We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(b(), X, c())) -> mark(f(X, c(), X)) , active(c()) -> mark(b()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(b()) -> ok(b()) , proper(c()) -> ok(c()) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We add the following dependency tuples: Strict DPs: { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , active^#(f(b(), X, c())) -> c_2(f^#(X, c(), X)) , active^#(c()) -> c_3() , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) , proper^#(b()) -> c_7() , proper^#(c()) -> c_8() , top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , active^#(f(b(), X, c())) -> c_2(f^#(X, c(), X)) , active^#(c()) -> c_3() , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) , proper^#(b()) -> c_7() , proper^#(c()) -> c_8() , top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(b(), X, c())) -> mark(f(X, c(), X)) , active(c()) -> mark(b()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(b()) -> ok(b()) , proper(c()) -> ok(c()) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We estimate the number of application of {2,3,7,8} by applications of Pre({2,3,7,8}) = {1,6,9,10}. Here rules are labeled as follows: DPs: { 1: active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , 2: active^#(f(b(), X, c())) -> c_2(f^#(X, c(), X)) , 3: active^#(c()) -> c_3() , 4: f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , 5: f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , 6: proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) , 7: proper^#(b()) -> c_7() , 8: proper^#(c()) -> c_8() , 9: top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , 10: top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) , top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } Weak DPs: { active^#(f(b(), X, c())) -> c_2(f^#(X, c(), X)) , active^#(c()) -> c_3() , proper^#(b()) -> c_7() , proper^#(c()) -> c_8() } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(b(), X, c())) -> mark(f(X, c(), X)) , active(c()) -> mark(b()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(b()) -> ok(b()) , proper(c()) -> ok(c()) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { active^#(f(b(), X, c())) -> c_2(f^#(X, c(), X)) , active^#(c()) -> c_3() , proper^#(b()) -> c_7() , proper^#(c()) -> c_8() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) , top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(b(), X, c())) -> mark(f(X, c(), X)) , active(c()) -> mark(b()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(b()) -> ok(b()) , proper(c()) -> ok(c()) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X)) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We replace rewrite rules by usable rules: Weak Usable