*** 1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) h(X) -> c(n__d(X)) Weak DP Rules: Weak TRS Rules: Signature: {activate/1,c/1,d/1,f/1,h/1} / {g/1,n__d/1,n__f/1} Obligation: Innermost basic terms: {activate,c,d,f,h}/{g,n__d,n__f} Applied Processor: InnermostRuleRemoval Proof: Arguments of following rules are not normal-forms. f(f(X)) -> c(n__f(g(n__f(X)))) All above mentioned rules can be savely removed. *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) h(X) -> c(n__d(X)) Weak DP Rules: Weak TRS Rules: Signature: {activate/1,c/1,d/1,f/1,h/1} / {g/1,n__d/1,n__f/1} Obligation: Innermost basic terms: {activate,c,d,f,h}/{g,n__d,n__f} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs activate#(X) -> c_1() activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X)),activate#(X)) d#(X) -> c_5() f#(X) -> c_6() h#(X) -> c_7(c#(n__d(X))) Weak DPs and mark the set of starting terms. *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: activate#(X) -> c_1() activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X)),activate#(X)) d#(X) -> c_5() f#(X) -> c_6() h#(X) -> c_7(c#(n__d(X))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) h(X) -> c(n__d(X)) Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0,c_7/1} Obligation: Innermost basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) d(X) -> n__d(X) f(X) -> n__f(X) activate#(X) -> c_1() activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X)),activate#(X)) d#(X) -> c_5() f#(X) -> c_6() h#(X) -> c_7(c#(n__d(X))) *** 1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: activate#(X) -> c_1() activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X)),activate#(X)) d#(X) -> c_5() f#(X) -> c_6() h#(X) -> c_7(c#(n__d(X))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) d(X) -> n__d(X) f(X) -> n__f(X) Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0,c_7/1} Obligation: Innermost basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f} Applied Processor: Trivial Proof: Consider the dependency graph 1:S:activate#(X) -> c_1() 2:S:activate#(n__d(X)) -> c_2(d#(X)) -->_1 d#(X) -> c_5():5 3:S:activate#(n__f(X)) -> c_3(f#(X)) -->_1 f#(X) -> c_6():6 4:S:c#(X) -> c_4(d#(activate(X)),activate#(X)) -->_1 d#(X) -> c_5():5 -->_2 activate#(n__f(X)) -> c_3(f#(X)):3 -->_2 activate#(n__d(X)) -> c_2(d#(X)):2 -->_2 activate#(X) -> c_1():1 5:S:d#(X) -> c_5() 6:S:f#(X) -> c_6() 7:S:h#(X) -> c_7(c#(n__d(X))) -->_1 c#(X) -> c_4(d#(activate(X)),activate#(X)):4 The dependency graph contains no loops, we remove all dependency pairs. *** 1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) d(X) -> n__d(X) f(X) -> n__f(X) Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0,c_6/0,c_7/1} Obligation: Innermost basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).