*** 1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: activate(X) -> X activate(n__first(X1,X2)) -> first(X1,X2) activate(n__terms(X)) -> terms(X) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) first(X1,X2) -> n__first(X1,X2) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) Weak DP Rules: Weak TRS Rules: Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1} Obligation: Innermost basic terms: {activate,add,dbl,first,sqr,terms}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs activate#(X) -> c_1() activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__terms(X)) -> c_3(terms#(X)) add#(0(),X) -> c_4() add#(s(X),Y) -> c_5(add#(X,Y)) dbl#(0()) -> c_6() dbl#(s(X)) -> c_7(dbl#(X)) first#(X1,X2) -> c_8() first#(0(),X) -> c_9() first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) sqr#(0()) -> c_11() sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_13(sqr#(N)) terms#(X) -> c_14() Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: activate#(X) -> c_1() activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__terms(X)) -> c_3(terms#(X)) add#(0(),X) -> c_4() add#(s(X),Y) -> c_5(add#(X,Y)) dbl#(0()) -> c_6() dbl#(s(X)) -> c_7(dbl#(X)) first#(X1,X2) -> c_8() first#(0(),X) -> c_9() first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) sqr#(0()) -> c_11() sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_13(sqr#(N)) terms#(X) -> c_14() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__first(X1,X2)) -> first(X1,X2) activate(n__terms(X)) -> terms(X) add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) first(X1,X2) -> n__first(X1,X2) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) terms(X) -> n__terms(X) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/3,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) activate#(X) -> c_1() activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__terms(X)) -> c_3(terms#(X)) add#(0(),X) -> c_4() add#(s(X),Y) -> c_5(add#(X,Y)) dbl#(0()) -> c_6() dbl#(s(X)) -> c_7(dbl#(X)) first#(X1,X2) -> c_8() first#(0(),X) -> c_9() first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) sqr#(0()) -> c_11() sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_13(sqr#(N)) terms#(X) -> c_14() *** 1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: activate#(X) -> c_1() activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__terms(X)) -> c_3(terms#(X)) add#(0(),X) -> c_4() add#(s(X),Y) -> c_5(add#(X,Y)) dbl#(0()) -> c_6() dbl#(s(X)) -> c_7(dbl#(X)) first#(X1,X2) -> c_8() first#(0(),X) -> c_9() first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) sqr#(0()) -> c_11() sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_13(sqr#(N)) terms#(X) -> c_14() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/3,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,4,6,8,9,11,14} by application of Pre({1,4,6,8,9,11,14}) = {2,3,5,7,10,12,13}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) 3: activate#(n__terms(X)) -> c_3(terms#(X)) 4: add#(0(),X) -> c_4() 5: add#(s(X),Y) -> c_5(add#(X,Y)) 6: dbl#(0()) -> c_6() 7: dbl#(s(X)) -> c_7(dbl#(X)) 8: first#(X1,X2) -> c_8() 9: first#(0(),X) -> c_9() 10: first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) 11: sqr#(0()) -> c_11() 12: sqr#(s(X)) -> c_12(add#(sqr(X) ,dbl(X)) ,sqr#(X) ,dbl#(X)) 13: terms#(N) -> c_13(sqr#(N)) 14: terms#(X) -> c_14() *** 1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__terms(X)) -> c_3(terms#(X)) add#(s(X),Y) -> c_5(add#(X,Y)) dbl#(s(X)) -> c_7(dbl#(X)) first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_13(sqr#(N)) Strict TRS Rules: Weak DP Rules: activate#(X) -> c_1() add#(0(),X) -> c_4() dbl#(0()) -> c_6() first#(X1,X2) -> c_8() first#(0(),X) -> c_9() sqr#(0()) -> c_11() terms#(X) -> c_14() Weak TRS Rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/3,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) -->_1 first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)):5 -->_1 first#(0(),X) -> c_9():12 -->_1 first#(X1,X2) -> c_8():11 2:S:activate#(n__terms(X)) -> c_3(terms#(X)) -->_1 terms#(N) -> c_13(sqr#(N)):7 -->_1 terms#(X) -> c_14():14 3:S:add#(s(X),Y) -> c_5(add#(X,Y)) -->_1 add#(0(),X) -> c_4():9 -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):3 4:S:dbl#(s(X)) -> c_7(dbl#(X)) -->_1 dbl#(0()) -> c_6():10 -->_1 dbl#(s(X)) -> c_7(dbl#(X)):4 5:S:first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) -->_1 activate#(X) -> c_1():8 -->_1 activate#(n__terms(X)) -> c_3(terms#(X)):2 -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):1 6:S:sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) -->_2 sqr#(0()) -> c_11():13 -->_3 dbl#(0()) -> c_6():10 -->_1 add#(0(),X) -> c_4():9 -->_2 sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):6 -->_3 dbl#(s(X)) -> c_7(dbl#(X)):4 -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):3 7:S:terms#(N) -> c_13(sqr#(N)) -->_1 sqr#(0()) -> c_11():13 -->_1 sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):6 8:W:activate#(X) -> c_1() 9:W:add#(0(),X) -> c_4() 10:W:dbl#(0()) -> c_6() 11:W:first#(X1,X2) -> c_8() 12:W:first#(0(),X) -> c_9() 13:W:sqr#(0()) -> c_11() 14:W:terms#(X) -> c_14() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 11: first#(X1,X2) -> c_8() 12: first#(0(),X) -> c_9() 14: terms#(X) -> c_14() 9: add#(0(),X) -> c_4() 10: dbl#(0()) -> c_6() 13: sqr#(0()) -> c_11() 8: activate#(X) -> c_1() *** 1.1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__terms(X)) -> c_3(terms#(X)) add#(s(X),Y) -> c_5(add#(X,Y)) dbl#(s(X)) -> c_7(dbl#(X)) first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_13(sqr#(N)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/3,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) 2: activate#(n__terms(X)) -> c_3(terms#(X)) 4: dbl#(s(X)) -> c_7(dbl#(X)) 5: first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) 6: sqr#(s(X)) -> c_12(add#(sqr(X) ,dbl(X)) ,sqr#(X) ,dbl#(X)) 7: terms#(N) -> c_13(sqr#(N)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__terms(X)) -> c_3(terms#(X)) add#(s(X),Y) -> c_5(add#(X,Y)) dbl#(s(X)) -> c_7(dbl#(X)) first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_13(sqr#(N)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/3,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_5) = {1}, uargs(c_7) = {1}, uargs(c_10) = {1}, uargs(c_12) = {1,2,3}, uargs(c_13) = {1} Following symbols are considered usable: {activate#,add#,dbl#,first#,sqr#,terms#} TcT has computed the following interpretation: p(0) = 0 p(activate) = 4 p(add) = 0 p(cons) = 1 + x1 + x2 p(dbl) = 0 p(first) = 1 + 2*x2 + x2^2 p(n__first) = x2 p(n__terms) = x1 p(nil) = 1 p(recip) = 0 p(s) = 1 + x1 p(sqr) = 0 p(terms) = x1^2 p(activate#) = 6 + 6*x1 + 5*x1^2 p(add#) = 0 p(dbl#) = 1 + 4*x1 p(first#) = 4 + x2 + 5*x2^2 p(sqr#) = x1 + 5*x1^2 p(terms#) = 2 + 4*x1 + 5*x1^2 p(c_1) = 0 p(c_2) = x1 p(c_3) = x1 p(c_4) = 1 p(c_5) = x1 p(c_6) = 1 p(c_7) = x1 p(c_8) = 1 p(c_9) = 0 p(c_10) = x1 p(c_11) = 0 p(c_12) = 1 + x1 + x2 + x3 p(c_13) = x1 p(c_14) = 0 Following rules are strictly oriented: activate#(n__first(X1,X2)) = 6 + 6*X2 + 5*X2^2 > 4 + X2 + 5*X2^2 = c_2(first#(X1,X2)) activate#(n__terms(X)) = 6 + 6*X + 5*X^2 > 2 + 4*X + 5*X^2 = c_3(terms#(X)) dbl#(s(X)) = 5 + 4*X > 1 + 4*X = c_7(dbl#(X)) first#(s(X),cons(Y,Z)) = 10 + 11*Y + 10*Y*Z + 5*Y^2 + 11*Z + 5*Z^2 > 6 + 6*Z + 5*Z^2 = c_10(activate#(Z)) sqr#(s(X)) = 6 + 11*X + 5*X^2 > 2 + 5*X + 5*X^2 = c_12(add#(sqr(X),dbl(X)) ,sqr#(X) ,dbl#(X)) terms#(N) = 2 + 4*N + 5*N^2 > N + 5*N^2 = c_13(sqr#(N)) Following rules are (at-least) weakly oriented: add#(s(X),Y) = 0 >= 0 = c_5(add#(X,Y)) *** 