We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) , terms(X) -> n__terms(X) , sqr(X) -> n__sqr(X) , sqr(0()) -> 0() , sqr(s(X)) -> s(n__add(n__sqr(activate(X)), n__dbl(activate(X)))) , s(X) -> n__s(X) , activate(X) -> X , activate(n__terms(X)) -> terms(activate(X)) , activate(n__s(X)) -> s(X) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__sqr(X)) -> sqr(activate(X)) , activate(n__dbl(X)) -> dbl(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) , dbl(X) -> n__dbl(X) , dbl(0()) -> 0() , dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , add(s(X), Y) -> s(n__add(activate(X), Y)) , first(X1, X2) -> n__first(X1, X2) , first(0(), X) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(activate(X), activate(Z))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) Arguments of following rules are not normal-forms: { sqr(s(X)) -> s(n__add(n__sqr(activate(X)), n__dbl(activate(X)))) , dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) , add(s(X), Y) -> s(n__add(activate(X), Y)) , first(s(X), cons(Y, Z)) -> cons(Y, n__first(activate(X), activate(Z))) } All above mentioned rules can be savely removed. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) , terms(X) -> n__terms(X) , sqr(X) -> n__sqr(X) , sqr(0()) -> 0() , s(X) -> n__s(X) , activate(X) -> X , activate(n__terms(X)) -> terms(activate(X)) , activate(n__s(X)) -> s(X) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__sqr(X)) -> sqr(activate(X)) , activate(n__dbl(X)) -> dbl(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) , dbl(X) -> n__dbl(X) , dbl(0()) -> 0() , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , first(X1, X2) -> n__first(X1, X2) , first(0(), X) -> nil() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(sqr) = {1}, Uargs(dbl) = {1}, Uargs(add) = {1, 2}, Uargs(first) = {1, 2} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [terms](x1) = [1] x1 + [4] [cons](x1, x2) = [1] x1 + [1] [recip](x1) = [1] x1 + [1] [sqr](x1) = [1] x1 + [0] [n__terms](x1) = [1] x1 + [0] [n__s](x1) = [0] [0] = [0] [s](x1) = [0] [n__add](x1, x2) = [1] x1 + [1] x2 + [0] [n__sqr](x1) = [1] x1 + [0] [activate](x1) = [1] x1 + [0] [n__dbl](x1) = [1] x1 + [0] [dbl](x1) = [1] x1 + [0] [add](x1, x2) = [1] x1 + [1] x2 + [0] [first](x1, x2) = [1] x1 + [1] x2 + [0] [nil] = [0] [n__first](x1, x2) = [1] x1 + [1] x2 + [0] The order satisfies the following ordering constraints: [terms(N)] = [1] N + [4] > [1] N + [2] = [cons(recip(sqr(N)), n__terms(n__s(N)))] [terms(X)] = [1] X + [4] > [1] X + [0] = [n__terms(X)] [sqr(X)] = [1] X + [0] >= [1] X + [0] = [n__sqr(X)] [sqr(0())] = [0] >= [0] = [0()] [s(X)] = [0] >= [0] = [n__s(X)] [activate(X)] = [1] X + [0] >= [1] X + [0] = [X] [activate(n__terms(X))] = [1] X + [0] ? [1] X + [4] = [terms(activate(X))] [activate(n__s(X))] = [0] >= [0] = [s(X)] [activate(n__add(X1, X2))] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [add(activate(X1), activate(X2))] [activate(n__sqr(X))] = [1] X + [0] >= [1] X + [0] = [sqr(activate(X))] [activate(n__dbl(X))] = [1] X + [0] >= [1] X + [0] = [dbl(activate(X))] [activate(n__first(X1, X2))] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [first(activate(X1), activate(X2))] [dbl(X)] = [1] X + [0] >= [1] X + [0] = [n__dbl(X)] [dbl(0())] = [0] >= [0] = [0()] [add(X1, X2)] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [n__add(X1, X2)] [add(0(), X)] = [1] X + [0] >= [1] X + [0] = [X] [first(X1, X2)] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [n__first(X1, X2)] [first(0(), X)] = [1] X + [0] >= [0] = [nil()] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { sqr(X) -> n__sqr(X) , sqr(0()) -> 0() , s(X) -> n__s(X) , activate(X) -> X , activate(n__terms(X)) -> terms(activate(X)) , activate(n__s(X)) -> s(X) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__sqr(X)) -> sqr(activate(X)) , activate(n__dbl(X)) -> dbl(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) , dbl(X) -> n__dbl(X) , dbl(0()) -> 0() , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , first(X1, X2) -> n__first(X1, X2) , first(0(), X) -> nil() } Weak Trs: { terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) , terms(X) -> n__terms(X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(sqr) = {1}, Uargs(dbl) = {1}, Uargs(add) = {1, 2}, Uargs(first) = {1, 2} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [terms](x1) = [1] x1 + [1] [cons](x1, x2) = [1] x1 + [0] [recip](x1) = [1] x1 + [0] [sqr](x1) = [1] x1 + [1] [n__terms](x1) = [1] x1 + [1] [n__s](x1) = [0] [0] = [0] [s](x1) = [2] [n__add](x1, x2) = [1] x1 + [1] x2 + [0] [n__sqr](x1) = [1] x1 + [0] [activate](x1) = [1] x1 + [0] [n__dbl](x1) = [1] x1 + [0] [dbl](x1) = [1] x1 + [1] [add](x1, x2) = [1] x1 + [1] x2 + [1] [first](x1, x2) = [1] x1 + [1] x2 + [0] [nil] = [0] [n__first](x1, x2) = [1] x1 + [1] x2 + [0] The order satisfies the following ordering constraints: [terms(N)] = [1] N + [1] >= [1] N + [1] = [cons(recip(sqr(N)), n__terms(n__s(N)))] [terms(X)] = [1] X + [1] >= [1] X + [1] = [n__terms(X)] [sqr(X)] = [1] X + [1] > [1] X + [0] = [n__sqr(X)] [sqr(0())] = [1] > [0] = [0()] [s(X)] = [2] > [0] = [n__s(X)] [activate(X)] = [1] X + [0] >= [1] X + [0] = [X] [activate(n__terms(X))] = [1] X + [1] >= [1] X + [1] = [terms(activate(X))] [activate(n__s(X))] = [0] ? [2] = [s(X)] [activate(n__add(X1, X2))] = [1] X1 + [1] X2 + [0] ? [1] X1 + [1] X2 + [1] = [add(activate(X1), activate(X2))] [activate(n__sqr(X))] = [1] X + [0] ? [1] X + [1] = [sqr(activate(X))] [activate(n__dbl(X))] = [1] X + [0] ? [1] X + [1] = [dbl(activate(X))] [activate(n__first(X1, X2))] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [first(activate(X1), activate(X2))] [dbl(X)] = [1] X + [1] > [1] X + [0] = [n__dbl(X)] [dbl(0())] = [1] > [0] = [0()] [add(X1, X2)] = [1] X1 + [1] X2 + [1] > [1] X1 + [1] X2 + [0] = [n__add(X1, X2)] [add(0(), X)] = [1] X + [1] > [1] X + [0] = [X] [first(X1, X2)] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [n__first(X1, X2)] [first(0(), X)] = [1] X + [0] >= [0] = [nil()] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { activate(X) -> X , activate(n__terms(X)) -> terms(activate(X)) , activate(n__s(X)) -> s(X) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__sqr(X)) -> sqr(activate(X)) , activate(n__dbl(X)) -> dbl(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) , first(X1, X2) -> n__first(X1, X2) , first(0(), X) -> nil() } Weak Trs: { terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) , terms(X) -> n__terms(X) , sqr(X) -> n__sqr(X) , sqr(0()) -> 0() , s(X) -> n__s(X) , dbl(X) -> n__dbl(X) , dbl(0()) -> 0() , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(sqr) = {1}, Uargs(dbl) = {1}, Uargs(add) = {1, 2}, Uargs(first) = {1, 2} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [terms](x1) = [1] x1 + [7] [cons](x1, x2) = [1] x1 + [0] [recip](x1) = [1] x1 + [5] [sqr](x1) = [1] x1 + [2] [n__terms](x1) = [1] x1 + [0] [n__s](x1) = [0] [0] = [4] [s](x1) = [1] [n__add](x1, x2) = [1] x1 + [1] x2 + [0] [n__sqr](x1) = [1] x1 + [0] [activate](x1) = [1] x1 + [1] [n__dbl](x1) = [1] x1 + [0] [dbl](x1) = [1] x1 + [4] [add](x1, x2) = [1] x1 + [1] x2 + [1] [first](x1, x2) = [1] x1 + [1] x2 + [1] [nil] = [0] [n__first](x1, x2) = [1] x1 + [1] x2 + [0] The order satisfies the following ordering constraints: [terms(N)] = [1] N + [7] >= [1] N + [7] = [cons(recip(sqr(N)), n__terms(n__s(N)))] [terms(X)] = [1] X + [7] > [1] X + [0] = [n__terms(X)] [sqr(X)] = [1] X + [2] > [1] X + [0] = [n__sqr(X)] [sqr(0())] = [6] > [4] = [0()] [s(X)] = [1] > [0] = [n__s(X)] [activate(X)] = [1] X + [1] > [1] X + [0] = [X] [activate(n__terms(X))] = [1] X + [1] ? [1] X + [8] = [terms(activate(X))] [activate(n__s(X))] = [1] >= [1] = [s(X)] [activate(n__add(X1, X2))] = [1] X1 + [1] X2 + [1] ? [1] X1 + [1] X2 + [3] = [add(activate(X1), activate(X2))] [activate(n__sqr(X))] = [1] X + [1] ? [1] X + [3] = [sqr(activate(X))] [activate(n__dbl(X))] = [1] X + [1] ? [1] X + [5] = [dbl(activate(X))] [activate(n__first(X1, X2))] = [1] X1 + [1] X2 + [1] ? [1] X1 + [1] X2 + [3] = [first(activate(X1), activate(X2))] [dbl(X)] = [1] X + [4] > [1] X + [0] = [n__dbl(X)] [dbl(0())] = [8] > [4] = [0()] [add(X1, X2)] = [1] X1 + [1] X2 + [1] > [1] X1 + [1] X2 + [0] = [n__add(X1, X2)] [add(0(), X)] = [1] X + [5] > [1] X + [0] = [X] [first(X1, X2)] = [1] X1 + [1] X2 + [1] > [1] X1 + [1] X2 + [0] = [n__first(X1, X2)] [first(0(), X)] = [1] X + [5] > [0] = [nil()] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { activate(n__terms(X)) -> terms(activate(X)) , activate(n__s(X)) -> s(X) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__sqr(X)) -> sqr(activate(X)) , activate(n__dbl(X)) -> dbl(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) } Weak Trs: { terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) , terms(X) -> n__terms(X) , sqr(X) -> n__sqr(X) , sqr(0()) -> 0() , s(X) -> n__s(X) , activate(X) -> X , dbl(X) -> n__dbl(X) , dbl(0()) -> 0() , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , first(X1, X2) -> n__first(X1, X2) , first(0(), X) -> nil() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(sqr) = {1}, Uargs(dbl) = {1}, Uargs(add) = {1, 2}, Uargs(first) = {1, 2} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [terms](x1) = [1] x1 + [7] [cons](x1, x2) = [1] x1 + [0] [recip](x1) = [1] x1 + [1] [sqr](x1) = [1] x1 + [4] [n__terms](x1) = [1] x1 + [0] [n__s](x1) = [0] [0] = [0] [s](x1) = [0] [n__add](x1, x2) = [1] x1 + [1] x2 + [6] [n__sqr](x1) = [1] x1 + [2] [activate](x1) = [1] x1 + [1] [n__dbl](x1) = [1] x1 + [4] [dbl](x1) = [1] x1 + [4] [add](x1, x2) = [1] x1 + [1] x2 + [6] [first](x1, x2) = [1] x1 + [1] x2 + [4] [nil] = [0] [n__first](x1, x2) = [1] x1 + [1] x2 + [4] The order satisfies the following ordering constraints: [terms(N)] = [1] N + [7] > [1] N + [5] = [cons(recip(sqr(N)), n__terms(n__s(N)))] [terms(X)] = [1] X + [7] > [1] X + [0] = [n__terms(X)] [sqr(X)] = [1] X + [4] > [1] X + [2] = [n__sqr(X)] [sqr(0())] = [4] > [0] = [0()] [s(X)] = [0] >= [0] = [n__s(X)] [activate(X)] = [1] X + [1] > [1] X + [0] = [X] [activate(n__terms(X))] = [1] X + [1] ? [1] X + [8] = [terms(activate(X))] [activate(n__s(X))] = [1] > [0] = [s(X)] [activate(n__add(X1, X2))] = [1] X1 + [1] X2 + [7] ? [1] X1 + [1] X2 + [8] = [add(activate(X1), activate(X2))] [activate(n__sqr(X))] = [1] X + [3] ? [1] X + [5] = [sqr(activate(X))] [activate(n__dbl(X))] = [1] X + [5] >= [1] X + [5] = [dbl(activate(X))] [activate(n__first(X1, X2))] = [1] X1 + [1] X2 + [5] ? [1] X1 + [1] X2 + [6] = [first(activate(X1), activate(X2))] [dbl(X)] = [1] X + [4] >= [1] X + [4] = [n__dbl(X)] [dbl(0())] = [4] > [0] = [0()] [add(X1, X2)] = [1] X1 + [1] X2 + [6] >= [1] X1 + [1] X2 + [6] = [n__add(X1, X2)] [add(0(), X)] = [1] X + [6] > [1] X + [0] = [X] [first(X1, X2)] = [1] X1 + [1] X2 + [4] >= [1] X1 + [1] X2 + [4] = [n__first(X1, X2)] [first(0(), X)] = [1] X + [4] > [0] = [nil()] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { activate(n__terms(X)) -> terms(activate(X)) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__sqr(X)) -> sqr(activate(X)) , activate(n__dbl(X)) -> dbl(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) } Weak Trs: { terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) , terms(X) -> n__terms(X) , sqr(X) -> n__sqr(X) , sqr(0()) -> 0() , s(X) -> n__s(X) , activate(X) -> X , activate(n__s(X)) -> s(X) , dbl(X) -> n__dbl(X) , dbl(0()) -> 0() , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , first(X1, X2) -> n__first(X1, X2) , first(0(), X) -> nil() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. Trs: { activate(n__terms(X)) -> terms(activate(X)) , activate(n__sqr(X)) -> sqr(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The following argument positions are usable: Uargs(terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(sqr) = {1}, Uargs(dbl) = {1}, Uargs(add) = {1, 2}, Uargs(first) = {1, 2} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [terms](x1) = [1] x1 + [5] [cons](x1, x2) = [1] x1 + [0] [recip](x1) = [1] x1 + [0] [sqr](x1) = [1] x1 + [5] [n__terms](x1) = [1] x1 + [5] [n__s](x1) = [0] [0] = [0] [s](x1) = [1] [n__add](x1, x2) = [1] x1 + [1] x2 + [3] [n__sqr](x1) = [1] x1 + [5] [activate](x1) = [2] x1 + [3] [n__dbl](x1) = [1] x1 + [0] [dbl](x1) = [1] x1 + [0] [add](x1, x2) = [1] x1 + [1] x2 + [3] [first](x1, x2) = [1] x1 + [1] x2 + [4] [nil] = [0] [n__first](x1, x2) = [1] x1 + [1] x2 + [4] The order satisfies the following ordering constraints: [terms(N)] = [1] N + [5] >= [1] N + [5] = [cons(recip(sqr(N)), n__terms(n__s(N)))] [terms(X)] = [1] X + [5] >= [1] X + [5] = [n__terms(X)] [sqr(X)] = [1] X + [5] >= [1] X + [5] = [n__sqr(X)] [sqr(0())] = [5] > [0] = [0()] [s(X)] = [1] > [0] = [n__s(X)] [activate(X)] = [2] X + [3] > [1] X + [0] = [X] [activate(n__terms(X))] = [2] X + [13] > [2] X + [8] = [terms(activate(X))] [activate(n__s(X))] = [3] > [1] = [s(X)] [activate(n__add(X1, X2))] = [2] X1 + [2] X2 + [9] >= [2] X1 + [2] X2 + [9] = [add(activate(X1), activate(X2))] [activate(n__sqr(X))] = [2] X + [13] > [2] X + [8] = [sqr(activate(X))] [activate(n__dbl(X))] = [2] X + [3] >= [2] X + [3] = [dbl(activate(X))] [activate(n__first(X1, X2))] = [2] X1 + [2] X2 + [11] > [2] X1 + [2] X2 + [10] = [first(activate(X1), activate(X2))] [dbl(X)] = [1] X + [0] >= [1] X + [0] = [n__dbl(X)] [dbl(0())] = [0] >= [0] = [0()] [add(X1, X2)] = [1] X1 + [1] X2 + [3] >= [1] X1 + [1] X2 + [3] = [n__add(X1, X2)] [add(0(), X)] = [1] X + [3] > [1] X + [0] = [X] [first(X1, X2)] = [1] X1 + [1] X2 + [4] >= [1] X1 + [1] X2 + [4] = [n__first(X1, X2)] [first(0(), X)] = [1] X + [4] > [0] = [nil()] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__dbl(X)) -> dbl(activate(X)) } Weak Trs: { terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) , terms(X) -> n__terms(X) , sqr(X) -> n__sqr(X) , sqr(0()) -> 0() , s(X) -> n__s(X) , activate(X) -> X , activate(n__terms(X)) -> terms(activate(X)) , activate(n__s(X)) -> s(X) , activate(n__sqr(X)) -> sqr(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) , dbl(X) -> n__dbl(X) , dbl(0()) -> 0() , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , first(X1, X2) -> n__first(X1, X2) , first(0(), X) -> nil() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. Trs: { activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__dbl(X)) -> dbl(activate(X)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The following argument positions are usable: Uargs(terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(sqr) = {1}, Uargs(dbl) = {1}, Uargs(add) = {1, 2}, Uargs(first) = {1, 2} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [terms](x1) = [1] x1 + [0] [cons](x1, x2) = [1] x1 + [0] [recip](x1) = [1] x1 + [0] [sqr](x1) = [1] x1 + [0] [n__terms](x1) = [1] x1 + [0] [n__s](x1) = [0] [0] = [0] [s](x1) = [1] [n__add](x1, x2) = [1] x1 + [1] x2 + [3] [n__sqr](x1) = [1] x1 + [0] [activate](x1) = [3] x1 + [1] [n__dbl](x1) = [1] x1 + [2] [dbl](x1) = [1] x1 + [5] [add](x1, x2) = [1] x1 + [1] x2 + [4] [first](x1, x2) = [1] x1 + [1] x2 + [6] [nil] = [0] [n__first](x1, x2) = [1] x1 + [1] x2 + [4] The order satisfies the following ordering constraints: [terms(N)] = [1] N + [0] >= [1] N + [0] = [cons(recip(sqr(N)), n__terms(n__s(N)))] [terms(X)] = [1] X + [0] >= [1] X + [0] = [n__terms(X)] [sqr(X)] = [1] X + [0] >= [1] X + [0] = [n__sqr(X)] [sqr(0())] = [0] >= [0] = [0()] [s(X)] = [1] > [0] = [n__s(X)] [activate(X)] = [3] X + [1] > [1] X + [0] = [X] [activate(n__terms(X))] = [3] X + [1] >= [3] X + [1] = [terms(activate(X))] [activate(n__s(X))] = [1] >= [1] = [s(X)] [activate(n__add(X1, X2))] = [3] X1 + [3] X2 + [10] > [3] X1 + [3] X2 + [6] = [add(activate(X1), activate(X2))] [activate(n__sqr(X))] = [3] X + [1] >= [3] X + [1] = [sqr(activate(X))] [activate(n__dbl(X))] = [3] X + [7] > [3] X + [6] = [dbl(activate(X))] [activate(n__first(X1, X2))] = [3] X1 + [3] X2 + [13] > [3] X1 + [3] X2 + [8] = [first(activate(X1), activate(X2))] [dbl(X)] = [1] X + [5] > [1] X + [2] = [n__dbl(X)] [dbl(0())] = [5] > [0] = [0()] [add(X1, X2)] = [1] X1 + [1] X2 + [4] > [1] X1 + [1] X2 + [3] = [n__add(X1, X2)] [add(0(), X)] = [1] X + [4] > [1] X + [0] = [X] [first(X1, X2)] = [1] X1 + [1] X2 + [6] > [1] X1 + [1] X2 + [4] = [n__first(X1, X2)] [first(0(), X)] = [1] X + [6] > [0] = [nil()] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) , terms(X) -> n__terms(X) , sqr(X) -> n__sqr(X) , sqr(0()) -> 0() , s(X) -> n__s(X) , activate(X) -> X , activate(n__terms(X)) -> terms(activate(X)) , activate(n__s(X)) -> s(X) , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) , activate(n__sqr(X)) -> sqr(activate(X)) , activate(n__dbl(X)) -> dbl(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) , dbl(X) -> n__dbl(X) , dbl(0()) -> 0() , add(X1, X2) -> n__add(X1, X2) , add(0(), X) -> X , first(X1, X2) -> n__first(X1, X2) , first(0(), X) -> nil() } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^1))