
          sqr(0()) -> 0()
          sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        Signature:
          {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/3,c_13/1,c_14/0}
        Obligation:
          Innermost
          basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:add#(s(X),Y) -> c_5(add#(X,Y))
             -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):1
          
          2:W:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
             -->_1 first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)):5
          
          3:W:activate#(n__terms(X)) -> c_3(terms#(X))
             -->_1 terms#(N) -> c_13(sqr#(N)):7
          
          5:W:first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
             -->_1 activate#(n__terms(X)) -> c_3(terms#(X)):3
             -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):2
          
          6:W:sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X))
             -->_2 sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):6
             -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):1
          
          7:W:terms#(N) -> c_13(sqr#(N))
             -->_1 sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):6
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X))
  *** 1.1.1.1.1.2.1.1 Progress [(?,O(n^3))]  ***
      Considered Problem:
        Strict DP Rules:
          add#(s(X),Y) -> c_5(add#(X,Y))
        Strict TRS Rules:
          
        Weak DP Rules:
          activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          activate#(n__terms(X)) -> c_3(terms#(X))
          first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
          sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X))
          terms#(N) -> c_13(sqr#(N))
        Weak TRS Rules:
          add(0(),X) -> X
          add(s(X),Y) -> s(add(X,Y))
          dbl(0()) -> 0()
          dbl(s(X)) -> s(s(dbl(X)))
          sqr(0()) -> 0()
          sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        Signature:
          {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0}
        Obligation:
          Innermost
          basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
      Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
      Proof:
        We decompose the input problem according to the dependency graph into the upper component
          activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          activate#(n__terms(X)) -> c_3(terms#(X))
          first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
          sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X))
          terms#(N) -> c_13(sqr#(N))
        and a lower component
          add#(s(X),Y) -> c_5(add#(X,Y))
        Further, following extension rules are added to the lower component.
          activate#(n__first(X1,X2)) -> first#(X1,X2)
          activate#(n__terms(X)) -> terms#(X)
          first#(s(X),cons(Y,Z)) -> activate#(Z)
          sqr#(s(X)) -> add#(sqr(X),dbl(X))
          sqr#(s(X)) -> sqr#(X)
          terms#(N) -> sqr#(N)
    *** 1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X))
          Strict TRS Rules:
            
          Weak DP Rules:
            activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
            activate#(n__terms(X)) -> c_3(terms#(X))
            first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
            terms#(N) -> c_13(sqr#(N))
          Weak TRS Rules:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
          Signature:
            {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0}
          Obligation:
            Innermost
            basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: sqr#(s(X)) -> c_12(add#(sqr(X) 
                                      ,dbl(X))
                                 ,sqr#(X))    
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X))
            Strict TRS Rules:
              
            Weak DP Rules:
              activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
              activate#(n__terms(X)) -> c_3(terms#(X))
              first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
              terms#(N) -> c_13(sqr#(N))
            Weak TRS Rules:
              add(0(),X) -> X
              add(s(X),Y) -> s(add(X,Y))
              dbl(0()) -> 0()
              dbl(s(X)) -> s(s(dbl(X)))
              sqr(0()) -> 0()
              sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            Signature:
              {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0}
            Obligation:
              Innermost
              basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_2) = {1},
              uargs(c_3) = {1},
              uargs(c_10) = {1},
              uargs(c_12) = {1,2},
              uargs(c_13) = {1}
            
            Following symbols are considered usable:
              {activate#,add#,dbl#,first#,sqr#,terms#}
            TcT has computed the following interpretation:
                      p(0) = [8]                  
               p(activate) = [8]                  
                    p(add) = [1] x1 + [0]         
                   p(cons) = [1] x1 + [1] x2 + [4]
                    p(dbl) = [1] x1 + [14]        
                  p(first) = [1] x1 + [8]         
               p(n__first) = [1] x2 + [0]         
               p(n__terms) = [1] x1 + [1]         
                    p(nil) = [1]                  
                  p(recip) = [1] x1 + [1]         
                      p(s) = [1] x1 + [8]         
                    p(sqr) = [1]                  
                  p(terms) = [1]                  
              p(activate#) = [6] x1 + [4]         
                   p(add#) = [0]                  
                   p(dbl#) = [0]                  
                 p(first#) = [6] x2 + [3]         
                   p(sqr#) = [1] x1 + [0]         
                 p(terms#) = [5] x1 + [10]        
                    p(c_1) = [0]                  
                    p(c_2) = [1] x1 + [0]         
                    p(c_3) = [1] x1 + [0]         
                    p(c_4) = [0]                  
                    p(c_5) = [1] x1 + [1]         
                    p(c_6) = [2]                  
                    p(c_7) = [1]                  
                    p(c_8) = [2]                  
                    p(c_9) = [4]                  
                   p(c_10) = [1] x1 + [0]         
                   p(c_11) = [1]                  
                   p(c_12) = [8] x1 + [1] x2 + [6]
                   p(c_13) = [4] x1 + [9]         
                   p(c_14) = [1]                  
            
