We are left with following problem, upon which TcT provides the certificate YES(?,O(1)). Strict Trs: { terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) , terms(X) -> n__terms(X) , sqr(s(X)) -> s(n__add(sqr(activate(X)), dbl(activate(X)))) , sqr(0()) -> 0() , s(X) -> n__s(X) , activate(X) -> X , activate(n__terms(X)) -> terms(X) , activate(n__add(X1, X2)) -> add(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__dbl(X)) -> dbl(X) , activate(n__first(X1, X2)) -> first(X1, X2) , dbl(X) -> n__dbl(X) , dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) , dbl(0()) -> 0() , add(X1, X2) -> n__add(X1, X2) , add(s(X), Y) -> s(n__add(activate(X), Y)) , add(0(), X) -> X , first(X1, X2) -> n__first(X1, X2) , first(s(X), cons(Y, Z)) -> cons(Y, n__first(activate(X), activate(Z))) , first(0(), X) -> nil() } Obligation: innermost runtime complexity Answer: YES(?,O(1)) Arguments of following rules are not normal-forms: { sqr(s(X)) -> s(n__add(sqr(activate(X)), dbl(activate(X)))) , dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) , add(s(X), Y) -> s(n__add(activate(X), Y)) , first(s(X), cons(Y, Z)) -> cons(Y, n__first(activate(X), activate(Z))) } All above mentioned rules can be savely removed. We are left with following problem, upon which TcT provides the certificate YES(?,O(1)). Strict Trs: { terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) , terms(X) -> n__terms(X) , sqr(0()) -> 0() , s(X) -> n__s(X) , activate(X) -> X , activate(n__terms(X)) -> terms(X) , activate(n__add(X1, X2)) -> add(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__dbl(X)) -> dbl(X) , activate(n__first(X1, X2)) -> first(X1, X2) , dbl(X) -> n__dbl(X) , dbl(0()) -> 0() , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , first(X1, X2) -> n__first(X1, X2) , first(0(), X) -> nil() } Obligation: innermost runtime complexity Answer: YES(?,O(1)) The input was oriented with the instance of 'Small Polynomial Path Order (PS,0-bounded)' as induced by the safe mapping safe(terms) = {}, safe(cons) = {1, 2}, safe(recip) = {1}, safe(sqr) = {1}, safe(n__terms) = {1}, safe(s) = {1}, safe(0) = {}, safe(n__add) = {1, 2}, safe(activate) = {}, safe(dbl) = {1}, safe(n__s) = {1}, safe(n__dbl) = {1}, safe(add) = {1, 2}, safe(first) = {1, 2}, safe(nil) = {}, safe(n__first) = {1, 2} and precedence terms > sqr, terms > s, activate > terms, activate > s, activate > dbl, activate > add, activate > first . Following symbols are considered recursive: {} The recursion depth is 0. For your convenience, here are the satisfied ordering constraints: terms(N;) > cons(; recip(; sqr(; N)), n__terms(; s(; N))) terms(X;) > n__terms(; X) sqr(; 0()) > 0() s(; X) > n__s(; X) activate(X;) > X activate(n__terms(; X);) > terms(X;) activate(n__add(; X1, X2);) > add(; X1, X2) activate(n__s(; X);) > s(; X) activate(n__dbl(; X);) > dbl(; X) activate(n__first(; X1, X2);) > first(; X1, X2) dbl(; X) > n__dbl(; X) dbl(; 0()) > 0() add(; X1, X2) > n__add(; X1, X2) add(; 0(), X) > X first(; X1, X2) > n__first(; X1, X2) first(; 0(), X) > nil() Hurray, we answered YES(?,O(1))