*** 1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__dbl(X) -> dbl(X)
        a__dbl(0()) -> 0()
        a__dbl(s(X)) -> s(s(dbl(X)))
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__sqr(X) -> sqr(X)
        a__sqr(0()) -> 0()
        a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
        a__terms(X) -> terms(X)
        mark(0()) -> 0()
        mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(dbl(X)) -> a__dbl(mark(X))
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(nil()) -> nil()
        mark(recip(X)) -> recip(mark(X))
        mark(s(X)) -> s(X)
        mark(sqr(X)) -> a__sqr(mark(X))
        mark(terms(X)) -> a__terms(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1,s/1,sqr/1,terms/1}
      Obligation:
        Innermost
        basic terms: {a__add,a__dbl,a__first,a__sqr,a__terms,mark}/{0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__add) = {1,2},
          uargs(a__dbl) = {1},
          uargs(a__first) = {1,2},
          uargs(a__sqr) = {1},
          uargs(a__terms) = {1},
          uargs(cons) = {1},
          uargs(recip) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [1]                  
            p(a__add) = [1] x1 + [1] x2 + [0]
            p(a__dbl) = [1] x1 + [0]         
          p(a__first) = [1] x1 + [1] x2 + [0]
            p(a__sqr) = [1] x1 + [1]         
          p(a__terms) = [1] x1 + [0]         
               p(add) = [0]                  
              p(cons) = [1] x1 + [0]         
               p(dbl) = [4]                  
             p(first) = [0]                  
              p(mark) = [0]                  
               p(nil) = [0]                  
             p(recip) = [1] x1 + [0]         
                 p(s) = [1]                  
               p(sqr) = [0]                  
             p(terms) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
                   a__add(0(),X) = [1] X + [1]             
                                 > [0]                     
                                 = mark(X)                 
        
                 a__first(0(),X) = [1] X + [1]             
                                 > [0]                     
                                 = nil()                   
        
        a__first(s(X),cons(Y,Z)) = [1] Y + [1]             
                                 > [0]                     
                                 = cons(mark(Y),first(X,Z))
        
                       a__sqr(X) = [1] X + [1]             
                                 > [0]                     
                                 = sqr(X)                  
        
                     a__sqr(0()) = [2]                     
                                 > [1]                     
                                 = 0()                     
        
                    a__sqr(s(X)) = [2]                     
                                 > [1]                     
                                 = s(add(sqr(X),dbl(X)))   
        
        
        Following rules are (at-least) weakly oriented:
             a__add(X1,X2) =  [1] X1 + [1] X2 + [0]      
                           >= [0]                        
                           =  add(X1,X2)                 
        
            a__add(s(X),Y) =  [1] Y + [1]                
                           >= [1]                        
                           =  s(add(X,Y))                
        
                 a__dbl(X) =  [1] X + [0]                
                           >= [4]                        
                           =  dbl(X)                     
        
               a__dbl(0()) =  [1]                        
                           >= [1]                        
                           =  0()                        
        
              a__dbl(s(X)) =  [1]                        
                           >= [1]                        
                           =  s(s(dbl(X)))               
        
           a__first(X1,X2) =  [1] X1 + [1] X2 + [0]      
                           >= [0]                        
                           =  first(X1,X2)               
        
               a__terms(N) =  [1] N + [0]                
                           >= [1]                        
                           =  cons(recip(a__sqr(mark(N)))
                                  ,terms(s(N)))          
        
               a__terms(X) =  [1] X + [0]                
                           >= [1] X + [0]                
                           =  terms(X)                   
        
                 mark(0()) =  [0]                        
                           >= [1]                        
                           =  0()                        
        
          mark(add(X1,X2)) =  [0]                        
                           >= [0]                        
                           =  a__add(mark(X1),mark(X2))  
        
         mark(cons(X1,X2)) =  [0]                        
                           >= [0]                        
                           =  cons(mark(X1),X2)          
        
              mark(dbl(X)) =  [0]                        
                           >= [0]                        
                           =  a__dbl(mark(X))            
        
        mark(first(X1,X2)) =  [0]                        
                           >= [0]                        
                           =  a__first(mark(X1),mark(X2))
        
               mark(nil()) =  [0]                        
                           >= [0]                        
                           =  nil()                      
        
            mark(recip(X)) =  [0]                        
                           >= [0]                        
                           =  recip(mark(X))             
        
                mark(s(X)) =  [0]                        
                           >= [1]                        
                           =  s(X)                       
        
              mark(sqr(X)) =  [0]                        
                           >= [1]                        
                           =  a__sqr(mark(X))            
        
            mark(terms(X)) =  [0]                        
                           >= [0]                        
                           =  a__terms(mark(X))          
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(s(X),Y) -> s(add(X,Y))
        a__dbl(X) -> dbl(X)
        a__dbl(0()) -> 0()
        a__dbl(s(X)) -> s(s(dbl(X)))
        a__first(X1,X2) -> first(X1,X2)
        a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
        a__terms(X) -> terms(X)
        mark(0()) -> 0()
        mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(dbl(X)) -> a__dbl(mark(X))
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(nil()) -> nil()
        mark(recip(X)) -> recip(mark(X))
        mark(s(X)) -> s(X)
        mark(sqr(X)) -> a__sqr(mark(X))
        mark(terms(X)) -> a__terms(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(0(),X) -> mark(X)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__sqr(X) -> sqr(X)
        a__sqr(0()) -> 0()
        a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
      Signature:
        {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1,s/1,sqr/1,terms/1}
      Obligation:
        Innermost
        basic terms: {a__add,a__dbl,a__first,a__sqr,a__terms,mark}/{0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__add) = {1,2},
          uargs(a__dbl) = {1},
          uargs(a__first) = {1,2},
          uargs(a__sqr) = {1},
          uargs(a__terms) = {1},
          uargs(cons) = {1},
          uargs(recip) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [6]                  
            p(a__add) = [1] x1 + [1] x2 + [4]
            p(a__dbl) = [1] x1 + [0]         
          p(a__first) = [1] x1 + [1] x2 + [0]
            p(a__sqr) = [1] x1 + [0]         
          p(a__terms) = [1] x1 + [0]         
               p(add) = [0]                  
              p(cons) = [1] x1 + [5]         
               p(dbl) = [4]                  
             p(first) = [1] x1 + [1] x2 + [0]
              p(mark) = [4]                  
               p(nil) = [6]                  
             p(recip) = [1] x1 + [5]         
                 p(s) = [4]                  
               p(sqr) = [0]                  
             p(terms) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
         a__add(X1,X2) = [1] X1 + [1] X2 + [4]
                       > [0]                  
                       = add(X1,X2)           
        
        a__add(s(X),Y) = [1] Y + [8]          
                       > [4]                  
                       = s(add(X,Y))          
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(0(),X) =  [1] X + [10]               
                                 >= [4]                        
                                 =  mark(X)                    
        
                       a__dbl(X) =  [1] X + [0]                
                                 >= [4]                        
                                 =  dbl(X)                     
        
                     a__dbl(0()) =  [6]                        
                                 >= [6]                        
                                 =  0()                        
        
                    a__dbl(s(X)) =  [4]                        
                                 >= [4]                        
                                 =  s(s(dbl(X)))               
        
                 a__first(X1,X2) =  [1] X1 + [1] X2 + [0]      
                                 >= [1] X1 + [1] X2 + [0]      
                                 =  first(X1,X2)               
        
                 a__first(0(),X) =  [1] X + [6]                
                                 >= [6]                        
                                 =  nil()                      
        
        a__first(s(X),cons(Y,Z)) =  [1] Y + [9]                
                                 >= [9]                        
                                 =  cons(mark(Y),first(X,Z))   
        
                       a__sqr(X) =  [1] X + [0]                
                                 >= [0]                        
                                 =  sqr(X)                     
        
                     a__sqr(0()) =  [6]                        
                                 >= [6]                        
                                 =  0()                        
        
                    a__sqr(s(X)) =  [4]                        
                                 >= [4]                        
                                 =  s(add(sqr(X),dbl(X)))      
        
                     a__terms(N) =  [1] N + [0]                
                                 >= [14]                       
                                 =  cons(recip(a__sqr(mark(N)))
                                        ,terms(s(N)))          
        
                     a__terms(X) =  [1] X + [0]                
                                 >= [1] X + [0]                
                                 =  terms(X)                   
        
                       mark(0()) =  [4]                        
                                 >= [6]                        
                                 =  0()                        
        
                mark(add(X1,X2)) =  [4]                        
                                 >= [12]                       
                                 =  a__add(mark(X1),mark(X2))  
        
               mark(cons(X1,X2)) =  [4]                        
                                 >= [9]                        
                                 =  cons(mark(X1),X2)          
        
                    mark(dbl(X)) =  [4]                        
                                 >= [4]                        
                                 =  a__dbl(mark(X))            
        
              mark(first(X1,X2)) =  [4]                        
                                 >= [8]                        
                                 =  a__first(mark(X1),mark(X2))
        
                     mark(nil()) =  [4]                        
                                 >= [6]                        
                                 =  nil()                      
        
                  mark(recip(X)) =  [4]                        
                                 >= [9]                        
                                 =  recip(mark(X))             
        
                      mark(s(X)) =  [4]                        
                                 >= [4]                        
                                 =  s(X)                       
        
                    mark(sqr(X)) =  [4]                        
                                 >= [4]                        
                                 =  a__sqr(mark(X))            
        
