*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__terms(X)) -> terms(activate(X))
        add(0(),X) -> X
        add(s(X),Y) -> s(add(X,Y))
        dbl(0()) -> 0()
        dbl(s(X)) -> s(s(dbl(X)))
        first(X1,X2) -> n__first(X1,X2)
        first(0(),X) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        s(X) -> n__s(X)
        sqr(0()) -> 0()
        sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
        terms(X) -> n__terms(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
      Obligation:
        Innermost
        basic terms: {activate,add,dbl,first,s,sqr,terms}/{0,cons,n__first,n__s,n__terms,nil,recip}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        add(s(X),Y) -> s(add(X,Y))
        dbl(s(X)) -> s(s(dbl(X)))
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        sqr(s(X)) -> s(add(sqr(X),dbl(X)))
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__terms(X)) -> terms(activate(X))
        add(0(),X) -> X
        dbl(0()) -> 0()
        first(X1,X2) -> n__first(X1,X2)
        first(0(),X) -> nil()
        s(X) -> n__s(X)
        sqr(0()) -> 0()
        terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
        terms(X) -> n__terms(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
      Obligation:
        Innermost
        basic terms: {activate,add,dbl,first,s,sqr,terms}/{0,cons,n__first,n__s,n__terms,nil,recip}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(first) = {1,2},
          uargs(recip) = {1},
          uargs(s) = {1},
          uargs(terms) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
          p(activate) = [1] x1 + [4]         
               p(add) = [2] x2 + [0]         
              p(cons) = [1] x1 + [1] x2 + [0]
               p(dbl) = [0]                  
             p(first) = [1] x1 + [1] x2 + [0]
          p(n__first) = [1] x1 + [1] x2 + [0]
              p(n__s) = [1] x1 + [0]         
          p(n__terms) = [1] x1 + [5]         
               p(nil) = [0]                  
             p(recip) = [1] x1 + [0]         
                 p(s) = [1] x1 + [0]         
               p(sqr) = [0]                  
             p(terms) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
                  activate(X) = [1] X + [4]       
                              > [1] X + [0]       
                              = X                 
        
        activate(n__terms(X)) = [1] X + [9]       
                              > [1] X + [4]       
                              = terms(activate(X))
        
        
        Following rules are (at-least) weakly oriented:
        activate(n__first(X1,X2)) =  [1] X1 + [1] X2 + [4]           
                                  >= [1] X1 + [1] X2 + [8]           
                                  =  first(activate(X1),activate(X2))
        
                activate(n__s(X)) =  [1] X + [4]                     
                                  >= [1] X + [4]                     
                                  =  s(activate(X))                  
        
                       add(0(),X) =  [2] X + [0]                     
                                  >= [1] X + [0]                     
                                  =  X                               
        
                         dbl(0()) =  [0]                             
                                  >= [0]                             
                                  =  0()                             
        
                     first(X1,X2) =  [1] X1 + [1] X2 + [0]           
                                  >= [1] X1 + [1] X2 + [0]           
                                  =  n__first(X1,X2)                 
        
                     first(0(),X) =  [1] X + [0]                     
                                  >= [0]                             
                                  =  nil()                           
        
                             s(X) =  [1] X + [0]                     
                                  >= [1] X + [0]                     
                                  =  n__s(X)                         
        
                         sqr(0()) =  [0]                             
                                  >= [0]                             
                                  =  0()                             
        
                         terms(N) =  [1] N + [0]                     
                                  >= [1] N + [5]                     
                                  =  cons(recip(sqr(N))              
                                         ,n__terms(n__s(N)))         
        