Rules: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(b(), X, c())) -> mark(f(X, c(), X)) , active(c()) -> mark(b()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(b()) -> ok(b()) , proper(c()) -> ok(c()) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) , top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(b(), X, c())) -> mark(f(X, c(), X)) , active(c()) -> mark(b()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(b()) -> ok(b()) , proper(c()) -> ok(c()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^2)) We decompose the input problem according to the dependency graph into the upper component { top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } and lower component { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) } Further, following extension rules are added to the lower component. { top^#(mark(X)) -> proper^#(X) , top^#(mark(X)) -> top^#(proper(X)) , top^#(ok(X)) -> active^#(X) , top^#(ok(X)) -> top^#(active(X)) } TcT solves the upper component with certificate YES(O(1),O(n^1)). Sub-proof: ---------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(b(), X, c())) -> mark(f(X, c(), X)) , active(c()) -> mark(b()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(b()) -> ok(b()) , proper(c()) -> ok(c()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. DPs: { 1: top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_9) = {1}, Uargs(c_10) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [0 0] x1 + [0] [1 1] [0] [f](x1, x2, x3) = [0 0] x1 + [3 0] x2 + [0 0] x3 + [0] [4 1] [1 4] [0 3] [0] [b] = [1] [1] [c] = [0] [3] [mark](x1) = [0 0] x1 + [0] [1 1] [1] [proper](x1) = [1 0] x1 + [0] [0 1] [0] [ok](x1) = [1 0] x1 + [0] [0 1] [0] [active^#](x1) = [0] [0] [proper^#](x1) = [0] [1] [top^#](x1) = [4 4] x1 + [2] [1 0] [0] [c_9](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] [c_10](x1, x2) = [1 1] x1 + [1 1] x2 + [0] [0 0] [0 0] [0] The order satisfies the following ordering constraints: [active(f(X1, X2, X3))] = [0 0] X1 + [0 0] X2 + [0 0] X3 + [0] [4 1] [4 4] [0 3] [0] >= [0 0] X1 + [0 0] X2 + [0 0] X3 + [0] [4 1] [4 4] [0 3] [0] = [f(X1, active(X2), X3)] [active(f(b(), X, c()))] = [0 0] X + [0] [4 4] [14] >= [0 0] X + [0] [4 4] [13] = [mark(f(X, c(), X))] [active(c())] = [0] [3] >= [0] [3] = [mark(b())] [f(X1, mark(X2), X3)] = [0 0] X1 + [0 0] X2 + [0 0] X3 + [0] [4 1] [4 4] [0 3] [4] >= [0 0] X1 + [0 0] X2 + [0 0] X3 + [0] [4 1] [4 4] [0 3] [1] = [mark(f(X1, X2, X3))] [f(ok(X1), ok(X2), ok(X3))] = [0 0] X1 + [3 0] X2 + [0 0] X3 + [0] [4 1] [1 4] [0 3] [0] >= [0 0] X1 + [3 0] X2 + [0 0] X3 + [0] [4 1] [1 4] [0 3] [0] = [ok(f(X1, X2, X3))] [proper(f(X1, X2, X3))] = [0 0] X1 + [3 0] X2 + [0 0] X3 + [0] [4 1] [1 4] [0 3] [0] >= [0 0] X1 + [3 0] X2 + [0 0] X3 + [0] [4 1] [1 4] [0 3] [0] = [f(proper(X1), proper(X2), proper(X3))] [proper(b())] = [1] [1] >= [1] [1] = [ok(b())] [proper(c())] = [0] [3] >= [0] [3] = [ok(c())] [top^#(mark(X))] = [4 4] X + [6] [0 0] [0] > [4 4] X + [2] [0 0] [0] = [c_9(top^#(proper(X)), proper^#(X))] [top^#(ok(X))] = [4 4] X + [2] [1 0] [0] >= [4 4] X + [2] [0 0] [0] = [c_10(top^#(active(X)), active^#(X))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } Weak