                  mark(terms(X)) =  [4]                        
                                 >= [4]                        
                                 =  a__terms(mark(X))          
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__dbl(X) -> dbl(X)
        a__dbl(0()) -> 0()
        a__dbl(s(X)) -> s(s(dbl(X)))
        a__first(X1,X2) -> first(X1,X2)
        a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
        a__terms(X) -> terms(X)
        mark(0()) -> 0()
        mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(dbl(X)) -> a__dbl(mark(X))
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(nil()) -> nil()
        mark(recip(X)) -> recip(mark(X))
        mark(s(X)) -> s(X)
        mark(sqr(X)) -> a__sqr(mark(X))
        mark(terms(X)) -> a__terms(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__sqr(X) -> sqr(X)
        a__sqr(0()) -> 0()
        a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
      Signature:
        {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1,s/1,sqr/1,terms/1}
      Obligation:
        Innermost
        basic terms: {a__add,a__dbl,a__first,a__sqr,a__terms,mark}/{0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__add) = {1,2},
          uargs(a__dbl) = {1},
          uargs(a__first) = {1,2},
          uargs(a__sqr) = {1},
          uargs(a__terms) = {1},
          uargs(cons) = {1},
          uargs(recip) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
            p(a__add) = [1] x1 + [1] x2 + [5]
            p(a__dbl) = [1] x1 + [0]         
          p(a__first) = [1] x1 + [1] x2 + [3]
            p(a__sqr) = [1] x1 + [0]         
          p(a__terms) = [1] x1 + [0]         
               p(add) = [0]                  
              p(cons) = [1] x1 + [0]         
               p(dbl) = [0]                  
             p(first) = [1] x1 + [1] x2 + [0]
              p(mark) = [5]                  
               p(nil) = [3]                  
             p(recip) = [1] x1 + [2]         
                 p(s) = [2]                  
               p(sqr) = [0]                  
             p(terms) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
        a__first(X1,X2) = [1] X1 + [1] X2 + [3]
                        > [1] X1 + [1] X2 + [0]
                        = first(X1,X2)         
        
              mark(0()) = [5]                  
                        > [0]                  
                        = 0()                  
        
            mark(nil()) = [5]                  
                        > [3]                  
                        = nil()                
        
             mark(s(X)) = [5]                  
                        > [2]                  
                        = s(X)                 
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(X1,X2) =  [1] X1 + [1] X2 + [5]      
                                 >= [0]                        
                                 =  add(X1,X2)                 
        
                   a__add(0(),X) =  [1] X + [5]                
                                 >= [5]                        
                                 =  mark(X)                    
        
                  a__add(s(X),Y) =  [1] Y + [7]                
                                 >= [2]                        
                                 =  s(add(X,Y))                
        
                       a__dbl(X) =  [1] X + [0]                
                                 >= [0]                        
                                 =  dbl(X)                     
        
                     a__dbl(0()) =  [0]                        
                                 >= [0]                        
                                 =  0()                        
        
                    a__dbl(s(X)) =  [2]                        
                                 >= [2]                        
                                 =  s(s(dbl(X)))               
        
                 a__first(0(),X) =  [1] X + [3]                
                                 >= [3]                        
                                 =  nil()                      
        
        a__first(s(X),cons(Y,Z)) =  [1] Y + [5]                
                                 >= [5]                        
                                 =  cons(mark(Y),first(X,Z))   
        
                       a__sqr(X) =  [1] X + [0]                
                                 >= [0]                        
                                 =  sqr(X)                     
        
                     a__sqr(0()) =  [0]                        
                                 >= [0]                        
                                 =  0()                        
        
                    a__sqr(s(X)) =  [2]                        
                                 >= [2]                        
                                 =  s(add(sqr(X),dbl(X)))      
        
                     a__terms(N) =  [1] N + [0]                
                                 >= [7]                        
                                 =  cons(recip(a__sqr(mark(N)))
                                        ,terms(s(N)))          
        
                     a__terms(X) =  [1] X + [0]                
                                 >= [1] X + [0]                
                                 =  terms(X)                   
        
                mark(add(X1,X2)) =  [5]                        
                                 >= [15]                       
                                 =  a__add(mark(X1),mark(X2))  
        
               mark(cons(X1,X2)) =  [5]                        
                                 >= [5]                        
                                 =  cons(mark(X1),X2)          
        
                    mark(dbl(X)) =  [5]                        
                                 >= [5]                        
                                 =  a__dbl(mark(X))            
        
              mark(first(X1,X2)) =  [5]                        
                                 >= [13]                       
                                 =  a__first(mark(X1),mark(X2))
        
                  mark(recip(X)) =  [5]                        
                                 >= [7]                        
                                 =  recip(mark(X))             
        
                    mark(sqr(X)) =  [5]                        
                                 >= [5]                        
                                 =  a__sqr(mark(X))            
        
                  mark(terms(X)) =  [5]                        
                                 >= [5]                        
                                 =  a__terms(mark(X))          
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__dbl(X) -> dbl(X)
        a__dbl(0()) -> 0()
        a__dbl(s(X)) -> s(s(dbl(X)))
        a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
        a__terms(X) -> terms(X)
        mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(dbl(X)) -> a__dbl(mark(X))
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(recip(X)) -> recip(mark(X))
        mark(sqr(X)) -> a__sqr(mark(X))
        mark(terms(X)) -> a__terms(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__sqr(X) -> sqr(X)
        a__sqr(0()) -> 0()
        a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        mark(0()) -> 0()
        mark(nil()) -> nil()
        mark(s(X)) -> s(X)
      Signature:
        {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1,s/1,sqr/1,terms/1}
      Obligation:
        Innermost
        basic terms: {a__add,a__dbl,a__first,a__sqr,a__terms,mark}/{0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__add) = {1,2},
          uargs(a__dbl) = {1},
          uargs(a__first) = {1,2},
          uargs(a__sqr) = {1},
          uargs(a__terms) = {1},
          uargs(cons) = {1},
          uargs(recip) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
            p(a__add) = [1] x1 + [1] x2 + [1]
            p(a__dbl) = [1] x1 + [0]         
          p(a__first) = [1] x1 + [1] x2 + [0]
            p(a__sqr) = [1] x1 + [0]         
          p(a__terms) = [1] x1 + [4]         
               p(add) = [1] x2 + [0]         
              p(cons) = [1] x1 + [2]         
               p(dbl) = [1] x1 + [0]         
             p(first) = [1] x1 + [1] x2 + [0]
              p(mark) = [0]                  
               p(nil) = [0]                  
             p(recip) = [1] x1 + [1]         
                 p(s) = [0]                  
               p(sqr) = [1] x1 + [0]         
             p(terms) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
        a__terms(N) = [1] N + [4]                
                    > [3]                        
                    = cons(recip(a__sqr(mark(N)))
                          ,terms(s(N)))          
        
        a__terms(X) = [1] X + [4]                
                    > [1] X + [0]                
                    = terms(X)                   
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(X1,X2) =  [1] X1 + [1] X2 + [1]      
                                 >= [1] X2 + [0]               
                                 =  add(X1,X2)                 
        
                   a__add(0(),X) =  [1] X + [1]                
                                 >= [0]                        
                                 =  mark(X)                    
        
                  a__add(s(X),Y) =  [1] Y + [1]                
                                 >= [0]                        
                                 =  s(add(X,Y))                
        
                       a__dbl(X) =  [1] X + [0]                
                                 >= [1] X + [0]                
                                 =  dbl(X)                     
        
                     a__dbl(0()) =  [0]                        
                                 >= [0]                        
                                 =  0()                        
        
                    a__dbl(s(X)) =  [0]                        
                                 >= [0]                        
                                 =  s(s(dbl(X)))               
        
                 a__first(X1,X2) =  [1] X1 + [1] X2 + [0]      
                                 >= [1] X1 + [1] X2 + [0]      
                                 =  first(X1,X2)               
        
                 a__first(0(),X) =  [1] X + [0]                
                                 >= [0]                        
                                 =  nil()                      
        
        a__first(s(X),cons(Y,Z)) =  [1] Y + [2]                
                                 >= [2]                        
                                 =  cons(mark(Y),first(X,Z))   
        
                       a__sqr(X) =  [1] X + [0]                
                                 >= [1] X + [0]                
                                 =  sqr(X)                     
        
                     a__sqr(0()) =  [0]                        
                                 >= [0]                        
                                 =  0()                        
        
                    a__sqr(s(X)) =  [0]                        
                                 >= [0]                        
                                 =  s(add(sqr(X),dbl(X)))      
        
                       mark(0()) =  [0]                        
                                 >= [0]                        
                                 =  0()                        
        
                mark(add(X1,X2)) =  [0]                        
                                 >= [1]                        
                                 =  a__add(mark(X1),mark(X2))  
        
               mark(cons(X1,X2)) =  [0]                        
                                 >= [2]                        
                                 =  cons(mark(X1),X2)          
        
                    mark(dbl(X)) =  [0]                        
                                 >= [0]                        
                                 =  a__dbl(mark(X))            
        
              mark(first(X1,X2)) =  [0]                        
                                 >= [0]                        
                                 =  a__first(mark(X1),mark(X2))
        
                     mark(nil()) =  [0]                        
                                 >= [0]                        
                                 =  nil()                      
        
                  mark(recip(X)) =  [0]                        
                                 >= [1]                        
                                 =  recip(mark(X))             
        
                      mark(s(X)) =  [0]                        
                                 >= [0]                        
                                 =  s(X)                       
        
                    mark(sqr(X)) =  [0]                        
                                 >= [0]                        
                                 =  a__sqr(mark(X))            
        
