(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(b, X, c)) → mark(f(X, c, X))
active(c) → mark(b)
active(f(X1, X2, X3)) → f(X1, active(X2), X3)
f(X1, mark(X2), X3) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(b, z0, c)) → c1(F(z0, c, z0))
ACTIVE(c) → c2
ACTIVE(f(z0, z1, z2)) → c3(F(z0, active(z1), z2), ACTIVE(z1))
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(b) → c7
PROPER(c) → c8
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(b, z0, c)) → c1(F(z0, c, z0))
ACTIVE(c) → c2
ACTIVE(f(z0, z1, z2)) → c3(F(z0, active(z1), z2), ACTIVE(z1))
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
PROPER(b) → c7
PROPER(c) → c8
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, f, proper, top
Defined Pair Symbols:
ACTIVE, F, PROPER, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing nodes:
PROPER(b) → c7
ACTIVE(c) → c2
PROPER(c) → c8
ACTIVE(f(b, z0, c)) → c1(F(z0, c, z0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0, z1, z2)) → c3(F(z0, active(z1), z2), ACTIVE(z1))
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0, z1, z2)) → c3(F(z0, active(z1), z2), ACTIVE(z1))
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, f, proper, top
Defined Pair Symbols:
ACTIVE, F, PROPER, TOP
Compound Symbols:
c3, c4, c5, c6, c9, c10
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
ACTIVE(f(z0, z1, z2)) → c3(F(z0, active(z1), z2), ACTIVE(z1))
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0, z1, z2)) → c3(F(z0, active(z1), z2), ACTIVE(z1))
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
ACTIVE, F, PROPER, TOP
Compound Symbols:
c3, c4, c5, c6, c9, c10
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
f(
z0,
z1,
z2)) →
c3(
F(
z0,
active(
z1),
z2),
ACTIVE(
z1)) by
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2), ACTIVE(c))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2), ACTIVE(c))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
S tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2), ACTIVE(c))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
F, PROPER, TOP, ACTIVE
Compound Symbols:
c4, c5, c6, c9, c10, c3
(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
S tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
PROPER(f(z0, z1, z2)) → c6(F(proper(z0), proper(z1), proper(z2)), PROPER(z0), PROPER(z1), PROPER(z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
F, PROPER, TOP, ACTIVE
Compound Symbols:
c4, c5, c6, c9, c10, c3, c3
(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
f(
z0,
z1,
z2)) →
c6(
F(
proper(
z0),
proper(
z1),
proper(
z2)),
PROPER(
z0),
PROPER(
z1),
PROPER(
z2)) by
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1), PROPER(b))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1), PROPER(c))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(b), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(c), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(b), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(c), PROPER(x1), PROPER(x2))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1), PROPER(b))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1), PROPER(c))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(b), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(c), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(b), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(c), PROPER(x1), PROPER(x2))
S tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1), PROPER(b))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1), PROPER(c))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(b), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(c), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(b), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(c), PROPER(x1), PROPER(x2))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
F, TOP, ACTIVE, PROPER
Compound Symbols:
c4, c5, c9, c10, c3, c3, c6
(13) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 6 trailing tuple parts
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
S tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
F, TOP, ACTIVE, PROPER
Compound Symbols:
c4, c5, c9, c10, c3, c3, c6, c6
(15) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
mark(
z0)) →
c9(
TOP(
proper(
z0)),
PROPER(
z0)) by
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)), PROPER(b))
TOP(mark(c)) → c9(TOP(ok(c)), PROPER(c))
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)), PROPER(b))
TOP(mark(c)) → c9(TOP(ok(c)), PROPER(c))
S tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)), PROPER(b))
TOP(mark(c)) → c9(TOP(ok(c)), PROPER(c))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
F, TOP, ACTIVE, PROPER
Compound Symbols:
c4, c5, c10, c3, c3, c6, c6, c9
(17) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)))
TOP(mark(c)) → c9(TOP(ok(c)))
S tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)))
TOP(mark(c)) → c9(TOP(ok(c)))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
F, TOP, ACTIVE, PROPER
Compound Symbols:
c4, c5, c10, c3, c3, c6, c6, c9, c9
(19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(c)) → c9(TOP(ok(c)))
We considered the (Usable) Rules:
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
And the Tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)))
TOP(mark(c)) → c9(TOP(ok(c)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1, x2, x3)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = 0
POL(b) = 0
POL(c) = [2]
POL(c10(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1, x2, x3)) = x1 + x2 + x3
POL(c6(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c9(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(f(x1, x2, x3)) = 0
POL(mark(x1)) = x1
POL(ok(x1)) = 0
POL(proper(x1)) = [1] + [2]x1
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)))
TOP(mark(c)) → c9(TOP(ok(c)))
S tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)))
K tuples:
TOP(mark(c)) → c9(TOP(ok(c)))
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
F, TOP, ACTIVE, PROPER
Compound Symbols:
c4, c5, c10, c3, c3, c6, c6, c9, c9
(21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(b)) → c9(TOP(ok(b)))
We considered the (Usable) Rules:
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
And the Tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)))
TOP(mark(c)) → c9(TOP(ok(c)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1, x2, x3)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [2]x1
POL(active(x1)) = x1
POL(b) = 0
POL(c) = [1]
POL(c10(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1, x2, x3)) = x1 + x2 + x3
POL(c6(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c9(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(f(x1, x2, x3)) = [1]
POL(mark(x1)) = [1]
POL(ok(x1)) = x1
POL(proper(x1)) = [4]x1
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)))
TOP(mark(c)) → c9(TOP(ok(c)))
S tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
K tuples:
TOP(mark(c)) → c9(TOP(ok(c)))
TOP(mark(b)) → c9(TOP(ok(b)))
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
F, TOP, ACTIVE, PROPER
Compound Symbols:
c4, c5, c10, c3, c3, c6, c6, c9, c9
(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
ok(
z0)) →
c10(
TOP(
active(
z0)),
ACTIVE(
z0)) by
TOP(ok(f(b, z0, c))) → c10(TOP(mark(f(z0, c, z0))), ACTIVE(f(b, z0, c)))
TOP(ok(c)) → c10(TOP(mark(b)), ACTIVE(c))
TOP(ok(f(z0, z1, z2))) → c10(TOP(f(z0, active(z1), z2)), ACTIVE(f(z0, z1, z2)))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(mark(b)) → c9(TOP(ok(b)))
TOP(mark(c)) → c9(TOP(ok(c)))
TOP(ok(f(b, z0, c))) → c10(TOP(mark(f(z0, c, z0))), ACTIVE(f(b, z0, c)))
TOP(ok(c)) → c10(TOP(mark(b)), ACTIVE(c))
TOP(ok(f(z0, z1, z2))) → c10(TOP(f(z0, active(z1), z2)), ACTIVE(f(z0, z1, z2)))
S tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(ok(f(b, z0, c))) → c10(TOP(mark(f(z0, c, z0))), ACTIVE(f(b, z0, c)))
TOP(ok(c)) → c10(TOP(mark(b)), ACTIVE(c))
TOP(ok(f(z0, z1, z2))) → c10(TOP(f(z0, active(z1), z2)), ACTIVE(f(z0, z1, z2)))
K tuples:
TOP(mark(c)) → c9(TOP(ok(c)))
TOP(mark(b)) → c9(TOP(ok(b)))
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
