*** 1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
add(0(),X) -> X
add(s(),Y) -> s()
dbl(0()) -> 0()
dbl(s()) -> s()
first(0(),X) -> nil()
first(s(),cons(Y)) -> cons(Y)
sqr(0()) -> 0()
sqr(s()) -> s()
terms(N) -> cons(recip(sqr(N)))
Weak DP Rules:
Weak TRS Rules:
Signature:
{add/2,dbl/1,first/2,sqr/1,terms/1} / {0/0,cons/1,nil/0,recip/1,s/0}
Obligation:
Innermost
basic terms: {add,dbl,first,sqr,terms}/{0,cons,nil,recip,s}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
add#(0(),X) -> c_1()
add#(s(),Y) -> c_2()
dbl#(0()) -> c_3()
dbl#(s()) -> c_4()
first#(0(),X) -> c_5()
first#(s(),cons(Y)) -> c_6()
sqr#(0()) -> c_7()
sqr#(s()) -> c_8()
terms#(N) -> c_9(sqr#(N))
Weak DPs
and mark the set of starting terms.
*** 1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
add#(0(),X) -> c_1()
add#(s(),Y) -> c_2()
dbl#(0()) -> c_3()
dbl#(s()) -> c_4()
first#(0(),X) -> c_5()
first#(s(),cons(Y)) -> c_6()
sqr#(0()) -> c_7()
sqr#(s()) -> c_8()
terms#(N) -> c_9(sqr#(N))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
add(0(),X) -> X
add(s(),Y) -> s()
dbl(0()) -> 0()
dbl(s()) -> s()
first(0(),X) -> nil()
first(s(),cons(Y)) -> cons(Y)
sqr(0()) -> 0()
sqr(s()) -> s()
terms(N) -> cons(recip(sqr(N)))
Signature:
{add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/1,nil/0,recip/1,s/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1}
Obligation:
Innermost
basic terms: {add#,dbl#,first#,sqr#,terms#}/{0,cons,nil,recip,s}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
add#(0(),X) -> c_1()
add#(s(),Y) -> c_2()
dbl#(0()) -> c_3()
dbl#(s()) -> c_4()
first#(0(),X) -> c_5()
first#(s(),cons(Y)) -> c_6()
sqr#(0()) -> c_7()
sqr#(s()) -> c_8()
terms#(N) -> c_9(sqr#(N))
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
add#(0(),X) -> c_1()
add#(s(),Y) -> c_2()
dbl#(0()) -> c_3()
dbl#(s()) -> c_4()
first#(0(),X) -> c_5()
first#(s(),cons(Y)) -> c_6()
sqr#(0()) -> c_7()
sqr#(s()) -> c_8()
terms#(N) -> c_9(sqr#(N))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/1,nil/0,recip/1,s/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1}
Obligation:
Innermost
basic terms: {add#,dbl#,first#,sqr#,terms#}/{0,cons,nil,recip,s}
Applied Processor:
Trivial
Proof:
Consider the dependency graph
1:S:add#(0(),X) -> c_1()
2:S:add#(s(),Y) -> c_2()
3:S:dbl#(0()) -> c_3()
4:S:dbl#(s()) -> c_4()
5:S:first#(0(),X) -> c_5()
6:S:first#(s(),cons(Y)) -> c_6()
7:S:sqr#(0()) -> c_7()
8:S:sqr#(s()) -> c_8()
9:S:terms#(N) -> c_9(sqr#(N))
-->_1 sqr#(s()) -> c_8():8
-->_1 sqr#(0()) -> c_7():7
The dependency graph contains no loops, we remove all dependency pairs.
*** 1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/1,nil/0,recip/1,s/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/0,c_7/0,c_8/0,c_9/1}
Obligation:
Innermost
basic terms: {add#,dbl#,first#,sqr#,terms#}/{0,cons,nil,recip,s}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).