                  mark(terms(X)) =  [0]                        
                                 >= [4]                        
                                 =  a__terms(mark(X))          
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__dbl(X) -> dbl(X)
        a__dbl(0()) -> 0()
        a__dbl(s(X)) -> s(s(dbl(X)))
        mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(dbl(X)) -> a__dbl(mark(X))
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(recip(X)) -> recip(mark(X))
        mark(sqr(X)) -> a__sqr(mark(X))
        mark(terms(X)) -> a__terms(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__sqr(X) -> sqr(X)
        a__sqr(0()) -> 0()
        a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
        a__terms(X) -> terms(X)
        mark(0()) -> 0()
        mark(nil()) -> nil()
        mark(s(X)) -> s(X)
      Signature:
        {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1,s/1,sqr/1,terms/1}
      Obligation:
        Innermost
        basic terms: {a__add,a__dbl,a__first,a__sqr,a__terms,mark}/{0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__add) = {1,2},
          uargs(a__dbl) = {1},
          uargs(a__first) = {1,2},
          uargs(a__sqr) = {1},
          uargs(a__terms) = {1},
          uargs(cons) = {1},
          uargs(recip) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
            p(a__add) = [1] x1 + [1] x2 + [4]
            p(a__dbl) = [1] x1 + [0]         
          p(a__first) = [1] x1 + [1] x2 + [0]
            p(a__sqr) = [1] x1 + [1]         
          p(a__terms) = [1] x1 + [3]         
               p(add) = [1] x1 + [1] x2 + [4]
              p(cons) = [1] x1 + [0]         
               p(dbl) = [1] x1 + [2]         
             p(first) = [1] x1 + [1] x2 + [0]
              p(mark) = [1] x1 + [0]         
               p(nil) = [0]                  
             p(recip) = [1] x1 + [2]         
                 p(s) = [1]                  
               p(sqr) = [1] x1 + [0]         
             p(terms) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
        mark(dbl(X)) = [1] X + [2]    
                     > [1] X + [0]    
                     = a__dbl(mark(X))
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(X1,X2) =  [1] X1 + [1] X2 + [4]      
                                 >= [1] X1 + [1] X2 + [4]      
                                 =  add(X1,X2)                 
        
                   a__add(0(),X) =  [1] X + [4]                
                                 >= [1] X + [0]                
                                 =  mark(X)                    
        
                  a__add(s(X),Y) =  [1] Y + [5]                
                                 >= [1]                        
                                 =  s(add(X,Y))                
        
                       a__dbl(X) =  [1] X + [0]                
                                 >= [1] X + [2]                
                                 =  dbl(X)                     
        
                     a__dbl(0()) =  [0]                        
                                 >= [0]                        
                                 =  0()                        
        
                    a__dbl(s(X)) =  [1]                        
                                 >= [1]                        
                                 =  s(s(dbl(X)))               
        
                 a__first(X1,X2) =  [1] X1 + [1] X2 + [0]      
                                 >= [1] X1 + [1] X2 + [0]      
                                 =  first(X1,X2)               
        
                 a__first(0(),X) =  [1] X + [0]                
                                 >= [0]                        
                                 =  nil()                      
        
        a__first(s(X),cons(Y,Z)) =  [1] Y + [1]                
                                 >= [1] Y + [0]                
                                 =  cons(mark(Y),first(X,Z))   
        
                       a__sqr(X) =  [1] X + [1]                
                                 >= [1] X + [0]                
                                 =  sqr(X)                     
        
                     a__sqr(0()) =  [1]                        
                                 >= [0]                        
                                 =  0()                        
        
                    a__sqr(s(X)) =  [2]                        
                                 >= [1]                        
                                 =  s(add(sqr(X),dbl(X)))      
        
                     a__terms(N) =  [1] N + [3]                
                                 >= [1] N + [3]                
                                 =  cons(recip(a__sqr(mark(N)))
                                        ,terms(s(N)))          
        
                     a__terms(X) =  [1] X + [3]                
                                 >= [1] X + [0]                
                                 =  terms(X)                   
        
                       mark(0()) =  [0]                        
                                 >= [0]                        
                                 =  0()                        
        
                mark(add(X1,X2)) =  [1] X1 + [1] X2 + [4]      
                                 >= [1] X1 + [1] X2 + [4]      
                                 =  a__add(mark(X1),mark(X2))  
        
               mark(cons(X1,X2)) =  [1] X1 + [0]               
                                 >= [1] X1 + [0]               
                                 =  cons(mark(X1),X2)          
        
              mark(first(X1,X2)) =  [1] X1 + [1] X2 + [0]      
                                 >= [1] X1 + [1] X2 + [0]      
                                 =  a__first(mark(X1),mark(X2))
        
                     mark(nil()) =  [0]                        
                                 >= [0]                        
                                 =  nil()                      
        
                  mark(recip(X)) =  [1] X + [2]                
                                 >= [1] X + [2]                
                                 =  recip(mark(X))             
        
                      mark(s(X)) =  [1]                        
                                 >= [1]                        
                                 =  s(X)                       
        
                    mark(sqr(X)) =  [1] X + [0]                
                                 >= [1] X + [1]                
                                 =  a__sqr(mark(X))            
        
                  mark(terms(X)) =  [1] X + [0]                
                                 >= [1] X + [3]                
                                 =  a__terms(mark(X))          
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__dbl(X) -> dbl(X)
        a__dbl(0()) -> 0()
        a__dbl(s(X)) -> s(s(dbl(X)))
        mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(recip(X)) -> recip(mark(X))
        mark(sqr(X)) -> a__sqr(mark(X))
        mark(terms(X)) -> a__terms(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__sqr(X) -> sqr(X)
        a__sqr(0()) -> 0()
        a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
        a__terms(X) -> terms(X)
        mark(0()) -> 0()
        mark(dbl(X)) -> a__dbl(mark(X))
        mark(nil()) -> nil()
        mark(s(X)) -> s(X)
      Signature:
        {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1,s/1,sqr/1,terms/1}
      Obligation:
        Innermost
        basic terms: {a__add,a__dbl,a__first,a__sqr,a__terms,mark}/{0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__add) = {1,2},
          uargs(a__dbl) = {1},
          uargs(a__first) = {1,2},
          uargs(a__sqr) = {1},
          uargs(a__terms) = {1},
          uargs(cons) = {1},
          uargs(recip) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [1]                  
            p(a__add) = [1] x1 + [1] x2 + [5]
            p(a__dbl) = [1] x1 + [1]         
          p(a__first) = [1] x1 + [1] x2 + [5]
            p(a__sqr) = [1] x1 + [4]         
          p(a__terms) = [1] x1 + [6]         
               p(add) = [1] x1 + [1] x2 + [0]
              p(cons) = [1] x1 + [0]         
               p(dbl) = [1] x1 + [4]         
             p(first) = [1] x1 + [1] x2 + [0]
              p(mark) = [1] x1 + [0]         
               p(nil) = [1]                  
             p(recip) = [1] x1 + [1]         
                 p(s) = [0]                  
               p(sqr) = [1] x1 + [0]         
             p(terms) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
         a__dbl(0()) = [2]         
                     > [1]         
                     = 0()         
        
        a__dbl(s(X)) = [1]         
                     > [0]         
                     = s(s(dbl(X)))
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(X1,X2) =  [1] X1 + [1] X2 + [5]      
                                 >= [1] X1 + [1] X2 + [0]      
                                 =  add(X1,X2)                 
        
                   a__add(0(),X) =  [1] X + [6]                
                                 >= [1] X + [0]                
                                 =  mark(X)                    
        
                  a__add(s(X),Y) =  [1] Y + [5]                
                                 >= [0]                        
                                 =  s(add(X,Y))                
        
                       a__dbl(X) =  [1] X + [1]                
                                 >= [1] X + [4]                
                                 =  dbl(X)                     
        
                 a__first(X1,X2) =  [1] X1 + [1] X2 + [5]      
                                 >= [1] X1 + [1] X2 + [0]      
                                 =  first(X1,X2)               
        
                 a__first(0(),X) =  [1] X + [6]                
                                 >= [1]                        
                                 =  nil()                      
        
        a__first(s(X),cons(Y,Z)) =  [1] Y + [5]                
                                 >= [1] Y + [0]                
                                 =  cons(mark(Y),first(X,Z))   
        
                       a__sqr(X) =  [1] X + [4]                
                                 >= [1] X + [0]                
                                 =  sqr(X)                     
        
                     a__sqr(0()) =  [5]                        
                                 >= [1]                        
                                 =  0()                        
        
                    a__sqr(s(X)) =  [4]                        
                                 >= [0]                        
                                 =  s(add(sqr(X),dbl(X)))      
        
                     a__terms(N) =  [1] N + [6]                
                                 >= [1] N + [5]                
                                 =  cons(recip(a__sqr(mark(N)))
                                        ,terms(s(N)))          
        
                     a__terms(X) =  [1] X + [6]                
                                 >= [1] X + [0]                
                                 =  terms(X)                   
        
                       mark(0()) =  [1]                        
                                 >= [1]                        
                                 =  0()                        
        
                mark(add(X1,X2)) =  [1] X1 + [1] X2 + [0]      
                                 >= [1] X1 + [1] X2 + [5]      
                                 =  a__add(mark(X1),mark(X2))  
        
               mark(cons(X1,X2)) =  [1] X1 + [0]               
                                 >= [1] X1 + [0]               
                                 =  cons(mark(X1),X2)          
        