DPs: { top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(b(), X, c())) -> mark(f(X, c(), X)) , active(c()) -> mark(b()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(b()) -> ok(b()) , proper(c()) -> ok(c()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 3' to orient following rules strictly. DPs: { 1: top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } Trs: { active(f(b(), X, c())) -> mark(f(X, c(), X)) , active(c()) -> mark(b()) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_9) = {1}, Uargs(c_10) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [0 0 1] [0] [active](x1) = [0 0 1] x1 + [0] [1 0 0] [0] [2 0 1] [2 0 2] [0 0 1] [0] [f](x1, x2, x3) = [2 0 1] x1 + [1 1 2] x2 + [0 0 1] x3 + [0] [2 0 1] [2 0 2] [0 0 1] [0] [2] [b] = [1] [0] [0] [c] = [2] [3] [1 0 0] [0] [mark](x1) = [1 0 0] x1 + [1] [0 0 1] [0] [1 0 0] [0] [proper](x1) = [1 0 0] x1 + [1] [0 0 1] [0] [1 0 0] [0] [ok](x1) = [1 0 0] x1 + [1] [0 0 1] [0] [3] [active^#](x1) = [3] [1] [0] [proper^#](x1) = [0] [0] [2 5 7] [4] [top^#](x1) = [0 0 0] x1 + [2] [0 0 0] [0] [1 0 0] [0] [c_9](x1, x2) = [0 0 0] x1 + [0] [0 0 0] [0] [1 2 0] [0] [c_10](x1, x2) = [0 0 0] x1 + [0] [0 0 0] [0] The order satisfies the following ordering constraints: [active(f(X1, X2, X3))] = [2 0 1] [2 0 2] [0 0 1] [0] [2 0 1] X1 + [2 0 2] X2 + [0 0 1] X3 + [0] [2 0 1] [2 0 2] [0 0 1] [0] >= [2 0 1] [2 0 2] [0 0 1] [0] [2 0 1] X1 + [2 0 2] X2 + [0 0 1] X3 + [0] [2 0 1] [2 0 2] [0 0 1] [0] = [f(X1, active(X2), X3)] [active(f(b(), X, c()))] = [2 0 2] [7] [2 0 2] X + [7] [2 0 2] [7] > [2 0 2] [6] [2 0 2] X + [7] [2 0 2] [6] = [mark(f(X, c(), X))] [active(c())] = [3] [3] [0] > [2] [3] [0] = [mark(b())] [f(X1, mark(X2), X3)] = [2 0 1] [2 0 2] [0 0 1] [0] [2 0 1] X1 + [2 0 2] X2 + [0 0 1] X3 + [1] [2 0 1] [2 0 2] [0 0 1] [0] >= [2 0 1] [2 0 2] [0 0 1] [0] [2 0 1] X1 + [2 0 2] X2 + [0 0 1] X3 + [1] [2 0 1] [2 0 2] [0 0 1] [0] = [mark(f(X1, X2, X3))] [f(ok(X1), ok(X2), ok(X3))] = [2 0 1] [2 0 2] [0 0 1] [0] [2 0 1] X1 + [2 0 2] X2 + [0 0 1] X3 + [1] [2 0 1] [2 0 2] [0 0 1] [0] >= [2 0 1] [2 0 2] [0 0 1] [0] [2 0 1] X1 + [2 0 2] X2 + [0 0 1] X3 + [1] [2 0 1] [2 0 2] [0 0 1] [0] = [ok(f(X1, X2, X3))] [proper(f(X1, X2, X3))] = [2 0 1] [2 0 2] [0 0 1] [0] [2 0 1] X1 + [2 0 2] X2 + [0 0 1] X3 + [1] [2 0 1] [2 0 2] [0 0 1] [0] >= [2 0 1] [2 0 2] [0 0 1] [0] [2 0 1] X1 + [2 0 2] X2 + [0 0 1] X3 + [1] [2 0 1] [2 0 2] [0 0 1] [0] = [f(proper(X1), proper(X2), proper(X3))] [proper(b())] = [2] [3] [0] >= [2] [3] [0] = [ok(b())] [proper(c())] = [0] [1] [3] >= [0] [1] [3] = [ok(c())] [top^#(mark(X))] = [7 0 7] [9] [0 0 0] X + [2] [0 0 0] [0] >= [7 0 7] [9] [0 0 0] X + [0] [0 0 0] [0] = [c_9(top^#(proper(X)), proper^#(X))] [top^#(ok(X))] = [7 0 7] [9] [0 0 0] X + [2] [0 0 0] [0] > [7 0 7] [8] [0 0 0] X + [0] [0 0 