            Following rules are strictly oriented:
            sqr#(s(X)) = [1] X + [8]             
                       > [1] X + [6]             
                       = c_12(add#(sqr(X),dbl(X))
                             ,sqr#(X))           
            
            
            Following rules are (at-least) weakly oriented:
            activate#(n__first(X1,X2)) =  [6] X2 + [4]        
                                       >= [6] X2 + [3]        
                                       =  c_2(first#(X1,X2))  
            
                activate#(n__terms(X)) =  [6] X + [10]        
                                       >= [5] X + [10]        
                                       =  c_3(terms#(X))      
            
                first#(s(X),cons(Y,Z)) =  [6] Y + [6] Z + [27]
                                       >= [6] Z + [4]         
                                       =  c_10(activate#(Z))  
            
                             terms#(N) =  [5] N + [10]        
                                       >= [4] N + [9]         
                                       =  c_13(sqr#(N))       
            
      *** 1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
              activate#(n__terms(X)) -> c_3(terms#(X))
              first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
              sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X))
              terms#(N) -> c_13(sqr#(N))
            Weak TRS Rules:
              add(0(),X) -> X
              add(s(X),Y) -> s(add(X,Y))
              dbl(0()) -> 0()
              dbl(s(X)) -> s(s(dbl(X)))
              sqr(0()) -> 0()
              sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            Signature:
              {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0}
            Obligation:
              Innermost
              basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
              activate#(n__terms(X)) -> c_3(terms#(X))
              first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
              sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X))
              terms#(N) -> c_13(sqr#(N))
            Weak TRS Rules:
              add(0(),X) -> X
              add(s(X),Y) -> s(add(X,Y))
              dbl(0()) -> 0()
              dbl(s(X)) -> s(s(dbl(X)))
              sqr(0()) -> 0()
              sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            Signature:
              {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0}
            Obligation:
              Innermost
              basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
                 -->_1 first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)):3
              
              2:W:activate#(n__terms(X)) -> c_3(terms#(X))
                 -->_1 terms#(N) -> c_13(sqr#(N)):5
              
              3:W:first#(s(X),cons(Y,Z)) -> c_10(activate#(Z))
                 -->_1 activate#(n__terms(X)) -> c_3(terms#(X)):2
                 -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):1
              
              4:W:sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X))
                 -->_2 sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X)):4
              
              5:W:terms#(N) -> c_13(sqr#(N))
                 -->_1 sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X)):4
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              1: activate#(n__first(X1,X2)) ->  
                   c_2(first#(X1,X2))           
              3: first#(s(X),cons(Y,Z)) ->      
                   c_10(activate#(Z))           
              2: activate#(n__terms(X)) ->      
                   c_3(terms#(X))               
              5: terms#(N) -> c_13(sqr#(N))     
              4: sqr#(s(X)) -> c_12(add#(sqr(X) 
                                        ,dbl(X))
                                   ,sqr#(X))    
      *** 1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              add(0(),X) -> X
              add(s(X),Y) -> s(add(X,Y))
              dbl(0()) -> 0()
              dbl(s(X)) -> s(s(dbl(X)))
              sqr(0()) -> 0()
              sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            Signature:
              {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0}
            Obligation:
              Innermost
              basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).
      