                    mark(dbl(X)) =  [1] X + [4]                
                                 >= [1] X + [1]                
                                 =  a__dbl(mark(X))            
        
              mark(first(X1,X2)) =  [1] X1 + [1] X2 + [0]      
                                 >= [1] X1 + [1] X2 + [5]      
                                 =  a__first(mark(X1),mark(X2))
        
                     mark(nil()) =  [1]                        
                                 >= [1]                        
                                 =  nil()                      
        
                  mark(recip(X)) =  [1] X + [1]                
                                 >= [1] X + [1]                
                                 =  recip(mark(X))             
        
                      mark(s(X)) =  [0]                        
                                 >= [0]                        
                                 =  s(X)                       
        
                    mark(sqr(X)) =  [1] X + [0]                
                                 >= [1] X + [4]                
                                 =  a__sqr(mark(X))            
        
                  mark(terms(X)) =  [1] X + [0]                
                                 >= [1] X + [6]                
                                 =  a__terms(mark(X))          
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__dbl(X) -> dbl(X)
        mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(recip(X)) -> recip(mark(X))
        mark(sqr(X)) -> a__sqr(mark(X))
        mark(terms(X)) -> a__terms(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__dbl(0()) -> 0()
        a__dbl(s(X)) -> s(s(dbl(X)))
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__sqr(X) -> sqr(X)
        a__sqr(0()) -> 0()
        a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
        a__terms(X) -> terms(X)
        mark(0()) -> 0()
        mark(dbl(X)) -> a__dbl(mark(X))
        mark(nil()) -> nil()
        mark(s(X)) -> s(X)
      Signature:
        {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1,s/1,sqr/1,terms/1}
      Obligation:
        Innermost
        basic terms: {a__add,a__dbl,a__first,a__sqr,a__terms,mark}/{0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(a__add) = {1,2},
        uargs(a__dbl) = {1},
        uargs(a__first) = {1,2},
        uargs(a__sqr) = {1},
        uargs(a__terms) = {1},
        uargs(cons) = {1},
        uargs(recip) = {1}
      
      Following symbols are considered usable:
        {a__add,a__dbl,a__first,a__sqr,a__terms,mark}
      TcT has computed the following interpretation:
               p(0) = [1]                      
                      [0]                      
          p(a__add) = [1 0] x1 + [1 4] x2 + [5]
                      [0 1]      [0 1]      [0]
          p(a__dbl) = [1 0] x1 + [2]           
                      [0 1]      [2]           
        p(a__first) = [1 6] x1 + [1 7] x2 + [4]
                      [0 1]      [0 1]      [0]
          p(a__sqr) = [1 0] x1 + [0]           
                      [0 1]      [0]           
        p(a__terms) = [1 4] x1 + [4]           
                      [0 1]      [0]           
             p(add) = [1 0] x1 + [1 4] x2 + [5]
                      [0 1]      [0 1]      [0]
            p(cons) = [1 0] x1 + [2]           
                      [0 1]      [0]           
             p(dbl) = [1 0] x1 + [0]           
                      [0 1]      [2]           
           p(first) = [1 6] x1 + [1 7] x2 + [4]
                      [0 1]      [0 1]      [0]
            p(mark) = [1 4] x1 + [0]           
                      [0 1]      [0]           
             p(nil) = [0]                      
                      [0]                      
           p(recip) = [1 0] x1 + [2]           
                      [0 1]      [0]           
               p(s) = [4]                      
                      [0]                      
             p(sqr) = [1 0] x1 + [0]           
                      [0 1]      [0]           
           p(terms) = [1 4] x1 + [4]           
                      [0 1]      [0]           
      
      Following rules are strictly oriented:
      a__dbl(X) = [1 0] X + [2]
                  [0 1]     [2]
                > [1 0] X + [0]
                  [0 1]     [2]
                = dbl(X)       
      
      
      Following rules are (at-least) weakly oriented:
                 a__add(X1,X2) =  [1 0] X1 + [1 4] X2 + [5]  
                                  [0 1]      [0 1]      [0]  
                               >= [1 0] X1 + [1 4] X2 + [5]  
                                  [0 1]      [0 1]      [0]  
                               =  add(X1,X2)                 
      
                 a__add(0(),X) =  [1 4] X + [6]              
                                  [0 1]     [0]              
                               >= [1 4] X + [0]              
                                  [0 1]     [0]              
                               =  mark(X)                    
      
                a__add(s(X),Y) =  [1 4] Y + [9]              
                                  [0 1]     [0]              
                               >= [4]                        
                                  [0]                        
                               =  s(add(X,Y))                
      
                   a__dbl(0()) =  [3]                        
                                  [2]                        
                               >= [1]                        
                                  [0]                        
                               =  0()                        
      
                  a__dbl(s(X)) =  [6]                        
                                  [2]                        
                               >= [4]                        
                                  [0]                        
                               =  s(s(dbl(X)))               
      
               a__first(X1,X2) =  [1 6] X1 + [1 7] X2 + [4]  
                                  [0 1]      [0 1]      [0]  
                               >= [1 6] X1 + [1 7] X2 + [4]  
                                  [0 1]      [0 1]      [0]  
                               =  first(X1,X2)               
      
               a__first(0(),X) =  [1 7] X + [5]              
                                  [0 1]     [0]              
                               >= [0]                        
                                  [0]                        
                               =  nil()                      
      
      a__first(s(X),cons(Y,Z)) =  [1 7] Y + [10]             
                                  [0 1]     [0]              
                               >= [1 4] Y + [2]              
                                  [0 1]     [0]              
                               =  cons(mark(Y),first(X,Z))   
      
                     a__sqr(X) =  [1 0] X + [0]              
                                  [0 1]     [0]              
                               >= [1 0] X + [0]              
                                  [0 1]     [0]              
                               =  sqr(X)                     
      
                   a__sqr(0()) =  [1]                        
                                  [0]                        
                               >= [1]                        
                                  [0]                        
                               =  0()                        
      
                  a__sqr(s(X)) =  [4]                        
                                  [0]                        
                               >= [4]                        
                                  [0]                        
                               =  s(add(sqr(X),dbl(X)))      
      
                   a__terms(N) =  [1 4] N + [4]              
                                  [0 1]     [0]              
                               >= [1 4] N + [4]              
                                  [0 1]     [0]              
                               =  cons(recip(a__sqr(mark(N)))
                                      ,terms(s(N)))          
      
                   a__terms(X) =  [1 4] X + [4]              
                                  [0 1]     [0]              
                               >= [1 4] X + [4]              
                                  [0 1]     [0]              
                               =  terms(X)                   
      
                     mark(0()) =  [1]                        
                                  [0]                        
                               >= [1]                        
                                  [0]                        
                               =  0()                        
      
              mark(add(X1,X2)) =  [1 4] X1 + [1 8] X2 + [5]  
                                  [0 1]      [0 1]      [0]  
                               >= [1 4] X1 + [1 8] X2 + [5]  
                                  [0 1]      [0 1]      [0]  
                               =  a__add(mark(X1),mark(X2))  
      
             mark(cons(X1,X2)) =  [1 4] X1 + [2]             
                                  [0 1]      [0]             
                               >= [1 4] X1 + [2]             
                                  [0 1]      [0]             
                               =  cons(mark(X1),X2)          
      
                  mark(dbl(X)) =  [1 4] X + [8]              
                                  [0 1]     [2]              
                               >= [1 4] X + [2]              
                                  [0 1]     [2]              
                               =  a__dbl(mark(X))            
      
            mark(first(X1,X2)) =  [1 10] X1 + [1 11] X2 + [4]
                                  [0  1]      [0  1]      [0]
                               >= [1 10] X1 + [1 11] X2 + [4]
                                  [0  1]      [0  1]      [0]
                               =  a__first(mark(X1),mark(X2))
      
                   mark(nil()) =  [0]                        
                                  [0]                        
                               >= [0]                        
                                  [0]                        
                               =  nil()                      
      
                mark(recip(X)) =  [1 4] X + [2]              
                                  [0 1]     [0]              
                               >= [1 4] X + [2]              
                                  [0 1]     [0]              
                               =  recip(mark(X))             
      
                    mark(s(X)) =  [4]                        
                                  [0]                        
                               >= [4]                        
                                  [0]                        
                               =  s(X)                       
      
                  mark(sqr(X)) =  [1 4] X + [0]              
                                  [0 1]     [0]              
                               >= [1 4] X + [0]              
                                  [0 1]     [0]              
                               =  a__sqr(mark(X))            
      
                mark(terms(X)) =  [1 8] X + [4]              
                                  [0 1]     [0]              
                               >= [1 8] X + [4]              
                                  [0 1]     [0]              
                               =  a__terms(mark(X))          
      
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(recip(X)) -> recip(mark(X))
        mark(sqr(X)) -> a__sqr(mark(X))
        mark(terms(X)) -> a__terms(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__dbl(X) -> dbl(X)
        a__dbl(0()) -> 0()
        a__dbl(s(X)) -> s(s(dbl(X)))
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__sqr(X) -> sqr(X)
        a__sqr(0()) -> 0()
        a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
        a__terms(X) -> terms(X)
        mark(0()) -> 0()
        mark(dbl(X)) -> a__dbl(mark(X))
        mark(nil()) -> nil()
        mark(s(X)) -> s(X)
      Signature:
        {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1,s/1,sqr/1,terms/1}
      Obligation:
        Innermost
        basic terms: {a__add,a__dbl,a__first,a__sqr,a__terms,mark}/{0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(a__add) = {1,2},
        uargs(a__dbl) = {1},
        uargs(a__first) = {1,2},
        uargs(a__sqr) = {1},
        uargs(a__terms) = {1},
        uargs(cons) = {1},
        uargs(recip) = {1}
      
