*** 1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: a__b() -> b() a__b() -> c() a__f(X,g(X),Y) -> a__f(Y,Y,Y) a__f(X1,X2,X3) -> f(X1,X2,X3) a__g(X) -> g(X) a__g(b()) -> c() mark(b()) -> a__b() mark(c()) -> c() mark(f(X1,X2,X3)) -> a__f(X1,X2,X3) mark(g(X)) -> a__g(mark(X)) Weak DP Rules: Weak TRS Rules: Signature: {a__b/0,a__f/3,a__g/1,mark/1} / {b/0,c/0,f/3,g/1} Obligation: Innermost basic terms: {a__b,a__f,a__g,mark}/{b,c,f,g} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs a__b#() -> c_1() a__b#() -> c_2() a__f#(X,g(X),Y) -> c_3(a__f#(Y,Y,Y)) a__f#(X1,X2,X3) -> c_4() a__g#(X) -> c_5() a__g#(b()) -> c_6() mark#(b()) -> c_7(a__b#()) mark#(c()) -> c_8() mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,X3)) mark#(g(X)) -> c_10(a__g#(mark(X)),mark#(X)) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: a__b#() -> c_1() a__b#() -> c_2() a__f#(X,g(X),Y) -> c_3(a__f#(Y,Y,Y)) a__f#(X1,X2,X3) -> c_4() a__g#(X) -> c_5() a__g#(b()) -> c_6() mark#(b()) -> c_7(a__b#()) mark#(c()) -> c_8() mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,X3)) mark#(g(X)) -> c_10(a__g#(mark(X)),mark#(X)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: a__b() -> b() a__b() -> c() a__f(X,g(X),Y) -> a__f(Y,Y,Y) a__f(X1,X2,X3) -> f(X1,X2,X3) a__g(X) -> g(X) a__g(b()) -> c() mark(b()) -> a__b() mark(c()) -> c() mark(f(X1,X2,X3)) -> a__f(X1,X2,X3) mark(g(X)) -> a__g(mark(X)) Signature: {a__b/0,a__f/3,a__g/1,mark/1,a__b#/0,a__f#/3,a__g#/1,mark#/1} / {b/0,c/0,f/3,g/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2} Obligation: Innermost basic terms: {a__b#,a__f#,a__g#,mark#}/{b,c,f,g} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,2,4,5,6,8} by application of Pre({1,2,4,5,6,8}) = {3,7,9,10}. Here rules are labelled as follows: 1: a__b#() -> c_1() 2: a__b#() -> c_2() 3: a__f#(X,g(X),Y) -> c_3(a__f#(Y ,Y ,Y)) 4: a__f#(X1,X2,X3) -> c_4() 5: a__g#(X) -> c_5() 6: a__g#(b()) -> c_6() 7: mark#(b()) -> c_7(a__b#()) 8: mark#(c()) -> c_8() 9: mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,X3)) 10: mark#(g(X)) -> c_10(a__g#(mark(X)),mark#(X)) *** 1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: a__f#(X,g(X),Y) -> c_3(a__f#(Y,Y,Y)) mark#(b()) -> c_7(a__b#()) mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,X3)) mark#(g(X)) -> c_10(a__g#(mark(X)),mark#(X)) Strict TRS Rules: Weak DP Rules: a__b#() -> c_1() a__b#() -> c_2() a__f#(X1,X2,X3) -> c_4() a__g#(X) -> c_5() a__g#(b()) -> c_6() mark#(c()) -> c_8() Weak TRS Rules: a__b() -> b() a__b() -> c() a__f(X,g(X),Y) -> a__f(Y,Y,Y) a__f(X1,X2,X3) -> f(X1,X2,X3) a__g(X) -> g(X) a__g(b()) -> c() mark(b()) -> a__b() mark(c()) -> c() mark(f(X1,X2,X3)) -> a__f(X1,X2,X3) mark(g(X)) -> a__g(mark(X)) Signature: {a__b/0,a__f/3,a__g/1,mark/1,a__b#/0,a__f#/3,a__g#/1,mark#/1} / {b/0,c/0,f/3,g/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2} Obligation: Innermost basic terms: {a__b#,a__f#,a__g#,mark#}/{b,c,f,g} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,2} by application of Pre({1,2}) = {3,4}. Here rules are labelled as follows: 1: a__f#(X,g(X),Y) -> c_3(a__f#(Y ,Y ,Y)) 2: mark#(b()) -> c_7(a__b#()) 3: mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,X3)) 4: mark#(g(X)) -> c_10(a__g#(mark(X)),mark#(X)) 5: a__b#() -> c_1() 6: a__b#() -> c_2() 7: a__f#(X1,X2,X3) -> c_4() 8: a__g#(X) -> c_5() 9: a__g#(b()) -> c_6() 10: mark#(c()) -> c_8() *** 1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,X3)) mark#(g(X)) -> c_10(a__g#(mark(X)),mark#(X)) Strict