*** 1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: a__c() -> c() a__c() -> d() a__g(X) -> a__h(X) a__g(X) -> g(X) a__h(X) -> h(X) a__h(d()) -> a__g(c()) mark(c()) -> a__c() mark(d()) -> d() mark(g(X)) -> a__g(X) mark(h(X)) -> a__h(X) Weak DP Rules: Weak TRS Rules: Signature: {a__c/0,a__g/1,a__h/1,mark/1} / {c/0,d/0,g/1,h/1} Obligation: Innermost basic terms: {a__c,a__g,a__h,mark}/{c,d,g,h} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs a__c#() -> c_1() a__c#() -> c_2() a__g#(X) -> c_3(a__h#(X)) a__g#(X) -> c_4() a__h#(X) -> c_5() a__h#(d()) -> c_6(a__g#(c())) mark#(c()) -> c_7(a__c#()) mark#(d()) -> c_8() mark#(g(X)) -> c_9(a__g#(X)) mark#(h(X)) -> c_10(a__h#(X)) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: a__c#() -> c_1() a__c#() -> c_2() a__g#(X) -> c_3(a__h#(X)) a__g#(X) -> c_4() a__h#(X) -> c_5() a__h#(d()) -> c_6(a__g#(c())) mark#(c()) -> c_7(a__c#()) mark#(d()) -> c_8() mark#(g(X)) -> c_9(a__g#(X)) mark#(h(X)) -> c_10(a__h#(X)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: a__c() -> c() a__c() -> d() a__g(X) -> a__h(X) a__g(X) -> g(X) a__h(X) -> h(X) a__h(d()) -> a__g(c()) mark(c()) -> a__c() mark(d()) -> d() mark(g(X)) -> a__g(X) mark(h(X)) -> a__h(X) Signature: {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: a__c#() -> c_1() a__c#() -> c_2() a__g#(X) -> c_3(a__h#(X)) a__g#(X) -> c_4() a__h#(X) -> c_5() a__h#(d()) -> c_6(a__g#(c())) mark#(c()) -> c_7(a__c#()) mark#(d()) -> c_8() mark#(g(X)) -> c_9(a__g#(X)) mark#(h(X)) -> c_10(a__h#(X)) *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: a__c#() -> c_1() a__c#() -> c_2() a__g#(X) -> c_3(a__h#(X)) a__g#(X) -> c_4() a__h#(X) -> c_5() a__h#(d()) -> c_6(a__g#(c())) mark#(c()) -> c_7(a__c#()) mark#(d()) -> c_8() mark#(g(X)) -> c_9(a__g#(X)) mark#(h(X)) -> c_10(a__h#(X)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,2,4,5,8} by application of Pre({1,2,4,5,8}) = {3,6,7,9,10}. Here rules are labelled as follows: 1: a__c#() -> c_1() 2: a__c#() -> c_2() 3: a__g#(X) -> c_3(a__h#(X)) 4: a__g#(X) -> c_4() 5: a__h#(X) -> c_5() 6: a__h#(d()) -> c_6(a__g#(c())) 7: mark#(c()) -> c_7(a__c#()) 8: mark#(d()) -> c_8() 9: mark#(g(X)) -> c_9(a__g#(X)) 10: mark#(h(X)) -> c_10(a__h#(X)) *** 1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: a__g#(X) -> c_3(a__h#(X)) a__h#(d()) -> c_6(a__g#(c())) mark#(c()) -> c_7(a__c#()) mark#(g(X)) -> c_9(a__g#(X)) mark#(h(X)) -> c_10(a__h#(X)) Strict TRS Rules: Weak DP Rules: a__c#() -> c_1() a__c#() -> c_2() a__g#(X) -> c_4() a__h#(X) -> c_5() mark#(d()) -> c_8() Weak TRS Rules: Signature: {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {3} by application of Pre({3}) = {}. Here rules are labelled as follows: 1: a__g#(X) -> c_3(a__h#(X)) 2: a__h#(d()) -> c_6(a__g#(c())) 3: mark#(c()) -> c_7(a__c#()) 4: mark#(g(X)) -> c_9(a__g#(X)) 5: mark#(h(X)) -> c_10(a__h#(X)) 6: a__c#() -> c_1() 7: a__c#() -> c_2() 8: a__g#(X) -> c_4() 9: a__h#(X) -> c_5() 10: mark#(d()) -> c_8() *** 1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: a__g#(X) -> c_3(a__h#(X)) a__h#(d()) -> c_6(a__g#(c())) mark#(g(X)) -> c_9(a__g#(X)) mark#(h(X)) -> c_10(a__h#(X)) Strict TRS Rules: Weak DP Rules: a__c#() -> c_1() a__c#() -> c_2() a__g#(X) -> c_4() a__h#(X) -> c_5() mark#(c()) -> c_7(a__c#()) mark#(d()) -> c_8() Weak TRS Rules: Signature: {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:a__g#(X) -> c_3(a__h#(X)) -->_1 a__h#(d()) -> c_6(a__g#(c())):2 -->_1 a__h#(X) -> c_5():8 2:S:a__h#(d()) -> c_6(a__g#(c())) -->_1 a__g#(X) -> c_4():7 -->_1 a__g#(X) -> c_3(a__h#(X)):1 3:S:mark#(g(X)) -> c_9(a__g#(X)) -->_1 a__g#(X) -> c_4():7 -->_1 a__g#(X) -> c_3(a__h#(X)):1 4:S:mark#(h(X)) -> c_10(a__h#(X)) -->_1 a__h#(X) -> c_5():8 -->_1 a__h#(d()) -> c_6(a__g#(c())):2 5:W:a__c#() -> c_1() 6:W:a__c#() -> c_2() 7:W:a__g#(X) -> c_4() 8:W:a__h#(X) -> c_5() 9:W:mark#(c()) -> c_7(a__c#()) -->_1 a__c#() -> c_2():6 -->_1 a__c#() -> c_1():5 10:W:mark#(d()) -> c_8() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 10: mark#(d()) -> c_8() 9: mark#(c()) -> c_7(a__c#()) 6: a__c#() -> c_2() 5: a__c#() -> c_1() 8: a__h#(X) -> c_5() 7: a__g#(X) -> c_4() *** 1.1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: a__g#(X) -> c_3(a__h#(X)) a__h#(d()) -> c_6(a__g#(c())) mark#(g(X)) -> c_9(a__g#(X)) mark#(h(X)) -> c_10(a__h#(X)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h} Applied Processor: RemoveHeads Proof: Consider the dependency graph 1:S:a__g#(X) -> c_3(a__h#(X)) -->_1 a__h#(d()) -> c_6(a__g#(c())):2 2:S:a__h#(d()) -> c_6(a__g#(c())) -->_1 a__g#(X) -> c_3(a__h#(X)):1 3:S:mark#(g(X)) -> c_9(a__g#(X)) -->_1 a__g#(X) -> c_3(a__h#(X)):1 4:S:mark#(h(X)) -> c_10(a__h#(X)) -->_1 a__h#(d()) -> c_6(a__g#(c())):2 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(3,mark#(g(X)) -> c_9(a__g#(X))),(4,mark#(h(X)) -> c_10(a__h#(X)))] *** 1.1.1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: a__g#(X) -> c_3(a__h#(X)) a__h#(d()) -> c_6(a__g#(c())) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_6) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(a__c) = [0] p(a__g) = [0] p(a__h) = [0] p(c) = [0] p(d) = [0] p(g) = [0] p(h) = [0] p(mark) = [0] p(a__c#) = [0] p(a__g#) = [0] p(a__h#) = [5] p(mark#) = [0] p(c_1) = [0] p(c_2) = [0] p(c_3) = [1] x1 + [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [1] x1 + [0] p(c_7) = [0] p(c_8) = [0] p(c_9) = [0] p(c_10) = [0] Following rules are strictly oriented: a__h#(d()) = [5] > [0] = c_6(a__g#(c())) Following rules are (at-least) weakly oriented: a__g#(X) = [0] >= [5] = c_3(a__h#(X)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: a__g#(X) -> c_3(a__h#(X)) Strict TRS Rules: Weak DP Rules: a__h#(d()) -> c_6(a__g#(c())) Weak TRS Rules: Signature: {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_6) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(a__c) = [0] p(a__g) = [0] p(a__h) = [0] p(c) = [2] p(d) = [7] p(g) = [0] p(h) = [0] p(mark) = [0] p(a__c#) = [0] p(a__g#) = [8] x1 + [5] p(a__h#) = [4] x1 + [1] p(mark#) = [1] x1 + [1] p(c_1) = [1] p(c_2) = [1] p(c_3) = [1] x1 + [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [1] x1 + [3] p(c_7) = [0] p(c_8) = [0] p(c_9) = [0] p(c_10) = [0] Following rules are strictly oriented: a__g#(X) = [8] X + [5] > [4] X + [1] = c_3(a__h#(X)) Following rules are (at-least) weakly oriented: a__h#(d()) = [29] >= [24] = c_6(a__g#(c())) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: a__g#(X) -> c_3(a__h#(X)) a__h#(d()) -> c_6(a__g#(c())) Weak TRS Rules: Signature: {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1} Obligation: Innermost basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).