      Following symbols are considered usable:
        {a__add,a__dbl,a__first,a__sqr,a__terms,mark}
      TcT has computed the following interpretation:
               p(0) = [0]                      
                      [2]                      
          p(a__add) = [1 4] x1 + [1 4] x2 + [5]
                      [0 1]      [0 1]      [1]
          p(a__dbl) = [1 0] x1 + [1]           
                      [0 1]      [1]           
        p(a__first) = [1 2] x1 + [1 5] x2 + [0]
                      [0 1]      [0 1]      [0]
          p(a__sqr) = [1 0] x1 + [0]           
                      [0 1]      [0]           
        p(a__terms) = [1 7] x1 + [6]           
                      [0 1]      [1]           
             p(add) = [1 4] x1 + [1 4] x2 + [3]
                      [0 1]      [0 1]      [1]
            p(cons) = [1 2] x1 + [4]           
                      [0 1]      [0]           
             p(dbl) = [1 0] x1 + [1]           
                      [0 1]      [1]           
           p(first) = [1 2] x1 + [1 5] x2 + [0]
                      [0 1]      [0 1]      [0]
            p(mark) = [1 4] x1 + [0]           
                      [0 1]      [0]           
             p(nil) = [3]                      
                      [1]                      
           p(recip) = [1 1] x1 + [0]           
                      [0 1]      [0]           
               p(s) = [7]                      
                      [0]                      
             p(sqr) = [1 0] x1 + [0]           
                      [0 1]      [0]           
           p(terms) = [1 7] x1 + [4]           
                      [0 1]      [1]           
      
      Following rules are strictly oriented:
      mark(add(X1,X2)) = [1 8] X1 + [1 8] X2 + [7]
                         [0 1]      [0 1]      [1]
                       > [1 8] X1 + [1 8] X2 + [5]
                         [0 1]      [0 1]      [1]
                       = a__add(mark(X1),mark(X2))
      
        mark(terms(X)) = [1 11] X + [8]           
                         [0  1]     [1]           
                       > [1 11] X + [6]           
                         [0  1]     [1]           
                       = a__terms(mark(X))        
      
      
      Following rules are (at-least) weakly oriented:
                 a__add(X1,X2) =  [1 4] X1 + [1 4] X2 + [5]  
                                  [0 1]      [0 1]      [1]  
                               >= [1 4] X1 + [1 4] X2 + [3]  
                                  [0 1]      [0 1]      [1]  
                               =  add(X1,X2)                 
      
                 a__add(0(),X) =  [1 4] X + [13]             
                                  [0 1]     [3]              
                               >= [1 4] X + [0]              
                                  [0 1]     [0]              
                               =  mark(X)                    
      
                a__add(s(X),Y) =  [1 4] Y + [12]             
                                  [0 1]     [1]              
                               >= [7]                        
                                  [0]                        
                               =  s(add(X,Y))                
      
                     a__dbl(X) =  [1 0] X + [1]              
                                  [0 1]     [1]              
                               >= [1 0] X + [1]              
                                  [0 1]     [1]              
                               =  dbl(X)                     
      
                   a__dbl(0()) =  [1]                        
                                  [3]                        
                               >= [0]                        
                                  [2]                        
                               =  0()                        
      
                  a__dbl(s(X)) =  [8]                        
                                  [1]                        
                               >= [7]                        
                                  [0]                        
                               =  s(s(dbl(X)))               
      
               a__first(X1,X2) =  [1 2] X1 + [1 5] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               >= [1 2] X1 + [1 5] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               =  first(X1,X2)               
      
               a__first(0(),X) =  [1 5] X + [4]              
                                  [0 1]     [2]              
                               >= [3]                        
                                  [1]                        
                               =  nil()                      
      
      a__first(s(X),cons(Y,Z)) =  [1 7] Y + [11]             
                                  [0 1]     [0]              
                               >= [1 6] Y + [4]              
                                  [0 1]     [0]              
                               =  cons(mark(Y),first(X,Z))   
      
                     a__sqr(X) =  [1 0] X + [0]              
                                  [0 1]     [0]              
                               >= [1 0] X + [0]              
                                  [0 1]     [0]              
                               =  sqr(X)                     
      
                   a__sqr(0()) =  [0]                        
                                  [2]                        
                               >= [0]                        
                                  [2]                        
                               =  0()                        
      
                  a__sqr(s(X)) =  [7]                        
                                  [0]                        
                               >= [7]                        
                                  [0]                        
                               =  s(add(sqr(X),dbl(X)))      
      
                   a__terms(N) =  [1 7] N + [6]              
                                  [0 1]     [1]              
                               >= [1 7] N + [4]              
                                  [0 1]     [0]              
                               =  cons(recip(a__sqr(mark(N)))
                                      ,terms(s(N)))          
      
                   a__terms(X) =  [1 7] X + [6]              
                                  [0 1]     [1]              
                               >= [1 7] X + [4]              
                                  [0 1]     [1]              
                               =  terms(X)                   
      
                     mark(0()) =  [8]                        
                                  [2]                        
                               >= [0]                        
                                  [2]                        
                               =  0()                        
      
             mark(cons(X1,X2)) =  [1 6] X1 + [4]             
                                  [0 1]      [0]             
                               >= [1 6] X1 + [4]             
                                  [0 1]      [0]             
                               =  cons(mark(X1),X2)          
      
                  mark(dbl(X)) =  [1 4] X + [5]              
                                  [0 1]     [1]              
                               >= [1 4] X + [1]              
                                  [0 1]     [1]              
                               =  a__dbl(mark(X))            
      
            mark(first(X1,X2)) =  [1 6] X1 + [1 9] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               >= [1 6] X1 + [1 9] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               =  a__first(mark(X1),mark(X2))
      
                   mark(nil()) =  [7]                        
                                  [1]                        
                               >= [3]                        
                                  [1]                        
                               =  nil()                      
      
                mark(recip(X)) =  [1 5] X + [0]              
                                  [0 1]     [0]              
                               >= [1 5] X + [0]              
                                  [0 1]     [0]              
                               =  recip(mark(X))             
      
                    mark(s(X)) =  [7]                        
                                  [0]                        
                               >= [7]                        
                                  [0]                        
                               =  s(X)                       
      
                  mark(sqr(X)) =  [1 4] X + [0]              
                                  [0 1]     [0]              
                               >= [1 4] X + [0]              
                                  [0 1]     [0]              
                               =  a__sqr(mark(X))            
      
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(recip(X)) -> recip(mark(X))
        mark(sqr(X)) -> a__sqr(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__dbl(X) -> dbl(X)
        a__dbl(0()) -> 0()
        a__dbl(s(X)) -> s(s(dbl(X)))
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__sqr(X) -> sqr(X)
        a__sqr(0()) -> 0()
        a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
        a__terms(X) -> terms(X)
        mark(0()) -> 0()
        mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
        mark(dbl(X)) -> a__dbl(mark(X))
        mark(nil()) -> nil()
        mark(s(X)) -> s(X)
        mark(terms(X)) -> a__terms(mark(X))
      Signature:
        {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1,s/1,sqr/1,terms/1}
      Obligation:
        Innermost
        basic terms: {a__add,a__dbl,a__first,a__sqr,a__terms,mark}/{0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(a__add) = {1,2},
        uargs(a__dbl) = {1},
        uargs(a__first) = {1,2},
        uargs(a__sqr) = {1},
        uargs(a__terms) = {1},
        uargs(cons) = {1},
        uargs(recip) = {1}
      
      Following symbols are considered usable:
        {a__add,a__dbl,a__first,a__sqr,a__terms,mark}
      TcT has computed the following interpretation:
               p(0) = [0]                      
                      [0]                      
          p(a__add) = [1 0] x1 + [1 4] x2 + [0]
                      [0 1]      [0 1]      [0]
          p(a__dbl) = [1 4] x1 + [3]           
                      [0 1]      [0]           
        p(a__first) = [1 0] x1 + [1 5] x2 + [0]
                      [0 1]      [0 1]      [0]
          p(a__sqr) = [1 0] x1 + [1]           
                      [0 1]      [1]           
        p(a__terms) = [1 4] x1 + [1]           
                      [0 1]      [1]           
             p(add) = [1 0] x1 + [1 4] x2 + [0]
                      [0 1]      [0 1]      [0]
            p(cons) = [1 0] x1 + [0]           
                      [0 1]      [0]           
             p(dbl) = [1 4] x1 + [3]           
                      [0 1]      [0]           
           p(first) = [1 0] x1 + [1 5] x2 + [0]
                      [0 1]      [0 1]      [0]
            p(mark) = [1 4] x1 + [0]           
                      [0 1]      [0]           
             p(nil) = [0]                      
                      [0]                      
           p(recip) = [1 0] x1 + [0]           
                      [0 1]      [0]           
               p(s) = [2]                      
                      [0]                      
             p(sqr) = [1 0] x1 + [0]           
                      [0 1]      [1]           
           p(terms) = [1 4] x1 + [0]           
                      [0 1]      [1]           
      
      Following rules are strictly oriented:
      mark(sqr(X)) = [1 4] X + [4]  
                     [0 1]     [1]  
                   > [1 4] X + [1]  
                     [0 1]     [1]  
                   = a__sqr(mark(X))
      