TRS Rules: Weak DP Rules: a__b#() -> c_1() a__b#() -> c_2() a__f#(X,g(X),Y) -> c_3(a__f#(Y,Y,Y)) a__f#(X1,X2,X3) -> c_4() a__g#(X) -> c_5() a__g#(b()) -> c_6() mark#(b()) -> c_7(a__b#()) mark#(c()) -> c_8() Weak TRS Rules: a__b() -> b() a__b() -> c() a__f(X,g(X),Y) -> a__f(Y,Y,Y) a__f(X1,X2,X3) -> f(X1,X2,X3) a__g(X) -> g(X) a__g(b()) -> c() mark(b()) -> a__b() mark(c()) -> c() mark(f(X1,X2,X3)) -> a__f(X1,X2,X3) mark(g(X)) -> a__g(mark(X)) Signature: {a__b/0,a__f/3,a__g/1,mark/1,a__b#/0,a__f#/3,a__g#/1,mark#/1} / {b/0,c/0,f/3,g/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2} Obligation: Innermost basic terms: {a__b#,a__f#,a__g#,mark#}/{b,c,f,g} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1} by application of Pre({1}) = {2}. Here rules are labelled as follows: 1: mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,X3)) 2: mark#(g(X)) -> c_10(a__g#(mark(X)),mark#(X)) 3: a__b#() -> c_1() 4: a__b#() -> c_2() 5: a__f#(X,g(X),Y) -> c_3(a__f#(Y ,Y ,Y)) 6: a__f#(X1,X2,X3) -> c_4() 7: a__g#(X) -> c_5() 8: a__g#(b()) -> c_6() 9: mark#(b()) -> c_7(a__b#()) 10: mark#(c()) -> c_8() *** 1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: mark#(g(X)) -> c_10(a__g#(mark(X)),mark#(X)) Strict TRS Rules: Weak DP Rules: a__b#() -> c_1() a__b#() -> c_2() a__f#(X,g(X),Y) -> c_3(a__f#(Y,Y,Y)) a__f#(X1,X2,X3) -> c_4() a__g#(X) -> c_5() a__g#(b()) -> c_6() mark#(b()) -> c_7(a__b#()) mark#(c()) -> c_8() mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,X3)) Weak TRS Rules: a__b() -> b() a__b() -> c() a__f(X,g(X),Y) -> a__f(Y,Y,Y) a__f(X1,X2,X3) -> f(X1,X2,X3) a__g(X) -> g(X) a__g(b()) -> c() mark(b()) -> a__b() mark(c()) -> c() mark(f(X1,X2,X3)) -> a__f(X1,X2,X3) mark(g(X)) -> a__g(mark(X)) Signature: {a__b/0,a__f/3,a__g/1,mark/1,a__b#/0,a__f#/3,a__g#/1,mark#/1} / {b/0,c/0,f/3,g/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2} Obligation: Innermost basic terms: {a__b#,a__f#,a__g#,mark#}/{b,c,f,g} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:mark#(g(X)) -> c_10(a__g#(mark(X)),mark#(X)) -->_2 mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,X3)):10 -->_2 mark#(b()) -> c_7(a__b#()):8 -->_2 mark#(c()) -> c_8():9 -->_1 a__g#(b()) -> c_6():7 -->_1 a__g#(X) -> c_5():6 -->_2 mark#(g(X)) -> c_10(a__g#(mark(X)),mark#(X)):1 2:W:a__b#() -> c_1() 3:W:a__b#() -> c_2() 4:W:a__f#(X,g(X),Y) -> c_3(a__f#(Y,Y,Y)) -->_1 a__f#(X1,X2,X3) -> c_4():5 5:W:a__f#(X1,X2,X3) -> c_4() 6:W:a__g#(X) -> c_5() 7:W:a__g#(b()) -> c_6() 8:W:mark#(b()) -> c_7(a__b#()) -->_1 a__b#() -> c_2():3 -->_1 a__b#() -> c_1():2 9:W:mark#(c()) -> c_8() 10:W:mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,X3)) -->_1 a__f#(X1,X2,X3) -> c_4():5 -->_1 a__f#(X,g(X),Y) -> c_3(a__f#(Y,Y,Y)):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: a__g#(X) -> c_5() 7: a__g#(b()) -> c_6() 9: mark#(c()) -> c_8() 8: mark#(b()) -> c_7(a__b#()) 2: a__b#() -> c_1() 3: a__b#() -> c_2() 10: mark#(f(X1,X2,X3)) -> c_9(a__f#(X1,X2,X3)) 4: a__f#(X,g(X),Y) -> c_3(a__f#(Y ,Y ,Y)) 5: a__f#(X1,X2,X3) -> c_4() *** 1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: mark#(g(X)) -> c_10(a__g#(mark(X)),mark#(X)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: a__b() -> b() a__b() -> c() a__f(X,g(X),Y) -> a__f(Y,Y,Y) a__f(X1,X2,X3) -> f(X1,X2,X3) a__g(X) -> g(X) a__g(b()) -> c() mark(b()) -> a__b() mark(c()) -> c() mark(f(X1,X2,X3)) -> a__f(X1,X2,X3) mark(g(X)) -> a__g(mark(X)) Signature: {a__b/0,a__f/3,a__g/1,mark/1,a__b#/0,a__f#/3,a__g#/1,mark#/1} / {b/0,c/0,f/3,g/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2} Obligation: Innermost basic terms: {a__b#,a__f#,a__g#,mark#}/{b,c,f,g} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:mark#(g(X)) -> c_10(a__g#(mark(X)),mark#(X)) -->_2 mark#(g(X)) -> c_10(a__g#(mark(X)),mark#(X)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: mark#(g(X)) -> c_10(mark#(X)) *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: mark#(g(X)) -> c_10(mark#(X)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: a__b() -> b() a__b() -> c() a__f(X,g(X),Y) -> a__f(Y,Y,Y) a__f(X1,X2,X3) -> f(X1,X2,X3) a__g(X) -> g(X) a__g(b()) -> c() mark(b()) -> a__b() mark(c()) -> c() mark(f(X1,X2,X3)) -> a__f(X1,X2,X3) mark(g(X)) -> a__g(mark(X)) Signature: {a__b/0,a__f/3,a__g/1,mark/1,a__b#/0,a__f#/3,a__g#/1,mark#/1} / {b/0,c/0,f/3,g/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {a__b#,a__f#,a__g#,mark#}/{b,c,f,g} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: mark#(g(X)) -> c_10(mark#(X)) *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: mark#(g(X)) -> c_10(mark#(X)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {a__b/0,a__f/3,a__g/1,mark/1,a__b#/0,a__f#/3,a__g#/1,mark#/1} / {b/0,c/0,f/3,g/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {a__b#,a__f#,a__g#,mark#}/{b,c,f,g} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: mark#(g(X)) -> c_10(mark#(X)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: mark#(g(X)) -> c_10(mark#(X)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {a__b/0,a__f/3,a__g/1,mark/1,a__b#/0,a__f#/3,a__g#/1,mark#/1} / {b/0,c/0,f/3,g/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {a__b#,a__f#,a__g#,mark#}/{b,c,f,g} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_10) = {1} Following symbols are considered usable: {a__b#,a__f#,a__g#,mark#} TcT has computed the following interpretation: p(a__b) = [2] p(a__f) = [1] x2 + [1] x3 + [8] p(a__g) = [1] x1 + [1] p(b) = [0] p(c) = [1] p(f) = [1] p(g) = [1] x1 + [8] p(mark) = [1] x1 + [2] p(a__b#) = [1] p(a__f#) = [2] x2 + [1] x3 + [2] p(a__g#) = [2] x1 + [0] p(mark#) = [2] x1 + [0] p(c_1) = [2] p(c_2) = [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [0] p(c_7) = [4] p(c_8) = [1] p(c_9) = [1] p(c_10) = [1] x1 + [12] Following rules are strictly oriented: mark#(g(X)) = [2] X + [16] > [2] X + [12] = c_10(mark#(X)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: mark#(g(X)) -> c_10(mark#(X)) Weak TRS Rules: Signature: {a__b/0,a__f/3,a__g/1,mark/1,a__b#/0,a__f#/3,a__g#/1,mark#/1} / {b/0,c/0,f/3,g/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {a__b#,a__f#,a__g#,mark#}/{b,c,f,g} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: mark#(g(X)) -> c_10(mark#(X)) Weak TRS Rules: Signature: {a__b/0,a__f/3,a__g/1,mark/1,a__b#/0,a__f#/3,a__g#/1,mark#/1} / {b/0,c/0,f/3,g/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {a__b#,a__f#,a__g#,mark#}/{b,c,f,g} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:mark#(g(X)) -> c_10(mark#(X)) -->_1 mark#(g(X)) -> c_10(mark#(X)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: mark#(g(X)) -> c_10(mark#(X)) *** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {a__b/0,a__f/3,a__g/1,mark/1,a__b#/0,a__f#/3,a__g#/1,mark#/1} / {b/0,c/0,f/3,g/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {a__b#,a__f#,a__g#,mark#}/{b,c,f,g} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).