    *** 1.1.1.1.1.2.1.1.2 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            add#(s(X),Y) -> c_5(add#(X,Y))
          Strict TRS Rules:
            
          Weak DP Rules:
            activate#(n__first(X1,X2)) -> first#(X1,X2)
            activate#(n__terms(X)) -> terms#(X)
            first#(s(X),cons(Y,Z)) -> activate#(Z)
            sqr#(s(X)) -> add#(sqr(X),dbl(X))
            sqr#(s(X)) -> sqr#(X)
            terms#(N) -> sqr#(N)
          Weak TRS Rules:
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
          Signature:
            {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0}
          Obligation:
            Innermost
            basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: add#(s(X),Y) -> c_5(add#(X,Y))
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.2.1.1.2.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              add#(s(X),Y) -> c_5(add#(X,Y))
            Strict TRS Rules:
              
            Weak DP Rules:
              activate#(n__first(X1,X2)) -> first#(X1,X2)
              activate#(n__terms(X)) -> terms#(X)
              first#(s(X),cons(Y,Z)) -> activate#(Z)
              sqr#(s(X)) -> add#(sqr(X),dbl(X))
              sqr#(s(X)) -> sqr#(X)
              terms#(N) -> sqr#(N)
            Weak TRS Rules:
              add(0(),X) -> X
              add(s(X),Y) -> s(add(X,Y))
              dbl(0()) -> 0()
              dbl(s(X)) -> s(s(dbl(X)))
              sqr(0()) -> 0()
              sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            Signature:
              {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0}
            Obligation:
              Innermost
              basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
          Applied Processor:
            NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a polynomial interpretation of kind constructor-based(mixed(2)):
            The following argument positions are considered usable:
              uargs(c_5) = {1}
            
            Following symbols are considered usable:
              {add,dbl,sqr,activate#,add#,dbl#,first#,sqr#,terms#}
            TcT has computed the following interpretation:
                      p(0) = 0                                 
               p(activate) = x1                                
                    p(add) = x1 + 2*x2                         
                   p(cons) = x2                                
                    p(dbl) = 2*x1                              
                  p(first) = 1 + 4*x1 + x1^2 + 4*x2            
               p(n__first) = x1 + x2                           
               p(n__terms) = x1                                
                    p(nil) = 1                                 
                  p(recip) = 1 + x1                            
                      p(s) = 1 + x1                            
                    p(sqr) = 2*x1^2                            
                  p(terms) = 2*x1^2                            
              p(activate#) = 6 + 2*x1 + 4*x1^2                 
                   p(add#) = 5 + 2*x1                          
                   p(dbl#) = x1                                
                 p(first#) = 5 + x1 + 4*x1*x2 + 4*x1^2 + 4*x2^2
                   p(sqr#) = 4 + 4*x1^2                        
                 p(terms#) = 5 + 4*x1^2                        
                    p(c_1) = 0                                 
                    p(c_2) = x1                                
                    p(c_3) = 0                                 
                    p(c_4) = 1                                 
                    p(c_5) = x1                                
                    p(c_6) = 0                                 
                    p(c_7) = 1 + x1                            
                    p(c_8) = 0                                 
                    p(c_9) = 0                                 
                   p(c_10) = 1                                 
                   p(c_11) = 0                                 
                   p(c_12) = 1                                 
                   p(c_13) = 1                                 
                   p(c_14) = 1                                 
            
            Following rules are strictly oriented:
            add#(s(X),Y) = 7 + 2*X       
                         > 5 + 2*X       
                         = c_5(add#(X,Y))
            
            
            Following rules are (at-least) weakly oriented:
            activate#(n__first(X1,X2)) =  6 + 2*X1 + 8*X1*X2 + 4*X1^2 + 2*X2 + 4*X2^2
                                       >= 5 + X1 + 4*X1*X2 + 4*X1^2 + 4*X2^2         
                                       =  first#(X1,X2)                              
            
                activate#(n__terms(X)) =  6 + 2*X + 4*X^2                            
                                       >= 5 + 4*X^2                                  
                                       =  terms#(X)                                  
            
                first#(s(X),cons(Y,Z)) =  10 + 9*X + 4*X*Z + 4*X^2 + 4*Z + 4*Z^2     
                                       >= 6 + 2*Z + 4*Z^2                            
                                       =  activate#(Z)                               
            
                            sqr#(s(X)) =  8 + 8*X + 4*X^2                            
                                       >= 5 + 4*X^2                                  
                                       =  add#(sqr(X),dbl(X))                        
            
                            sqr#(s(X)) =  8 + 8*X + 4*X^2                            
                                       >= 4 + 4*X^2                                  
                                       =  sqr#(X)                                    
            
                             terms#(N) =  5 + 4*N^2                                  
                                       >= 4 + 4*N^2                                  
                                       =  sqr#(N)                                    
            
                            add(0(),X) =  2*X                                        
                                       >= X                                          
                                       =  X                                          
            