      
      Following rules are (at-least) weakly oriented:
                 a__add(X1,X2) =  [1 0] X1 + [1 4] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               >= [1 0] X1 + [1 4] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               =  add(X1,X2)                 
      
                 a__add(0(),X) =  [1 4] X + [0]              
                                  [0 1]     [0]              
                               >= [1 4] X + [0]              
                                  [0 1]     [0]              
                               =  mark(X)                    
      
                a__add(s(X),Y) =  [1 4] Y + [2]              
                                  [0 1]     [0]              
                               >= [2]                        
                                  [0]                        
                               =  s(add(X,Y))                
      
                     a__dbl(X) =  [1 4] X + [3]              
                                  [0 1]     [0]              
                               >= [1 4] X + [3]              
                                  [0 1]     [0]              
                               =  dbl(X)                     
      
                   a__dbl(0()) =  [3]                        
                                  [0]                        
                               >= [0]                        
                                  [0]                        
                               =  0()                        
      
                  a__dbl(s(X)) =  [5]                        
                                  [0]                        
                               >= [2]                        
                                  [0]                        
                               =  s(s(dbl(X)))               
      
               a__first(X1,X2) =  [1 0] X1 + [1 5] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               >= [1 0] X1 + [1 5] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               =  first(X1,X2)               
      
               a__first(0(),X) =  [1 5] X + [0]              
                                  [0 1]     [0]              
                               >= [0]                        
                                  [0]                        
                               =  nil()                      
      
      a__first(s(X),cons(Y,Z)) =  [1 5] Y + [2]              
                                  [0 1]     [0]              
                               >= [1 4] Y + [0]              
                                  [0 1]     [0]              
                               =  cons(mark(Y),first(X,Z))   
      
                     a__sqr(X) =  [1 0] X + [1]              
                                  [0 1]     [1]              
                               >= [1 0] X + [0]              
                                  [0 1]     [1]              
                               =  sqr(X)                     
      
                   a__sqr(0()) =  [1]                        
                                  [1]                        
                               >= [0]                        
                                  [0]                        
                               =  0()                        
      
                  a__sqr(s(X)) =  [3]                        
                                  [1]                        
                               >= [2]                        
                                  [0]                        
                               =  s(add(sqr(X),dbl(X)))      
      
                   a__terms(N) =  [1 4] N + [1]              
                                  [0 1]     [1]              
                               >= [1 4] N + [1]              
                                  [0 1]     [1]              
                               =  cons(recip(a__sqr(mark(N)))
                                      ,terms(s(N)))          
      
                   a__terms(X) =  [1 4] X + [1]              
                                  [0 1]     [1]              
                               >= [1 4] X + [0]              
                                  [0 1]     [1]              
                               =  terms(X)                   
      
                     mark(0()) =  [0]                        
                                  [0]                        
                               >= [0]                        
                                  [0]                        
                               =  0()                        
      
              mark(add(X1,X2)) =  [1 4] X1 + [1 8] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               >= [1 4] X1 + [1 8] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               =  a__add(mark(X1),mark(X2))  
      
             mark(cons(X1,X2)) =  [1 4] X1 + [0]             
                                  [0 1]      [0]             
                               >= [1 4] X1 + [0]             
                                  [0 1]      [0]             
                               =  cons(mark(X1),X2)          
      
                  mark(dbl(X)) =  [1 8] X + [3]              
                                  [0 1]     [0]              
                               >= [1 8] X + [3]              
                                  [0 1]     [0]              
                               =  a__dbl(mark(X))            
      
            mark(first(X1,X2)) =  [1 4] X1 + [1 9] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               >= [1 4] X1 + [1 9] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               =  a__first(mark(X1),mark(X2))
      
                   mark(nil()) =  [0]                        
                                  [0]                        
                               >= [0]                        
                                  [0]                        
                               =  nil()                      
      
                mark(recip(X)) =  [1 4] X + [0]              
                                  [0 1]     [0]              
                               >= [1 4] X + [0]              
                                  [0 1]     [0]              
                               =  recip(mark(X))             
      
                    mark(s(X)) =  [2]                        
                                  [0]                        
                               >= [2]                        
                                  [0]                        
                               =  s(X)                       
      
                mark(terms(X)) =  [1 8] X + [4]              
                                  [0 1]     [1]              
                               >= [1 8] X + [1]              
                                  [0 1]     [1]              
                               =  a__terms(mark(X))          
      
*** 1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(recip(X)) -> recip(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__dbl(X) -> dbl(X)
        a__dbl(0()) -> 0()
        a__dbl(s(X)) -> s(s(dbl(X)))
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__sqr(X) -> sqr(X)
        a__sqr(0()) -> 0()
        a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
        a__terms(X) -> terms(X)
        mark(0()) -> 0()
        mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
        mark(dbl(X)) -> a__dbl(mark(X))
        mark(nil()) -> nil()
        mark(s(X)) -> s(X)
        mark(sqr(X)) -> a__sqr(mark(X))
        mark(terms(X)) -> a__terms(mark(X))
      Signature:
        {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1,s/1,sqr/1,terms/1}
      Obligation:
        Innermost
        basic terms: {a__add,a__dbl,a__first,a__sqr,a__terms,mark}/{0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(a__add) = {1,2},
        uargs(a__dbl) = {1},
        uargs(a__first) = {1,2},
        uargs(a__sqr) = {1},
        uargs(a__terms) = {1},
        uargs(cons) = {1},
        uargs(recip) = {1}
      
      Following symbols are considered usable:
        {a__add,a__dbl,a__first,a__sqr,a__terms,mark}
      TcT has computed the following interpretation:
               p(0) = [4]                      
                      [1]                      
          p(a__add) = [1 0] x1 + [1 4] x2 + [4]
                      [0 1]      [0 1]      [1]
          p(a__dbl) = [1 0] x1 + [4]           
                      [0 1]      [0]           
        p(a__first) = [1 4] x1 + [1 4] x2 + [0]
                      [0 1]      [0 1]      [0]
          p(a__sqr) = [1 2] x1 + [5]           
                      [0 1]      [0]           
        p(a__terms) = [1 6] x1 + [7]           
                      [0 1]      [2]           
             p(add) = [1 0] x1 + [1 4] x2 + [4]
                      [0 1]      [0 1]      [1]
            p(cons) = [1 0] x1 + [1]           
                      [0 1]      [1]           
             p(dbl) = [1 0] x1 + [4]           
                      [0 1]      [0]           
           p(first) = [1 4] x1 + [1 4] x2 + [0]
                      [0 1]      [0 1]      [0]
            p(mark) = [1 4] x1 + [0]           
                      [0 1]      [0]           
             p(nil) = [1]                      
                      [1]                      
           p(recip) = [1 0] x1 + [0]           
                      [0 1]      [0]           
               p(s) = [5]                      
                      [0]                      
             p(sqr) = [1 2] x1 + [5]           
                      [0 1]      [0]           
           p(terms) = [1 6] x1 + [1]           
                      [0 1]      [2]           
      
      Following rules are strictly oriented:
      mark(cons(X1,X2)) = [1 4] X1 + [5]   
                          [0 1]      [1]   
                        > [1 4] X1 + [1]   
                          [0 1]      [1]   
                        = cons(mark(X1),X2)
      
      
      Following rules are (at-least) weakly oriented:
                 a__add(X1,X2) =  [1 0] X1 + [1 4] X2 + [4]  
                                  [0 1]      [0 1]      [1]  
                               >= [1 0] X1 + [1 4] X2 + [4]  
                                  [0 1]      [0 1]      [1]  
                               =  add(X1,X2)                 
      
                 a__add(0(),X) =  [1 4] X + [8]              
                                  [0 1]     [2]              
                               >= [1 4] X + [0]              
                                  [0 1]     [0]              
                               =  mark(X)                    
      
                a__add(s(X),Y) =  [1 4] Y + [9]              
                                  [0 1]     [1]              
                               >= [5]                        
                                  [0]                        
                               =  s(add(X,Y))                
      
                     a__dbl(X) =  [1 0] X + [4]              
                                  [0 1]     [0]              
                               >= [1 0] X + [4]              
                                  [0 1]     [0]              
                               =  dbl(X)                     
      
                   a__dbl(0()) =  [8]                        
                                  [1]                        
                               >= [4]                        
                                  [1]                        
                               =  0()                        
      
                  a__dbl(s(X)) =  [9]                        
                                  [0]                        
                               >= [5]                        
                                  [0]                        
                               =  s(s(dbl(X)))               
      
               a__first(X1,X2) =  [1 4] X1 + [1 4] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               >= [1 4] X1 + [1 4] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               =  first(X1,X2)               
      
               a__first(0(),X) =  [1 4] X + [8]              
                                  [0 1]     [1]              
                               >= [1]                        
                                  [1]                        
                               =  nil()                      
      
      a__first(s(X),cons(Y,Z)) =  [1 4] Y + [10]             
                                  [0 1]     [1]              
                               >= [1 4] Y + [1]              
                                  [0 1]     [1]              
                               =  cons(mark(Y),first(X,Z))   
      
                     a__sqr(X) =  [1 2] X + [5]              
                                  [0 1]     [0]              
                               >= [1 2] X + [5]              
                                  [0 1]     [0]              
                               =  sqr(X)                     
      
                   a__sqr(0()) =  [11]                       
                                  [1]                        
                               >= [4]                        
                                  [1]                        
                               =  0()                        
      