                         terms(X) =  [1] X + [0]                     
                                  >= [1] X + [5]                     
                                  =  n__terms(X)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        add(0(),X) -> X
        dbl(0()) -> 0()
        first(X1,X2) -> n__first(X1,X2)
        first(0(),X) -> nil()
        s(X) -> n__s(X)
        sqr(0()) -> 0()
        terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
        terms(X) -> n__terms(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__terms(X)) -> terms(activate(X))
      Signature:
        {activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
      Obligation:
        Innermost
        basic terms: {activate,add,dbl,first,s,sqr,terms}/{0,cons,n__first,n__s,n__terms,nil,recip}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(first) = {1,2},
          uargs(recip) = {1},
          uargs(s) = {1},
          uargs(terms) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [2]                  
          p(activate) = [8] x1 + [0]         
               p(add) = [2] x2 + [4]         
              p(cons) = [1] x1 + [0]         
               p(dbl) = [5] x1 + [7]         
             p(first) = [1] x1 + [1] x2 + [0]
          p(n__first) = [1] x1 + [1] x2 + [0]
              p(n__s) = [1] x1 + [0]         
          p(n__terms) = [1] x1 + [0]         
               p(nil) = [0]                  
             p(recip) = [1] x1 + [0]         
                 p(s) = [1] x1 + [0]         
               p(sqr) = [0]                  
             p(terms) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
          add(0(),X) = [2] X + [4]
                     > [1] X + [0]
                     = X          
        
            dbl(0()) = [17]       
                     > [2]        
                     = 0()        
        
        first(0(),X) = [1] X + [2]
                     > [0]        
                     = nil()      
        
        
        Following rules are (at-least) weakly oriented:
                      activate(X) =  [8] X + [0]                     
                                  >= [1] X + [0]                     
                                  =  X                               
        
        activate(n__first(X1,X2)) =  [8] X1 + [8] X2 + [0]           
                                  >= [8] X1 + [8] X2 + [0]           
                                  =  first(activate(X1),activate(X2))
        
                activate(n__s(X)) =  [8] X + [0]                     
                                  >= [8] X + [0]                     
                                  =  s(activate(X))                  
        
            activate(n__terms(X)) =  [8] X + [0]                     
                                  >= [8] X + [0]                     
                                  =  terms(activate(X))              
        
                     first(X1,X2) =  [1] X1 + [1] X2 + [0]           
                                  >= [1] X1 + [1] X2 + [0]           
                                  =  n__first(X1,X2)                 
        
                             s(X) =  [1] X + [0]                     
                                  >= [1] X + [0]                     
                                  =  n__s(X)                         
        
                         sqr(0()) =  [0]                             
                                  >= [2]                             
                                  =  0()                             
        
                         terms(N) =  [1] N + [0]                     
                                  >= [0]                             
                                  =  cons(recip(sqr(N))              
                                         ,n__terms(n__s(N)))         
        
                         terms(X) =  [1] X + [0]                     
                                  >= [1] X + [0]                     
                                  =  n__terms(X)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        first(X1,X2) -> n__first(X1,X2)
        s(X) -> n__s(X)
        sqr(0()) -> 0()
        terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
        terms(X) -> n__terms(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__terms(X)) -> terms(activate(X))
        add(0(),X) -> X
        dbl(0()) -> 0()
        first(0(),X) -> nil()
      Signature:
        {activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
      Obligation:
        Innermost
        basic terms: {activate,add,dbl,first,s,sqr,terms}/{0,cons,n__first,n__s,n__terms,nil,recip}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(first) = {1,2},
          uargs(recip) = {1},
          uargs(s) = {1},
          uargs(terms) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
          p(activate) = [4] x1 + [0]         
               p(add) = [4] x1 + [8] x2 + [1]
              p(cons) = [1] x1 + [1] x2 + [1]
               p(dbl) = [8] x1 + [7]         
             p(first) = [1] x1 + [1] x2 + [2]
          p(n__first) = [1] x1 + [1] x2 + [0]
              p(n__s) = [1] x1 + [1]         
          p(n__terms) = [1] x1 + [0]         
               p(nil) = [0]                  
             p(recip) = [1] x1 + [3]         
                 p(s) = [1] x1 + [1]         
               p(sqr) = [14]                 
             p(terms) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
        activate(n__s(X)) = [4] X + [4]          
                          > [4] X + [1]          
                          = s(activate(X))       
        
             first(X1,X2) = [1] X1 + [1] X2 + [2]
                          > [1] X1 + [1] X2 + [0]
                          = n__first(X1,X2)      
        
                 sqr(0()) = [14]                 
                          > [0]                  
                          = 0()                  
        