1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: add#(s(X),Y) -> c_5(add#(X,Y)) Strict TRS Rules: Weak DP Rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__terms(X)) -> c_3(terms#(X)) dbl#(s(X)) -> c_7(dbl#(X)) first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_13(sqr#(N)) Weak TRS Rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/3,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: add#(s(X),Y) -> c_5(add#(X,Y)) Strict TRS Rules: Weak DP Rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__terms(X)) -> c_3(terms#(X)) dbl#(s(X)) -> c_7(dbl#(X)) first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_13(sqr#(N)) Weak TRS Rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/3,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:add#(s(X),Y) -> c_5(add#(X,Y)) -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):1 2:W:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) -->_1 first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)):5 3:W:activate#(n__terms(X)) -> c_3(terms#(X)) -->_1 terms#(N) -> c_13(sqr#(N)):7 4:W:dbl#(s(X)) -> c_7(dbl#(X)) -->_1 dbl#(s(X)) -> c_7(dbl#(X)):4 5:W:first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) -->_1 activate#(n__terms(X)) -> c_3(terms#(X)):3 -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):2 6:W:sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) -->_2 sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):6 -->_3 dbl#(s(X)) -> c_7(dbl#(X)):4 -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):1 7:W:terms#(N) -> c_13(sqr#(N)) -->_1 sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):6 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: dbl#(s(X)) -> c_7(dbl#(X)) *** 1.1.1.1.1.2.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: add#(s(X),Y) -> c_5(add#(X,Y)) Strict TRS Rules: Weak DP Rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__terms(X)) -> c_3(terms#(X)) first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_13(sqr#(N)) Weak TRS Rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/3,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:add#(s(X),Y) -> c_5(add#(X,Y)) -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):1 2:W:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) -->_1 first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)):5 3:W:activate#(n__terms(X)) -> c_3(terms#(X)) -->_1 terms#(N) -> c_13(sqr#(N)):7 5:W:first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) -->_1 activate#(n__terms(X)) -> c_3(terms#(X)):3 -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):2 6:W:sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) -->_2 sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):6 -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):1 7:W:terms#(N) -> c_13(sqr#(N)) -->_1 sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):6 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X)) *** 1.1.1.1.1.2.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: add#(s(X),Y) -> c_5(add#(X,Y)) Strict TRS Rules: Weak DP Rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__terms(X)) -> c_3(terms#(X)) first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X)) terms#(N) -> c_13(sqr#(N)) Weak TRS Rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__terms(X)) -> c_3(terms#(X)) first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X)) terms#(N) -> c_13(sqr#(N)) and a lower component add#(s(X),Y) -> c_5(add#(X,Y)) Further, following extension rules are added to the lower component. activate#(n__first(X1,X2)) -> first#(X1,X2) activate#(n__terms(X)) -> terms#(X) first#(s(X),cons(Y,Z)) -> activate#(Z) sqr#(s(X)) -> add#(sqr(X),dbl(X)) sqr#(s(X)) -> sqr#(X) terms#(N) -> sqr#(N) *** 1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X)) Strict