                  a__sqr(s(X)) =  [10]                       
                                  [0]                        
                               >= [5]                        
                                  [0]                        
                               =  s(add(sqr(X),dbl(X)))      
      
                   a__terms(N) =  [1 6] N + [7]              
                                  [0 1]     [2]              
                               >= [1 6] N + [6]              
                                  [0 1]     [1]              
                               =  cons(recip(a__sqr(mark(N)))
                                      ,terms(s(N)))          
      
                   a__terms(X) =  [1 6] X + [7]              
                                  [0 1]     [2]              
                               >= [1 6] X + [1]              
                                  [0 1]     [2]              
                               =  terms(X)                   
      
                     mark(0()) =  [8]                        
                                  [1]                        
                               >= [4]                        
                                  [1]                        
                               =  0()                        
      
              mark(add(X1,X2)) =  [1 4] X1 + [1 8] X2 + [8]  
                                  [0 1]      [0 1]      [1]  
                               >= [1 4] X1 + [1 8] X2 + [4]  
                                  [0 1]      [0 1]      [1]  
                               =  a__add(mark(X1),mark(X2))  
      
                  mark(dbl(X)) =  [1 4] X + [4]              
                                  [0 1]     [0]              
                               >= [1 4] X + [4]              
                                  [0 1]     [0]              
                               =  a__dbl(mark(X))            
      
            mark(first(X1,X2)) =  [1 8] X1 + [1 8] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               >= [1 8] X1 + [1 8] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               =  a__first(mark(X1),mark(X2))
      
                   mark(nil()) =  [5]                        
                                  [1]                        
                               >= [1]                        
                                  [1]                        
                               =  nil()                      
      
                mark(recip(X)) =  [1 4] X + [0]              
                                  [0 1]     [0]              
                               >= [1 4] X + [0]              
                                  [0 1]     [0]              
                               =  recip(mark(X))             
      
                    mark(s(X)) =  [5]                        
                                  [0]                        
                               >= [5]                        
                                  [0]                        
                               =  s(X)                       
      
                  mark(sqr(X)) =  [1 6] X + [5]              
                                  [0 1]     [0]              
                               >= [1 6] X + [5]              
                                  [0 1]     [0]              
                               =  a__sqr(mark(X))            
      
                mark(terms(X)) =  [1 10] X + [9]             
                                  [0  1]     [2]             
                               >= [1 10] X + [7]             
                                  [0  1]     [2]             
                               =  a__terms(mark(X))          
      
*** 1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(recip(X)) -> recip(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__dbl(X) -> dbl(X)
        a__dbl(0()) -> 0()
        a__dbl(s(X)) -> s(s(dbl(X)))
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__sqr(X) -> sqr(X)
        a__sqr(0()) -> 0()
        a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
        a__terms(X) -> terms(X)
        mark(0()) -> 0()
        mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(dbl(X)) -> a__dbl(mark(X))
        mark(nil()) -> nil()
        mark(s(X)) -> s(X)
        mark(sqr(X)) -> a__sqr(mark(X))
        mark(terms(X)) -> a__terms(mark(X))
      Signature:
        {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1,s/1,sqr/1,terms/1}
      Obligation:
        Innermost
        basic terms: {a__add,a__dbl,a__first,a__sqr,a__terms,mark}/{0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(a__add) = {1,2},
        uargs(a__dbl) = {1},
        uargs(a__first) = {1,2},
        uargs(a__sqr) = {1},
        uargs(a__terms) = {1},
        uargs(cons) = {1},
        uargs(recip) = {1}
      
      Following symbols are considered usable:
        {a__add,a__dbl,a__first,a__sqr,a__terms,mark}
      TcT has computed the following interpretation:
               p(0) = [0]                      
                      [2]                      
          p(a__add) = [1 4] x1 + [1 4] x2 + [0]
                      [0 1]      [0 1]      [0]
          p(a__dbl) = [1 4] x1 + [6]           
                      [0 1]      [0]           
        p(a__first) = [1 0] x1 + [1 4] x2 + [2]
                      [0 1]      [0 1]      [2]
          p(a__sqr) = [1 0] x1 + [6]           
                      [0 1]      [0]           
        p(a__terms) = [1 4] x1 + [7]           
                      [0 1]      [0]           
             p(add) = [1 4] x1 + [1 4] x2 + [0]
                      [0 1]      [0 1]      [0]
            p(cons) = [1 0] x1 + [1]           
                      [0 1]      [0]           
             p(dbl) = [1 4] x1 + [6]           
                      [0 1]      [0]           
           p(first) = [1 0] x1 + [1 4] x2 + [0]
                      [0 1]      [0 1]      [2]
            p(mark) = [1 4] x1 + [0]           
                      [0 1]      [0]           
             p(nil) = [0]                      
                      [0]                      
           p(recip) = [1 0] x1 + [0]           
                      [0 1]      [0]           
               p(s) = [1]                      
                      [1]                      
             p(sqr) = [1 0] x1 + [6]           
                      [0 1]      [0]           
           p(terms) = [1 4] x1 + [7]           
                      [0 1]      [0]           
      
      Following rules are strictly oriented:
      mark(first(X1,X2)) = [1 4] X1 + [1 8] X2 + [8]  
                           [0 1]      [0 1]      [2]  
                         > [1 4] X1 + [1 8] X2 + [2]  
                           [0 1]      [0 1]      [2]  
                         = a__first(mark(X1),mark(X2))
      
      
      Following rules are (at-least) weakly oriented:
                 a__add(X1,X2) =  [1 4] X1 + [1 4] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               >= [1 4] X1 + [1 4] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               =  add(X1,X2)                 
      
                 a__add(0(),X) =  [1 4] X + [8]              
                                  [0 1]     [2]              
                               >= [1 4] X + [0]              
                                  [0 1]     [0]              
                               =  mark(X)                    
      
                a__add(s(X),Y) =  [1 4] Y + [5]              
                                  [0 1]     [1]              
                               >= [1]                        
                                  [1]                        
                               =  s(add(X,Y))                
      
                     a__dbl(X) =  [1 4] X + [6]              
                                  [0 1]     [0]              
                               >= [1 4] X + [6]              
                                  [0 1]     [0]              
                               =  dbl(X)                     
      
                   a__dbl(0()) =  [14]                       
                                  [2]                        
                               >= [0]                        
                                  [2]                        
                               =  0()                        
      
                  a__dbl(s(X)) =  [11]                       
                                  [1]                        
                               >= [1]                        
                                  [1]                        
                               =  s(s(dbl(X)))               
      
               a__first(X1,X2) =  [1 0] X1 + [1 4] X2 + [2]  
                                  [0 1]      [0 1]      [2]  
                               >= [1 0] X1 + [1 4] X2 + [0]  
                                  [0 1]      [0 1]      [2]  
                               =  first(X1,X2)               
      
               a__first(0(),X) =  [1 4] X + [2]              
                                  [0 1]     [4]              
                               >= [0]                        
                                  [0]                        
                               =  nil()                      
      
      a__first(s(X),cons(Y,Z)) =  [1 4] Y + [4]              
                                  [0 1]     [3]              
                               >= [1 4] Y + [1]              
                                  [0 1]     [0]              
                               =  cons(mark(Y),first(X,Z))   
      
                     a__sqr(X) =  [1 0] X + [6]              
                                  [0 1]     [0]              
                               >= [1 0] X + [6]              
                                  [0 1]     [0]              
                               =  sqr(X)                     
      
                   a__sqr(0()) =  [6]                        
                                  [2]                        
                               >= [0]                        
                                  [2]                        
                               =  0()                        
      
                  a__sqr(s(X)) =  [7]                        
                                  [1]                        
                               >= [1]                        
                                  [1]                        
                               =  s(add(sqr(X),dbl(X)))      
      
                   a__terms(N) =  [1 4] N + [7]              
                                  [0 1]     [0]              
                               >= [1 4] N + [7]              
                                  [0 1]     [0]              
                               =  cons(recip(a__sqr(mark(N)))
                                      ,terms(s(N)))          
      
                   a__terms(X) =  [1 4] X + [7]              
                                  [0 1]     [0]              
                               >= [1 4] X + [7]              
                                  [0 1]     [0]              
                               =  terms(X)                   
      
                     mark(0()) =  [8]                        
                                  [2]                        
                               >= [0]                        
                                  [2]                        
                               =  0()                        
      
              mark(add(X1,X2)) =  [1 8] X1 + [1 8] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               >= [1 8] X1 + [1 8] X2 + [0]  
                                  [0 1]      [0 1]      [0]  
                               =  a__add(mark(X1),mark(X2))  
      
             mark(cons(X1,X2)) =  [1 4] X1 + [1]             
                                  [0 1]      [0]             
                               >= [1 4] X1 + [1]             
                                  [0 1]      [0]             
                               =  cons(mark(X1),X2)          
      
                  mark(dbl(X)) =  [1 8] X + [6]              
                                  [0 1]     [0]              
                               >= [1 8] X + [6]              
                                  [0 1]     [0]              
                               =  a__dbl(mark(X))            
      
                   mark(nil()) =  [0]                        
                                  [0]                        
                               >= [0]                        
                                  [0]                        
                               =  nil()                      
      
                mark(recip(X)) =  [1 4] X + [0]              
                                  [0 1]     [0]              
                               >= [1 4] X + [0]              
                                  [0 1]     [0]              
                               =  recip(mark(X))             
      
                    mark(s(X)) =  [5]                        
                                  [1]                        
                               >= [1]                        
                                  [1]                        
                               =  s(X)                       
      
                  mark(sqr(X)) =  [1 4] X + [6]              
                                  [0 1]     [0]              
                               >= [1 4] X + [6]              
                                  [0 1]     [0]              
                               =  a__sqr(mark(X))            
      
                mark(terms(X)) =  [1 8] X + [7]              
                                  [0 1]     [0]              
                               >= [1 8] X + [7]              
                                  [0 1]     [0]              
                               =  a__terms(mark(X))          
      