0] [0] = [c_10(top^#(active(X)), active^#(X))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(b(), X, c())) -> mark(f(X, c(), X)) , active(c()) -> mark(b()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(b()) -> ok(b()) , proper(c()) -> ok(c()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { top^#(mark(X)) -> c_9(top^#(proper(X)), proper^#(X)) , top^#(ok(X)) -> c_10(top^#(active(X)), active^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(b(), X, c())) -> mark(f(X, c(), X)) , active(c()) -> mark(b()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(b()) -> ok(b()) , proper(c()) -> ok(c()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) } Weak DPs: { top^#(mark(X)) -> proper^#(X) , top^#(mark(X)) -> top^#(proper(X)) , top^#(ok(X)) -> active^#(X) , top^#(ok(X)) -> top^#(active(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(b(), X, c())) -> mark(f(X, c(), X)) , active(c()) -> mark(b()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(b()) -> ok(b()) , proper(c()) -> ok(c()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. DPs: { 3: f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , 5: top^#(mark(X)) -> proper^#(X) , 7: top^#(ok(X)) -> active^#(X) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_1) = {1, 2}, Uargs(c_4) = {1}, Uargs(c_5) = {1}, Uargs(c_6) = {1, 2, 3, 4} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [1 0] x1 + [0] [2 0] [1] [f](x1, x2, x3) = [2 0] x1 + [4 0] x2 + [2 0] x3 + [3] [0 0] [0 1] [0 0] [0] [b] = [0] [0] [c] = [0] [0] [mark](x1) = [1 1] x1 + [0] [0 0] [0] [proper](x1) = [1 0] x1 + [0] [2 0] [2] [ok](x1) = [1 2] x1 + [0] [0 0] [2] [active^#](x1) = [1 2] x1 + [5] [0 0] [1] [c_1](x1, x2) = [1 0] x1 + [1 2] x2 + [0] [0 0] [0 0] [0] [f^#](x1, x2, x3) = [0 0] x1 + [1 1] x2 + [1 0] x3 + [0] [1 0] [0 0] [0 0] [1] [c_4](x1) = [1 0] x1 + [0] [0 0] [0] [c_5](x1) = [1 0] x1 + [1] [0 0] [0] [proper^#](x1) = [1 0] x1 + [0] [1 0] [2] [c_6](x1, x2, x3, x4) = [1 1] x1 + [1 0] x2 + [1 0] x3 + [1 0] x4 + [0] [0 0] [0 0] [0 0] [0 0] [0] [top^#](x1) = [1 0] x1 + [7] [4 0] [4] The order satisfies the following ordering constraints: [active(f(X1, X2, X3))] = [2 0] X1 + [4 0] X2 + [2 0] X3 + [3] [4 0] [8 0] [4 0] [7] >= [2 0] X1 + [4 0] X2 + [2 0] X3 + [3] [0 0] [2 0] [0 0] [1] = [f(X1, active(X2), X3)] [active(f(b(), X, c()))] = [4 0] X + [3] [8 0] [7] >= [4 0] X + [3] [0 0] [0] = [mark(f(X, c(), X))] [active(c())] = [0] [1] >= [0] [0] = [mark(b())] [f(X1, mark(X2), X3)] = [2 0] X1 + [4 4] X2 + [2 0] X3 + [3] [0 0] [0 0] [0 0] [0] >= [2 0] X1 + [4 1] X2 + [2 0] X3 + [3] [0 0] [0 0] [0 0] [0] = [mark(f(X1, X2, X3))] [f(ok(X1), ok(X2), ok(X3))] = [2 4] X1 + [4 8] X2 + [2 4] X3 + [3] [0 0] [0 0] [0 0] [2] >= [2 0] X1 + [4 2] X2 + [2 0] X3 + [3] [0 0] [0 0] [0 0] [2] = [ok(f(X1, X2, X3))] [proper(f(X1, X2, X3))] = [2 0] X1 + [4 0] X2 + [2 0] X3 + [3] [4 0] [8 0] [4 0] [8] >= [2 0] X1 + [4 0] X2 + [2 0] X3 + [3] [0 0] [2 0] [0 0] [2] = [f(proper(X1), proper(X2), proper(X3))] [proper(b())] = [0] [2] >= [0] [2] = [ok(b())] [proper(c())] = [0] [2] >= [0] [2] = [ok(c())] [active^#(f(X1, X2, X3))] = [2 