TRS Rules: Weak DP Rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__terms(X)) -> c_3(terms#(X)) first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) terms#(N) -> c_13(sqr#(N)) Weak TRS Rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: sqr#(s(X)) -> c_12(add#(sqr(X) ,dbl(X)) ,sqr#(X)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X)) Strict TRS Rules: Weak DP Rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__terms(X)) -> c_3(terms#(X)) first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) terms#(N) -> c_13(sqr#(N)) Weak TRS Rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_10) = {1}, uargs(c_12) = {1,2}, uargs(c_13) = {1} Following symbols are considered usable: {activate#,add#,dbl#,first#,sqr#,terms#} TcT has computed the following interpretation: p(0) = [8] p(activate) = [8] p(add) = [1] x1 + [0] p(cons) = [1] x1 + [1] x2 + [4] p(dbl) = [1] x1 + [14] p(first) = [1] x1 + [8] p(n__first) = [1] x2 + [0] p(n__terms) = [1] x1 + [1] p(nil) = [1] p(recip) = [1] x1 + [1] p(s) = [1] x1 + [8] p(sqr) = [1] p(terms) = [1] p(activate#) = [6] x1 + [4] p(add#) = [0] p(dbl#) = [0] p(first#) = [6] x2 + [3] p(sqr#) = [1] x1 + [0] p(terms#) = [5] x1 + [10] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [0] p(c_4) = [0] p(c_5) = [1] x1 + [1] p(c_6) = [2] p(c_7) = [1] p(c_8) = [2] p(c_9) = [4] p(c_10) = [1] x1 + [0] p(c_11) = [1] p(c_12) = [8] x1 + [1] x2 + [6] p(c_13) = [4] x1 + [9] p(c_14) = [1] Following rules are strictly oriented: sqr#(s(X)) = [1] X + [8] > [1] X + [6] = c_12(add#(sqr(X),dbl(X)) ,sqr#(X)) Following rules are (at-least) weakly oriented: activate#(n__first(X1,X2)) = [6] X2 + [4] >= [6] X2 + [3] = c_2(first#(X1,X2)) activate#(n__terms(X)) = [6] X + [10] >= [5] X + [10] = c_3(terms#(X)) first#(s(X),cons(Y,Z)) = [6] Y + [6] Z + [27] >= [6] Z + [4] = c_10(activate#(Z)) terms#(N) = [5] N + [10] >= [4] N + [9] = c_13(sqr#(N)) *** 1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__terms(X)) -> c_3(terms#(X)) first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X)) terms#(N) -> c_13(sqr#(N)) Weak TRS Rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__terms(X)) -> c_3(terms#(X)) first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X)) terms#(N) -> c_13(sqr#(N)) Weak TRS Rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) -->_1 first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)):3 2:W:activate#(n__terms(X)) -> c_3(terms#(X)) -->_1 terms#(N) -> c_13(sqr#(N)):5 3:W:first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) -->_1 activate#(n__terms(X)) -> c_3(terms#(X)):2 -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):1 4:W:sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X)) -->_2 sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X)):4 5:W:terms#(N) -> c_13(sqr#(N)) -->_1 sqr#(s(X)) -> c_12(add#(sqr(X),dbl(X)),sqr#(X)):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) 3: first#(s(X),cons(Y,Z)) -> c_10(activate#(Z)) 2: activate#(n__terms(X)) -> c_3(terms#(X)) 5: terms#(N) -> c_13(sqr#(N)) 4: sqr#(s(X)) -> c_12(add#(sqr(X) ,dbl(X)) ,sqr#(X)) *** 1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.2.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: add#(s(X),Y) -> c_5(add#(X,Y)) Strict TRS Rules: Weak DP Rules: activate#(n__first(X1,X2)) -> first#(X1,X2) activate#(n__terms(X)) -> terms#(X) first#(s(X),cons(Y,Z)) -> activate#(Z) sqr#(s(X)) -> add#(sqr(X),dbl(X)) sqr#(s(X)) -> sqr#(X) terms#(N) -> sqr#(N) Weak TRS Rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: add#(s(X),Y) -> c_5(add#(X,Y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: add#(s(X),Y) -> c_5(add#(X,Y)) Strict TRS Rules: Weak DP Rules: activate#(n__first(X1,X2)) -> first#(X1,X2) activate#(n__terms(X)) -> terms#(X) first#(s(X),cons(Y,Z)) -> activate#(Z) sqr#(s(X)) -> add#(sqr(X),dbl(X)) sqr#(s(X)) -> sqr#(X) terms#(N) -> sqr#(N) Weak