        
        Following rules are (at-least) weakly oriented:
                      activate(X) =  [4] X + [0]                     
                                  >= [1] X + [0]                     
                                  =  X                               
        
        activate(n__first(X1,X2)) =  [4] X1 + [4] X2 + [0]           
                                  >= [4] X1 + [4] X2 + [2]           
                                  =  first(activate(X1),activate(X2))
        
            activate(n__terms(X)) =  [4] X + [0]                     
                                  >= [4] X + [0]                     
                                  =  terms(activate(X))              
        
                       add(0(),X) =  [8] X + [1]                     
                                  >= [1] X + [0]                     
                                  =  X                               
        
                         dbl(0()) =  [7]                             
                                  >= [0]                             
                                  =  0()                             
        
                     first(0(),X) =  [1] X + [2]                     
                                  >= [0]                             
                                  =  nil()                           
        
                             s(X) =  [1] X + [1]                     
                                  >= [1] X + [1]                     
                                  =  n__s(X)                         
        
                         terms(N) =  [1] N + [0]                     
                                  >= [1] N + [19]                    
                                  =  cons(recip(sqr(N))              
                                         ,n__terms(n__s(N)))         
        
                         terms(X) =  [1] X + [0]                     
                                  >= [1] X + [0]                     
                                  =  n__terms(X)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
        s(X) -> n__s(X)
        terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
        terms(X) -> n__terms(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__s(X)) -> s(activate(X))
        activate(n__terms(X)) -> terms(activate(X))
        add(0(),X) -> X
        dbl(0()) -> 0()
        first(X1,X2) -> n__first(X1,X2)
        first(0(),X) -> nil()
        sqr(0()) -> 0()
      Signature:
        {activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
      Obligation:
        Innermost
        basic terms: {activate,add,dbl,first,s,sqr,terms}/{0,cons,n__first,n__s,n__terms,nil,recip}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(first) = {1,2},
          uargs(recip) = {1},
          uargs(s) = {1},
          uargs(terms) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
          p(activate) = [11] x1 + [0]        
               p(add) = [1] x2 + [0]         
              p(cons) = [1] x1 + [1] x2 + [0]
               p(dbl) = [0]                  
             p(first) = [1] x1 + [1] x2 + [0]
          p(n__first) = [1] x1 + [1] x2 + [0]
              p(n__s) = [1] x1 + [0]         
          p(n__terms) = [1] x1 + [1]         
               p(nil) = [0]                  
             p(recip) = [1] x1 + [0]         
                 p(s) = [1] x1 + [0]         
               p(sqr) = [0]                  
             p(terms) = [1] x1 + [11]        
        
        Following rules are strictly oriented:
        terms(N) = [1] N + [11]           
                 > [1] N + [1]            
                 = cons(recip(sqr(N))     
                       ,n__terms(n__s(N)))
        
        terms(X) = [1] X + [11]           
                 > [1] X + [1]            
                 = n__terms(X)            
        
        
        Following rules are (at-least) weakly oriented:
                      activate(X) =  [11] X + [0]                    
                                  >= [1] X + [0]                     
                                  =  X                               
        
        activate(n__first(X1,X2)) =  [11] X1 + [11] X2 + [0]         
                                  >= [11] X1 + [11] X2 + [0]         
                                  =  first(activate(X1),activate(X2))
        
                activate(n__s(X)) =  [11] X + [0]                    
                                  >= [11] X + [0]                    
                                  =  s(activate(X))                  
        
            activate(n__terms(X)) =  [11] X + [11]                   
                                  >= [11] X + [11]                   
                                  =  terms(activate(X))              
        
                       add(0(),X) =  [1] X + [0]                     
                                  >= [1] X + [0]                     
                                  =  X                               
        
