(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(f(X)) → c(n__f(g(n__f(X))))
c(X) → d(activate(X))
h(X) → c(n__d(X))
f(X) → n__f(X)
d(X) → n__d(X)
activate(n__f(X)) → f(X)
activate(n__d(X)) → d(X)
activate(X) → X

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(z0)) → c(n__f(g(n__f(z0))))
f(z0) → n__f(z0)
c(z0) → d(activate(z0))
h(z0) → c(n__d(z0))
d(z0) → n__d(z0)
activate(n__f(z0)) → f(z0)
activate(n__d(z0)) → d(z0)
activate(z0) → z0
Tuples:

F(f(z0)) → c1(C(n__f(g(n__f(z0)))))
F(z0) → c2
C(z0) → c3(D(activate(z0)), ACTIVATE(z0))
H(z0) → c4(C(n__d(z0)))
D(z0) → c5
ACTIVATE(n__f(z0)) → c6(F(z0))
ACTIVATE(n__d(z0)) → c7(D(z0))
ACTIVATE(z0) → c8
S tuples:

F(f(z0)) → c1(C(n__f(g(n__f(z0)))))
F(z0) → c2
C(z0) → c3(D(activate(z0)), ACTIVATE(z0))
H(z0) → c4(C(n__d(z0)))
D(z0) → c5
ACTIVATE(n__f(z0)) → c6(F(z0))
ACTIVATE(n__d(z0)) → c7(D(z0))
ACTIVATE(z0) → c8
K tuples:none
Defined Rule Symbols:

f, c, h, d, activate

Defined Pair Symbols:

F, C, H, D, ACTIVATE

Compound Symbols:

c1, c2, c3, c4, c5, c6, c7, c8

(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 8 trailing nodes:

F(z0) → c2
ACTIVATE(n__d(z0)) → c7(D(z0))
ACTIVATE(z0) → c8
C(z0) → c3(D(activate(z0)), ACTIVATE(z0))
H(z0) → c4(C(n__d(z0)))
F(f(z0)) → c1(C(n__f(g(n__f(z0)))))
ACTIVATE(n__f(z0)) → c6(F(z0))
D(z0) → c5

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(z0)) → c(n__f(g(n__f(z0))))
f(z0) → n__f(z0)
c(z0) → d(activate(z0))
h(z0) → c(n__d(z0))
d(z0) → n__d(z0)
activate(n__f(z0)) → f(z0)
activate(n__d(z0)) → d(z0)
activate(z0) → z0
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

f, c, h, d, activate

Defined Pair Symbols:none

Compound Symbols:none

(5) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty

(6) BOUNDS(1, 1)