0] X1 + [4 2] X2 + [2 0] X3 + [8] [0 0] [0 0] [0 0] [1] >= [4 2] X2 + [1 0] X3 + [8] [0 0] [0 0] [0] = [c_1(f^#(X1, active(X2), X3), active^#(X2))] [f^#(X1, mark(X2), X3)] = [0 0] X1 + [1 1] X2 + [1 0] X3 + [0] [1 0] [0 0] [0 0] [1] >= [1 1] X2 + [1 0] X3 + [0] [0 0] [0 0] [0] = [c_4(f^#(X1, X2, X3))] [f^#(ok(X1), ok(X2), ok(X3))] = [0 0] X1 + [1 2] X2 + [1 2] X3 + [2] [1 2] [0 0] [0 0] [1] > [1 1] X2 + [1 0] X3 + [1] [0 0] [0 0] [0] = [c_5(f^#(X1, X2, X3))] [proper^#(f(X1, X2, X3))] = [2 0] X1 + [4 0] X2 + [2 0] X3 + [3] [2 0] [4 0] [2 0] [5] >= [2 0] X1 + [4 0] X2 + [2 0] X3 + [3] [0 0] [0 0] [0 0] [0] = [c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3))] [top^#(mark(X))] = [1 1] X + [7] [4 4] [4] > [1 0] X + [0] [1 0] [2] = [proper^#(X)] [top^#(mark(X))] = [1 1] X + [7] [4 4] [4] >= [1 0] X + [7] [4 0] [4] = [top^#(proper(X))] [top^#(ok(X))] = [1 2] X + [7] [4 8] [4] > [1 2] X + [5] [0 0] [1] = [active^#(X)] [top^#(ok(X))] = [1 2] X + [7] [4 8] [4] >= [1 0] X + [7] [4 0] [4] = [top^#(active(X))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) } Weak DPs: { f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , top^#(mark(X)) -> proper^#(X) , top^#(mark(X)) -> top^#(proper(X)) , top^#(ok(X)) -> active^#(X) , top^#(ok(X)) -> top^#(active(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(b(), X, c())) -> mark(f(X, c(), X)) , active(c()) -> mark(b()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(b()) -> ok(b()) , proper(c()) -> ok(c()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. DPs: { 1: active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , 2: f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , 3: proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) , 5: top^#(mark(X)) -> proper^#(X) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_1) = {1, 2}, Uargs(c_4) = {1}, Uargs(c_5) = {1}, Uargs(c_6) = {1, 2, 3, 4} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [1 6] x1 + [0] [1 0] [2] [f](x1, x2, x3) = [1 5] x1 + [2 0] x2 + [1 4] x3 + [7] [0 0] [0 2] [0 0] [0] [b] = [2] [0] [c] = [2] [0] [mark](x1) = [1 3] x1 + [0] [0 0] [1] [proper](x1) = [1 3] x1 + [0] [0 0] [0] [ok](x1) = [1 6] x1 + [0] [0 0] [0] [active^#](x1) = [2 7] x1 + [1] [0 1] [0] [c_1](x1, x2) = [1 0] x1 + [1 1] x2 + [0] [0 0] [0 0] [0] [f^#](x1, x2, x3) = [1 1] x2 + [0 0] x3 + [4] [1 0] [0 1] [1] [c_4](x1) = [1 0] x1 + [0] [0 0] [0] [c_5](x1) = [1 0] x1 + [0] [0 0] [0] [proper^#](x1) = [1 3] x1 + [0] [0 0] [0] [c_6](x1, x2, x3, x4) = [1 0] x1 + [1 0] x2 + [1 1] x3 + [1 0] x4 + [0] [0 0] [0 0] [0 0] [0 0] [0] [top^#](x1) = [2 0] x1 + [1] [2 0] [4] The order satisfies the following ordering constraints: [active(f(X1, X2, X3))] = [1 5] X1 + [2 12] X2 + [1 4] X3 + [7] [1 5] [2 0] [1 4] [9] >= [1 5] X1 + [2 12] X2 + [1 4] X3 + [7] [0 0] [2 0] [0 0] [4] = [f(X1, active(X2), X3)] [active(f(b(), X, c()))] = [2 12] X + [11] [2 0] [13] >= [2 9] X + [11] [0 