                         dbl(0()) =  [0]                             
                                  >= [0]                             
                                  =  0()                             
        
                     first(X1,X2) =  [1] X1 + [1] X2 + [0]           
                                  >= [1] X1 + [1] X2 + [0]           
                                  =  n__first(X1,X2)                 
        
                     first(0(),X) =  [1] X + [0]                     
                                  >= [0]                             
                                  =  nil()                           
        
                             s(X) =  [1] X + [0]                     
                                  >= [1] X + [0]                     
                                  =  n__s(X)                         
        
                         sqr(0()) =  [0]                             
                                  >= [0]                             
                                  =  0()                             
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
        s(X) -> n__s(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__s(X)) -> s(activate(X))
        activate(n__terms(X)) -> terms(activate(X))
        add(0(),X) -> X
        dbl(0()) -> 0()
        first(X1,X2) -> n__first(X1,X2)
        first(0(),X) -> nil()
        sqr(0()) -> 0()
        terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
        terms(X) -> n__terms(X)
      Signature:
        {activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
      Obligation:
        Innermost
        basic terms: {activate,add,dbl,first,s,sqr,terms}/{0,cons,n__first,n__s,n__terms,nil,recip}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(first) = {1,2},
          uargs(recip) = {1},
          uargs(s) = {1},
          uargs(terms) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [4]                  
          p(activate) = [2] x1 + [0]         
               p(add) = [4] x1 + [2] x2 + [4]
              p(cons) = [1] x1 + [0]         
               p(dbl) = [1] x1 + [4]         
             p(first) = [1] x1 + [1] x2 + [1]
          p(n__first) = [1] x1 + [1] x2 + [0]
              p(n__s) = [1] x1 + [1]         
          p(n__terms) = [1] x1 + [6]         
               p(nil) = [4]                  
             p(recip) = [1] x1 + [5]         
                 p(s) = [1] x1 + [2]         
               p(sqr) = [1] x1 + [4]         
             p(terms) = [1] x1 + [12]        
        
        Following rules are strictly oriented:
        s(X) = [1] X + [2]
             > [1] X + [1]
             = n__s(X)    
        
        
        Following rules are (at-least) weakly oriented:
                      activate(X) =  [2] X + [0]                     
                                  >= [1] X + [0]                     
                                  =  X                               
        
        activate(n__first(X1,X2)) =  [2] X1 + [2] X2 + [0]           
                                  >= [2] X1 + [2] X2 + [1]           
                                  =  first(activate(X1),activate(X2))
        
                activate(n__s(X)) =  [2] X + [2]                     
                                  >= [2] X + [2]                     
                                  =  s(activate(X))                  
        
            activate(n__terms(X)) =  [2] X + [12]                    
                                  >= [2] X + [12]                    
                                  =  terms(activate(X))              
        
                       add(0(),X) =  [2] X + [20]                    
                                  >= [1] X + [0]                     
                                  =  X                               
        
                         dbl(0()) =  [8]                             
                                  >= [4]                             
                                  =  0()                             
        
                     first(X1,X2) =  [1] X1 + [1] X2 + [1]           
                                  >= [1] X1 + [1] X2 + [0]           
                                  =  n__first(X1,X2)                 
        
                     first(0(),X) =  [1] X + [5]                     
                                  >= [4]                             
                                  =  nil()                           
        
                         sqr(0()) =  [8]                             
                                  >= [4]                             
                                  =  0()                             
        
                         terms(N) =  [1] N + [12]                    
                                  >= [1] N + [9]                     
                                  =  cons(recip(sqr(N))              
                                         ,n__terms(n__s(N)))         
        