                           add(s(X),Y) =  1 + X + 2*Y                                
                                       >= 1 + X + 2*Y                                
                                       =  s(add(X,Y))                                
            
                              dbl(0()) =  0                                          
                                       >= 0                                          
                                       =  0()                                        
            
                             dbl(s(X)) =  2 + 2*X                                    
                                       >= 2 + 2*X                                    
                                       =  s(s(dbl(X)))                               
            
                              sqr(0()) =  0                                          
                                       >= 0                                          
                                       =  0()                                        
            
                             sqr(s(X)) =  2 + 4*X + 2*X^2                            
                                       >= 1 + 4*X + 2*X^2                            
                                       =  s(add(sqr(X),dbl(X)))                      
            
      *** 1.1.1.1.1.2.1.1.2.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              activate#(n__first(X1,X2)) -> first#(X1,X2)
              activate#(n__terms(X)) -> terms#(X)
              add#(s(X),Y) -> c_5(add#(X,Y))
              first#(s(X),cons(Y,Z)) -> activate#(Z)
              sqr#(s(X)) -> add#(sqr(X),dbl(X))
              sqr#(s(X)) -> sqr#(X)
              terms#(N) -> sqr#(N)
            Weak TRS Rules:
              add(0(),X) -> X
              add(s(X),Y) -> s(add(X,Y))
              dbl(0()) -> 0()
              dbl(s(X)) -> s(s(dbl(X)))
              sqr(0()) -> 0()
              sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            Signature:
              {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0}
            Obligation:
              Innermost
              basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.2.1.1.2.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              activate#(n__first(X1,X2)) -> first#(X1,X2)
              activate#(n__terms(X)) -> terms#(X)
              add#(s(X),Y) -> c_5(add#(X,Y))
              first#(s(X),cons(Y,Z)) -> activate#(Z)
              sqr#(s(X)) -> add#(sqr(X),dbl(X))
              sqr#(s(X)) -> sqr#(X)
              terms#(N) -> sqr#(N)
            Weak TRS Rules:
              add(0(),X) -> X
              add(s(X),Y) -> s(add(X,Y))
              dbl(0()) -> 0()
              dbl(s(X)) -> s(s(dbl(X)))
              sqr(0()) -> 0()
              sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            Signature:
              {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0}
            Obligation:
              Innermost
              basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:activate#(n__first(X1,X2)) -> first#(X1,X2)
                 -->_1 first#(s(X),cons(Y,Z)) -> activate#(Z):4
              
              2:W:activate#(n__terms(X)) -> terms#(X)
                 -->_1 terms#(N) -> sqr#(N):7
              
              3:W:add#(s(X),Y) -> c_5(add#(X,Y))
                 -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):3
              
              4:W:first#(s(X),cons(Y,Z)) -> activate#(Z)
                 -->_1 activate#(n__terms(X)) -> terms#(X):2
                 -->_1 activate#(n__first(X1,X2)) -> first#(X1,X2):1
              
              5:W:sqr#(s(X)) -> add#(sqr(X),dbl(X))
                 -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):3
              
              6:W:sqr#(s(X)) -> sqr#(X)
                 -->_1 sqr#(s(X)) -> sqr#(X):6
                 -->_1 sqr#(s(X)) -> add#(sqr(X),dbl(X)):5
              
              7:W:terms#(N) -> sqr#(N)
                 -->_1 sqr#(s(X)) -> sqr#(X):6
                 -->_1 sqr#(s(X)) -> add#(sqr(X),dbl(X)):5
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              1: activate#(n__first(X1,X2)) -> 
                   first#(X1,X2)               
              4: first#(s(X),cons(Y,Z)) ->     
                   activate#(Z)                
              2: activate#(n__terms(X)) ->     
                   terms#(X)                   
              7: terms#(N) -> sqr#(N)          
              6: sqr#(s(X)) -> sqr#(X)         
              5: sqr#(s(X)) -> add#(sqr(X)     
                                   ,dbl(X))    
              3: add#(s(X),Y) -> c_5(add#(X,Y))
      *** 1.1.1.1.1.2.1.1.2.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              add(0(),X) -> X
              add(s(X),Y) -> s(add(X,Y))
              dbl(0()) -> 0()
              dbl(s(X)) -> s(s(dbl(X)))
              sqr(0()) -> 0()
              sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            Signature:
              {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0}
            Obligation:
              Innermost
              basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).