0] [1] = [mark(f(X, c(), X))] [active(c())] = [2] [4] >= [2] [1] = [mark(b())] [f(X1, mark(X2), X3)] = [1 5] X1 + [2 6] X2 + [1 4] X3 + [7] [0 0] [0 0] [0 0] [2] >= [1 5] X1 + [2 6] X2 + [1 4] X3 + [7] [0 0] [0 0] [0 0] [1] = [mark(f(X1, X2, X3))] [f(ok(X1), ok(X2), ok(X3))] = [1 6] X1 + [2 12] X2 + [1 6] X3 + [7] [0 0] [0 0] [0 0] [0] >= [1 5] X1 + [2 12] X2 + [1 4] X3 + [7] [0 0] [0 0] [0 0] [0] = [ok(f(X1, X2, X3))] [proper(f(X1, X2, X3))] = [1 5] X1 + [2 6] X2 + [1 4] X3 + [7] [0 0] [0 0] [0 0] [0] >= [1 3] X1 + [2 6] X2 + [1 3] X3 + [7] [0 0] [0 0] [0 0] [0] = [f(proper(X1), proper(X2), proper(X3))] [proper(b())] = [2] [0] >= [2] [0] = [ok(b())] [proper(c())] = [2] [0] >= [2] [0] = [ok(c())] [active^#(f(X1, X2, X3))] = [2 10] X1 + [4 14] X2 + [2 8] X3 + [15] [0 0] [0 2] [0 0] [0] > [4 14] X2 + [7] [0 0] [0] = [c_1(f^#(X1, active(X2), X3), active^#(X2))] [f^#(X1, mark(X2), X3)] = [1 3] X2 + [0 0] X3 + [5] [1 3] [0 1] [1] > [1 1] X2 + [4] [0 0] [0] = [c_4(f^#(X1, X2, X3))] [f^#(ok(X1), ok(X2), ok(X3))] = [1 6] X2 + [4] [1 6] [1] >= [1 1] X2 + [4] [0 0] [0] = [c_5(f^#(X1, X2, X3))] [proper^#(f(X1, X2, X3))] = [1 5] X1 + [2 6] X2 + [1 4] X3 + [7] [0 0] [0 0] [0 0] [0] > [1 3] X1 + [2 6] X2 + [1 3] X3 + [4] [0 0] [0 0] [0 0] [0] = [c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3))] [top^#(mark(X))] = [2 6] X + [1] [2 6] [4] > [1 3] X + [0] [0 0] [0] = [proper^#(X)] [top^#(mark(X))] = [2 6] X + [1] [2 6] [4] >= [2 6] X + [1] [2 6] [4] = [top^#(proper(X))] [top^#(ok(X))] = [2 12] X + [1] [2 12] [4] >= [2 7] X + [1] [0 1] [0] = [active^#(X)] [top^#(ok(X))] = [2 12] X + [1] [2 12] [4] >= [2 12] X + [1] [2 12] [4] = [top^#(active(X))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) , top^#(mark(X)) -> proper^#(X) , top^#(mark(X)) -> top^#(proper(X)) , top^#(ok(X)) -> active^#(X) , top^#(ok(X)) -> top^#(active(X)) } Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(b(), X, c())) -> mark(f(X, c(), X)) , active(c()) -> mark(b()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(b()) -> ok(b()) , proper(c()) -> ok(c()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { active^#(f(X1, X2, X3)) -> c_1(f^#(X1, active(X2), X3), active^#(X2)) , f^#(X1, mark(X2), X3) -> c_4(f^#(X1, X2, X3)) , f^#(ok(X1), ok(X2), ok(X3)) -> c_5(f^#(X1, X2, X3)) , proper^#(f(X1, X2, X3)) -> c_6(f^#(proper(X1), proper(X2), proper(X3)), proper^#(X1), proper^#(X2), proper^#(X3)) , top^#(mark(X)) -> proper^#(X) , top^#(mark(X)) -> top^#(proper(X)) , top^#(ok(X)) -> active^#(X) , top^#(ok(X)) -> top^#(active(X)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { active(f(X1, X2, X3)) -> f(X1, active(X2), X3) , active(f(b(), X, c())) -> mark(f(X, c(), X)) , active(c()) -> mark(b()) , f(X1, mark(X2), X3) -> mark(f(X1, X2, X3)) , f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3)) , proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3)) , proper(b()) -> ok(b()) , proper(c()) -> ok(c()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^2))