F, ACTIVE, PROPER, TOP
Compound Symbols:
c4, c5, c3, c3, c6, c6, c9, c9, c10
(25) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
TOP(ok(c)) → c10(TOP(mark(b)), ACTIVE(c))
TOP(mark(c)) → c9(TOP(ok(c)))
TOP(mark(b)) → c9(TOP(ok(b)))
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(ok(f(b, z0, c))) → c10(TOP(mark(f(z0, c, z0))), ACTIVE(f(b, z0, c)))
TOP(ok(f(z0, z1, z2))) → c10(TOP(f(z0, active(z1), z2)), ACTIVE(f(z0, z1, z2)))
S tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(ok(f(b, z0, c))) → c10(TOP(mark(f(z0, c, z0))), ACTIVE(f(b, z0, c)))
TOP(ok(f(z0, z1, z2))) → c10(TOP(f(z0, active(z1), z2)), ACTIVE(f(z0, z1, z2)))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
F, ACTIVE, PROPER, TOP
Compound Symbols:
c4, c5, c3, c3, c6, c6, c9, c10
(27) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
ACTIVE(f(x0, f(b, z0, c), x2)) → c3(F(x0, mark(f(z0, c, z0)), x2), ACTIVE(f(b, z0, c)))
ACTIVE(f(x0, f(z0, z1, z2), x2)) → c3(F(x0, f(z0, active(z1), z2), x2), ACTIVE(f(z0, z1, z2)))
ACTIVE(f(x0, c, x2)) → c3(F(x0, mark(b), x2))
PROPER(f(x0, x1, f(z0, z1, z2))) → c6(F(proper(x0), proper(x1), f(proper(z0), proper(z1), proper(z2))), PROPER(x0), PROPER(x1), PROPER(f(z0, z1, z2)))
PROPER(f(x0, f(z0, z1, z2), x2)) → c6(F(proper(x0), f(proper(z0), proper(z1), proper(z2)), proper(x2)), PROPER(x0), PROPER(f(z0, z1, z2)), PROPER(x2))
PROPER(f(f(z0, z1, z2), x1, x2)) → c6(F(f(proper(z0), proper(z1), proper(z2)), proper(x1), proper(x2)), PROPER(f(z0, z1, z2)), PROPER(x1), PROPER(x2))
PROPER(f(x0, x1, b)) → c6(F(proper(x0), proper(x1), ok(b)), PROPER(x0), PROPER(x1))
PROPER(f(x0, x1, c)) → c6(F(proper(x0), proper(x1), ok(c)), PROPER(x0), PROPER(x1))
PROPER(f(x0, b, x2)) → c6(F(proper(x0), ok(b), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(x0, c, x2)) → c6(F(proper(x0), ok(c), proper(x2)), PROPER(x0), PROPER(x2))
PROPER(f(b, x1, x2)) → c6(F(ok(b), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
PROPER(f(c, x1, x2)) → c6(F(ok(c), proper(x1), proper(x2)), PROPER(x1), PROPER(x2))
TOP(mark(f(z0, z1, z2))) → c9(TOP(f(proper(z0), proper(z1), proper(z2))), PROPER(f(z0, z1, z2)))
TOP(ok(f(b, z0, c))) → c10(TOP(mark(f(z0, c, z0))), ACTIVE(f(b, z0, c)))
TOP(ok(f(z0, z1, z2))) → c10(TOP(f(z0, active(z1), z2)), ACTIVE(f(z0, z1, z2)))
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
Tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
S tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
K tuples:none
Defined Rule Symbols:
active, f, proper
Defined Pair Symbols:
F
Compound Symbols:
c4, c5
(29) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
active(f(b, z0, c)) → mark(f(z0, c, z0))
active(c) → mark(b)
active(f(z0, z1, z2)) → f(z0, active(z1), z2)
f(z0, mark(z1), z2) → mark(f(z0, z1, z2))
f(ok(z0), ok(z1), ok(z2)) → ok(f(z0, z1, z2))
proper(f(z0, z1, z2)) → f(proper(z0), proper(z1), proper(z2))
proper(b) → ok(b)
proper(c) → ok(c)
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
S tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
F
Compound Symbols:
c4, c5
(31) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
We considered the (Usable) Rules:none
And the Tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2, x3)) = x3
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(mark(x1)) = 0
POL(ok(x1)) = [2] + x1
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
S tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
K tuples:
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
Defined Rule Symbols:none
Defined Pair Symbols:
F
Compound Symbols:
c4, c5
(33) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
We considered the (Usable) Rules:none
And the Tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2, x3)) = [3]x1 + [2]x2
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
S tuples:none
K tuples:
F(ok(z0), ok(z1), ok(z2)) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c4(F(z0, z1, z2))
Defined Rule Symbols:none
Defined Pair Symbols:
F
Compound Symbols:
c4, c5
(35) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(36) BOUNDS(1, 1)