TRS Rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_5) = {1} Following symbols are considered usable: {add,dbl,sqr,activate#,add#,dbl#,first#,sqr#,terms#} TcT has computed the following interpretation: p(0) = 0 p(activate) = x1 p(add) = x1 + 2*x2 p(cons) = x2 p(dbl) = 2*x1 p(first) = 1 + 4*x1 + x1^2 + 4*x2 p(n__first) = x1 + x2 p(n__terms) = x1 p(nil) = 1 p(recip) = 1 + x1 p(s) = 1 + x1 p(sqr) = 2*x1^2 p(terms) = 2*x1^2 p(activate#) = 6 + 2*x1 + 4*x1^2 p(add#) = 5 + 2*x1 p(dbl#) = x1 p(first#) = 5 + x1 + 4*x1*x2 + 4*x1^2 + 4*x2^2 p(sqr#) = 4 + 4*x1^2 p(terms#) = 5 + 4*x1^2 p(c_1) = 0 p(c_2) = x1 p(c_3) = 0 p(c_4) = 1 p(c_5) = x1 p(c_6) = 0 p(c_7) = 1 + x1 p(c_8) = 0 p(c_9) = 0 p(c_10) = 1 p(c_11) = 0 p(c_12) = 1 p(c_13) = 1 p(c_14) = 1 Following rules are strictly oriented: add#(s(X),Y) = 7 + 2*X > 5 + 2*X = c_5(add#(X,Y)) Following rules are (at-least) weakly oriented: activate#(n__first(X1,X2)) = 6 + 2*X1 + 8*X1*X2 + 4*X1^2 + 2*X2 + 4*X2^2 >= 5 + X1 + 4*X1*X2 + 4*X1^2 + 4*X2^2 = first#(X1,X2) activate#(n__terms(X)) = 6 + 2*X + 4*X^2 >= 5 + 4*X^2 = terms#(X) first#(s(X),cons(Y,Z)) = 10 + 9*X + 4*X*Z + 4*X^2 + 4*Z + 4*Z^2 >= 6 + 2*Z + 4*Z^2 = activate#(Z) sqr#(s(X)) = 8 + 8*X + 4*X^2 >= 5 + 4*X^2 = add#(sqr(X),dbl(X)) sqr#(s(X)) = 8 + 8*X + 4*X^2 >= 4 + 4*X^2 = sqr#(X) terms#(N) = 5 + 4*N^2 >= 4 + 4*N^2 = sqr#(N) add(0(),X) = 2*X >= X = X add(s(X),Y) = 1 + X + 2*Y >= 1 + X + 2*Y = s(add(X,Y)) dbl(0()) = 0 >= 0 = 0() dbl(s(X)) = 2 + 2*X >= 2 + 2*X = s(s(dbl(X))) sqr(0()) = 0 >= 0 = 0() sqr(s(X)) = 2 + 4*X + 2*X^2 >= 1 + 4*X + 2*X^2 = s(add(sqr(X),dbl(X))) *** 1.1.1.1.1.2.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: activate#(n__first(X1,X2)) -> first#(X1,X2) activate#(n__terms(X)) -> terms#(X) add#(s(X),Y) -> c_5(add#(X,Y)) first#(s(X),cons(Y,Z)) -> activate#(Z) sqr#(s(X)) -> add#(sqr(X),dbl(X)) sqr#(s(X)) -> sqr#(X) terms#(N) -> sqr#(N) Weak TRS Rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.1.1.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: activate#(n__first(X1,X2)) -> first#(X1,X2) activate#(n__terms(X)) -> terms#(X) add#(s(X),Y) -> c_5(add#(X,Y)) first#(s(X),cons(Y,Z)) -> activate#(Z) sqr#(s(X)) -> add#(sqr(X),dbl(X)) sqr#(s(X)) -> sqr#(X) terms#(N) -> sqr#(N) Weak TRS Rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:activate#(n__first(X1,X2)) -> first#(X1,X2) -->_1 first#(s(X),cons(Y,Z)) -> activate#(Z):4 2:W:activate#(n__terms(X)) -> terms#(X) -->_1 terms#(N) -> sqr#(N):7 3:W:add#(s(X),Y) -> c_5(add#(X,Y)) -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):3 4:W:first#(s(X),cons(Y,Z)) -> activate#(Z) -->_1 activate#(n__terms(X)) -> terms#(X):2 -->_1 activate#(n__first(X1,X2)) -> first#(X1,X2):1 5:W:sqr#(s(X)) -> add#(sqr(X),dbl(X)) -->_1 add#(s(X),Y) -> c_5(add#(X,Y)):3 6:W:sqr#(s(X)) -> sqr#(X) -->_1 sqr#(s(X)) -> sqr#(X):6 -->_1 sqr#(s(X)) -> add#(sqr(X),dbl(X)):5 7:W:terms#(N) -> sqr#(N) -->_1 sqr#(s(X)) -> sqr#(X):6 -->_1 sqr#(s(X)) -> add#(sqr(X),dbl(X)):5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: activate#(n__first(X1,X2)) -> first#(X1,X2) 4: first#(s(X),cons(Y,Z)) -> activate#(Z) 2: activate#(n__terms(X)) -> terms#(X) 7: terms#(N) -> sqr#(N) 6: sqr#(s(X)) -> sqr#(X) 5: sqr#(s(X)) -> add#(sqr(X) ,dbl(X)) 3: add#(s(X),Y) -> c_5(add#(X,Y)) *** 1.1.1.1.1.2.1.1.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) Signature: {activate/1,add/2,dbl/1,first/2,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__terms/1,nil/0,recip/1,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0} Obligation: Innermost basic terms: {activate#,add#,dbl#,first#,sqr#,terms#}/{0,cons,n__first,n__terms,nil,recip,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).