*** 1.1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        mark(recip(X)) -> recip(mark(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__dbl(X) -> dbl(X)
        a__dbl(0()) -> 0()
        a__dbl(s(X)) -> s(s(dbl(X)))
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__sqr(X) -> sqr(X)
        a__sqr(0()) -> 0()
        a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
        a__terms(X) -> terms(X)
        mark(0()) -> 0()
        mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(dbl(X)) -> a__dbl(mark(X))
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(nil()) -> nil()
        mark(s(X)) -> s(X)
        mark(sqr(X)) -> a__sqr(mark(X))
        mark(terms(X)) -> a__terms(mark(X))
      Signature:
        {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1,s/1,sqr/1,terms/1}
      Obligation:
        Innermost
        basic terms: {a__add,a__dbl,a__first,a__sqr,a__terms,mark}/{0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(a__add) = {1,2},
        uargs(a__dbl) = {1},
        uargs(a__first) = {1,2},
        uargs(a__sqr) = {1},
        uargs(a__terms) = {1},
        uargs(cons) = {1},
        uargs(recip) = {1}
      
      Following symbols are considered usable:
        {a__add,a__dbl,a__first,a__sqr,a__terms,mark}
      TcT has computed the following interpretation:
               p(0) = [4]                      
                      [0]                      
          p(a__add) = [1 0] x1 + [1 4] x2 + [0]
                      [0 1]      [0 1]      [2]
          p(a__dbl) = [1 2] x1 + [0]           
                      [0 1]      [0]           
        p(a__first) = [1 4] x1 + [1 6] x2 + [1]
                      [0 1]      [0 1]      [1]
          p(a__sqr) = [1 0] x1 + [0]           
                      [0 1]      [0]           
        p(a__terms) = [1 4] x1 + [5]           
                      [0 1]      [2]           
             p(add) = [1 0] x1 + [1 4] x2 + [0]
                      [0 1]      [0 1]      [2]
            p(cons) = [1 0] x1 + [0]           
                      [0 1]      [0]           
             p(dbl) = [1 2] x1 + [0]           
                      [0 1]      [0]           
           p(first) = [1 4] x1 + [1 6] x2 + [1]
                      [0 1]      [0 1]      [1]
            p(mark) = [1 4] x1 + [3]           
                      [0 1]      [0]           
             p(nil) = [5]                      
                      [0]                      
           p(recip) = [1 0] x1 + [0]           
                      [0 1]      [2]           
               p(s) = [1]                      
                      [1]                      
             p(sqr) = [1 0] x1 + [0]           
                      [0 1]      [0]           
           p(terms) = [1 4] x1 + [3]           
                      [0 1]      [2]           
      
      Following rules are strictly oriented:
      mark(recip(X)) = [1 4] X + [11]
                       [0 1]     [2] 
                     > [1 4] X + [3] 
                       [0 1]     [2] 
                     = recip(mark(X))
      
      
      Following rules are (at-least) weakly oriented:
                 a__add(X1,X2) =  [1 0] X1 + [1 4] X2 + [0]  
                                  [0 1]      [0 1]      [2]  
                               >= [1 0] X1 + [1 4] X2 + [0]  
                                  [0 1]      [0 1]      [2]  
                               =  add(X1,X2)                 
      
                 a__add(0(),X) =  [1 4] X + [4]              
                                  [0 1]     [2]              
                               >= [1 4] X + [3]              
                                  [0 1]     [0]              
                               =  mark(X)                    
      
                a__add(s(X),Y) =  [1 4] Y + [1]              
                                  [0 1]     [3]              
                               >= [1]                        
                                  [1]                        
                               =  s(add(X,Y))                
      
                     a__dbl(X) =  [1 2] X + [0]              
                                  [0 1]     [0]              
                               >= [1 2] X + [0]              
                                  [0 1]     [0]              
                               =  dbl(X)                     
      
                   a__dbl(0()) =  [4]                        
                                  [0]                        
                               >= [4]                        
                                  [0]                        
                               =  0()                        
      
                  a__dbl(s(X)) =  [3]                        
                                  [1]                        
                               >= [1]                        
                                  [1]                        
                               =  s(s(dbl(X)))               
      
               a__first(X1,X2) =  [1 4] X1 + [1 6] X2 + [1]  
                                  [0 1]      [0 1]      [1]  
                               >= [1 4] X1 + [1 6] X2 + [1]  
                                  [0 1]      [0 1]      [1]  
                               =  first(X1,X2)               
      
               a__first(0(),X) =  [1 6] X + [5]              
                                  [0 1]     [1]              
                               >= [5]                        
                                  [0]                        
                               =  nil()                      
      
      a__first(s(X),cons(Y,Z)) =  [1 6] Y + [6]              
                                  [0 1]     [2]              
                               >= [1 4] Y + [3]              
                                  [0 1]     [0]              
                               =  cons(mark(Y),first(X,Z))   
      
                     a__sqr(X) =  [1 0] X + [0]              
                                  [0 1]     [0]              
                               >= [1 0] X + [0]              
                                  [0 1]     [0]              
                               =  sqr(X)                     
      
                   a__sqr(0()) =  [4]                        
                                  [0]                        
                               >= [4]                        
                                  [0]                        
                               =  0()                        
      
                  a__sqr(s(X)) =  [1]                        
                                  [1]                        
                               >= [1]                        
                                  [1]                        
                               =  s(add(sqr(X),dbl(X)))      
      
                   a__terms(N) =  [1 4] N + [5]              
                                  [0 1]     [2]              
                               >= [1 4] N + [3]              
                                  [0 1]     [2]              
                               =  cons(recip(a__sqr(mark(N)))
                                      ,terms(s(N)))          
      
                   a__terms(X) =  [1 4] X + [5]              
                                  [0 1]     [2]              
                               >= [1 4] X + [3]              
                                  [0 1]     [2]              
                               =  terms(X)                   
      
                     mark(0()) =  [7]                        
                                  [0]                        
                               >= [4]                        
                                  [0]                        
                               =  0()                        
      
              mark(add(X1,X2)) =  [1 4] X1 + [1 8] X2 + [11] 
                                  [0 1]      [0 1]      [2]  
                               >= [1 4] X1 + [1 8] X2 + [6]  
                                  [0 1]      [0 1]      [2]  
                               =  a__add(mark(X1),mark(X2))  
      
             mark(cons(X1,X2)) =  [1 4] X1 + [3]             
                                  [0 1]      [0]             
                               >= [1 4] X1 + [3]             
                                  [0 1]      [0]             
                               =  cons(mark(X1),X2)          
      
                  mark(dbl(X)) =  [1 6] X + [3]              
                                  [0 1]     [0]              
                               >= [1 6] X + [3]              
                                  [0 1]     [0]              
                               =  a__dbl(mark(X))            
      
            mark(first(X1,X2)) =  [1 8] X1 + [1 10] X2 + [8] 
                                  [0 1]      [0  1]      [1] 
                               >= [1 8] X1 + [1 10] X2 + [7] 
                                  [0 1]      [0  1]      [1] 
                               =  a__first(mark(X1),mark(X2))
      
                   mark(nil()) =  [8]                        
                                  [0]                        
                               >= [5]                        
                                  [0]                        
                               =  nil()                      
      
                    mark(s(X)) =  [8]                        
                                  [1]                        
                               >= [1]                        
                                  [1]                        
                               =  s(X)                       
      
                  mark(sqr(X)) =  [1 4] X + [3]              
                                  [0 1]     [0]              
                               >= [1 4] X + [3]              
                                  [0 1]     [0]              
                               =  a__sqr(mark(X))            
      
                mark(terms(X)) =  [1 8] X + [14]             
                                  [0 1]     [2]              
                               >= [1 8] X + [8]              
                                  [0 1]     [2]              
                               =  a__terms(mark(X))          
      
*** 1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__dbl(X) -> dbl(X)
        a__dbl(0()) -> 0()
        a__dbl(s(X)) -> s(s(dbl(X)))
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z))
        a__sqr(X) -> sqr(X)
        a__sqr(0()) -> 0()
        a__sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        a__terms(N) -> cons(recip(a__sqr(mark(N))),terms(s(N)))
        a__terms(X) -> terms(X)
        mark(0()) -> 0()
        mark(add(X1,X2)) -> a__add(mark(X1),mark(X2))
        mark(cons(X1,X2)) -> cons(mark(X1),X2)
        mark(dbl(X)) -> a__dbl(mark(X))
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(nil()) -> nil()
        mark(recip(X)) -> recip(mark(X))
        mark(s(X)) -> s(X)
        mark(sqr(X)) -> a__sqr(mark(X))
        mark(terms(X)) -> a__terms(mark(X))
      Signature:
        {a__add/2,a__dbl/1,a__first/2,a__sqr/1,a__terms/1,mark/1} / {0/0,add/2,cons/2,dbl/1,first/2,nil/0,recip/1,s/1,sqr/1,terms/1}
      Obligation:
        Innermost
        basic terms: {a__add,a__dbl,a__first,a__sqr,a__terms,mark}/{0,add,cons,dbl,first,nil,recip,s,sqr,terms}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).