*** 1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
activate(X) -> X
activate(n__d(X)) -> d(X)
activate(n__f(X)) -> f(X)
c(X) -> d(activate(X))
d(X) -> n__d(X)
f(X) -> n__f(X)
f(f(X)) -> c(n__f(g(n__f(X))))
h(X) -> c(n__d(X))
Weak DP Rules:
Weak TRS Rules:
Signature:
{activate/1,c/1,d/1,f/1,h/1} / {g/1,n__d/1,n__f/1}
Obligation:
Innermost
basic terms: {activate,c,d,f,h}/{g,n__d,n__f}
Applied Processor:
InnermostRuleRemoval
Proof:
Arguments of following rules are not normal-forms.
f(f(X)) -> c(n__f(g(n__f(X))))
All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
activate(X) -> X
activate(n__d(X)) -> d(X)
activate(n__f(X)) -> f(X)
c(X) -> d(activate(X))
d(X) -> n__d(X)
f(X) -> n__f(X)
h(X) -> c(n__d(X))
Weak DP Rules:
Weak TRS Rules:
Signature:
{activate/1,c/1,d/1,f/1,h/1} / {g/1,n__d/1,n__f/1}
Obligation:
Innermost
basic terms: {activate,c,d,f,h}/{g,n__d,n__f}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
activate#(X) -> c_1()
activate#(n__d(X)) -> c_2(d#(X))
activate#(n__f(X)) -> c_3(f#(X))
c#(X) -> c_4(d#(activate(X)),activate#(X))
d#(X) -> c_5()
f#(X) -> c_6()
h#(X) -> c_7(c#(n__d(X)))
Weak DPs
and mark the set of starting terms.
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
activate#(X) -> c_1()
activate#(n__d(X)) -> c_2(d#(X))
activate#(n__f(X)) -> c_3(f#(X))
c#(X) -> c_4(d#(activate(X)),activate#(X))
d#(X) -> c_5()
f#(X) -> c_6()
h#(X) -> c_7(c#(n__d(X)))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
activate(X) -> X
activate(n__d(X)) -> d(X)
activate(n__f(X)) -> f(X)
c(X) -> d(activate(X))
d(X) -> n__d(X)
f(X) -> n__f(X)
h(X) -> c(n__d(X))
Signature:
{activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0,c_7/1}
Obligation:
Innermost
basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
activate(X) -> X
activate(n__d(X)) -> d(X)
activate(n__f(X)) -> f(X)
d(X) -> n__d(X)
f(X) -> n__f(X)
activate#(X) -> c_1()
activate#(n__d(X)) -> c_2(d#(X))
activate#(n__f(X)) -> c_3(f#(X))
c#(X) -> c_4(d#(activate(X)),activate#(X))
d#(X) -> c_5()
f#(X) -> c_6()
h#(X) -> c_7(c#(n__d(X)))
*** 1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
activate#(X) -> c_1()
activate#(n__d(X)) -> c_2(d#(X))
activate#(n__f(X)) -> c_3(f#(X))
c#(X) -> c_4(d#(activate(X)),activate#(X))
d#(X) -> c_5()
f#(X) -> c_6()
h#(X) -> c_7(c#(n__d(X)))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
activate(X) -> X
activate(n__d(X)) -> d(X)
activate(n__f(X)) -> f(X)
d(X) -> n__d(X)
f(X) -> n__f(X)
Signature:
{activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0,c_7/1}
Obligation:
Innermost
basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f}
Applied Processor:
Trivial
Proof:
Consider the dependency graph
1:S:activate#(X) -> c_1()
2:S:activate#(n__d(X)) -> c_2(d#(X))
-->_1 d#(X) -> c_5():5
3:S:activate#(n__f(X)) -> c_3(f#(X))
-->_1 f#(X) -> c_6():6
4:S:c#(X) -> c_4(d#(activate(X)),activate#(X))
-->_1 d#(X) -> c_5():5
-->_2 activate#(n__f(X)) -> c_3(f#(X)):3
-->_2 activate#(n__d(X)) -> c_2(d#(X)):2
-->_2 activate#(X) -> c_1():1
5:S:d#(X) -> c_5()
6:S:f#(X) -> c_6()
7:S:h#(X) -> c_7(c#(n__d(X)))
-->_1 c#(X) -> c_4(d#(activate(X)),activate#(X)):4
The dependency graph contains no loops, we remove all dependency pairs.
*** 1.1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
activate(X) -> X
activate(n__d(X)) -> d(X)
activate(n__f(X)) -> f(X)
d(X) -> n__d(X)
f(X) -> n__f(X)
Signature:
{activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0,c_7/1}
Obligation:
Innermost
basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).