                         terms(X) =  [1] X + [12]                    
                                  >= [1] X + [6]                     
                                  =  n__terms(X)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__s(X)) -> s(activate(X))
        activate(n__terms(X)) -> terms(activate(X))
        add(0(),X) -> X
        dbl(0()) -> 0()
        first(X1,X2) -> n__first(X1,X2)
        first(0(),X) -> nil()
        s(X) -> n__s(X)
        sqr(0()) -> 0()
        terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
        terms(X) -> n__terms(X)
      Signature:
        {activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
      Obligation:
        Innermost
        basic terms: {activate,add,dbl,first,s,sqr,terms}/{0,cons,n__first,n__s,n__terms,nil,recip}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(first) = {1,2},
          uargs(recip) = {1},
          uargs(s) = {1},
          uargs(terms) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [9]                   
          p(activate) = [2] x1 + [1]          
               p(add) = [1] x1 + [8] x2 + [8] 
              p(cons) = [1] x1 + [0]          
               p(dbl) = [1] x1 + [5]          
             p(first) = [1] x1 + [1] x2 + [14]
          p(n__first) = [1] x1 + [1] x2 + [8] 
              p(n__s) = [1] x1 + [1]          
          p(n__terms) = [1] x1 + [8]          
               p(nil) = [0]                   
             p(recip) = [1] x1 + [2]          
                 p(s) = [1] x1 + [1]          
               p(sqr) = [1] x1 + [0]          
             p(terms) = [1] x1 + [8]          
        
        Following rules are strictly oriented:
        activate(n__first(X1,X2)) = [2] X1 + [2] X2 + [17]          
                                  > [2] X1 + [2] X2 + [16]          
                                  = first(activate(X1),activate(X2))
        
        
        Following rules are (at-least) weakly oriented:
                  activate(X) =  [2] X + [1]            
                              >= [1] X + [0]            
                              =  X                      
        
            activate(n__s(X)) =  [2] X + [3]            
                              >= [2] X + [2]            
                              =  s(activate(X))         
        
        activate(n__terms(X)) =  [2] X + [17]           
                              >= [2] X + [9]            
                              =  terms(activate(X))     
        
                   add(0(),X) =  [8] X + [17]           
                              >= [1] X + [0]            
                              =  X                      
        
                     dbl(0()) =  [14]                   
                              >= [9]                    
                              =  0()                    
        
                 first(X1,X2) =  [1] X1 + [1] X2 + [14] 
                              >= [1] X1 + [1] X2 + [8]  
                              =  n__first(X1,X2)        
        
                 first(0(),X) =  [1] X + [23]           
                              >= [0]                    
                              =  nil()                  
        
                         s(X) =  [1] X + [1]            
                              >= [1] X + [1]            
                              =  n__s(X)                
        
                     sqr(0()) =  [9]                    
                              >= [9]                    
                              =  0()                    
        
                     terms(N) =  [1] N + [8]            
                              >= [1] N + [2]            
                              =  cons(recip(sqr(N))     
                                     ,n__terms(n__s(N)))
        
                     terms(X) =  [1] X + [8]            
                              >= [1] X + [8]            
                              =  n__terms(X)            
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
        activate(n__s(X)) -> s(activate(X))
        activate(n__terms(X)) -> terms(activate(X))
        add(0(),X) -> X
        dbl(0()) -> 0()
        first(X1,X2) -> n__first(X1,X2)
        first(0(),X) -> nil()
        s(X) -> n__s(X)
        sqr(0()) -> 0()
        terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
        terms(X) -> n__terms(X)
      Signature:
        {activate/1,add/2,dbl/1,first/2,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1}
      Obligation:
        Innermost
        basic terms: {activate,add,dbl,first,s,sqr,terms}/{0,cons,n__first,n__s,n__terms,nil,recip}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).