*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: active(cons(X1,X2)) -> cons(active(X1),X2) active(head(X)) -> head(active(X)) active(head(cons(X,XS))) -> mark(X) active(incr(X)) -> incr(active(X)) active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) active(nats()) -> mark(cons(0(),incr(nats()))) active(odds()) -> mark(incr(pairs())) active(pairs()) -> mark(cons(0(),incr(odds()))) active(s(X)) -> s(active(X)) active(tail(X)) -> tail(active(X)) active(tail(cons(X,XS))) -> mark(XS) cons(mark(X1),X2) -> mark(cons(X1,X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) head(mark(X)) -> mark(head(X)) head(ok(X)) -> ok(head(X)) incr(mark(X)) -> mark(incr(X)) incr(ok(X)) -> ok(incr(X)) proper(0()) -> ok(0()) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(head(X)) -> head(proper(X)) proper(incr(X)) -> incr(proper(X)) proper(nats()) -> ok(nats()) proper(odds()) -> ok(odds()) proper(pairs()) -> ok(pairs()) proper(s(X)) -> s(proper(X)) proper(tail(X)) -> tail(proper(X)) s(mark(X)) -> mark(s(X)) s(ok(X)) -> ok(s(X)) tail(mark(X)) -> mark(tail(X)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Weak DP Rules: Weak TRS Rules: Signature: {active/1,cons/2,head/1,incr/1,proper/1,s/1,tail/1,top/1} / {0/0,mark/1,nats/0,odds/0,ok/1,pairs/0} Obligation: Innermost basic terms: {active,cons,head,incr,proper,s,tail,top}/{0,mark,nats,odds,ok,pairs} Applied Processor: Bounds {initialAutomaton = perSymbol, enrichment = match} Proof: The problem is match-bounded by 9. The enriched problem is compatible with follwoing automaton. 0_0() -> 1 0_1() -> 16 0_2() -> 28 0_3() -> 47 0_4() -> 56 0_5() -> 75 0_6() -> 100 active_0(1) -> 2 active_0(6) -> 2 active_0(7) -> 2 active_0(8) -> 2 active_0(9) -> 2 active_0(10) -> 2 active_1(1) -> 25 active_1(6) -> 25 active_1(7) -> 25 active_1(8) -> 25 active_1(9) -> 25 active_1(10) -> 25 active_2(16) -> 26 active_2(18) -> 26 active_2(19) -> 26 active_3(38) -> 36 active_4(28) -> 53 active_4(31) -> 45 active_4(51) -> 52 active_5(44) -> 54 active_5(47) -> 61 active_5(74) -> 60 active_6(56) -> 82 active_6(72) -> 65 active_6(80) -> 81 active_7(75) -> 92 active_7(79) -> 83 active_7(105) -> 91 active_8(99) -> 107 active_8(100) -> 111 active_8(108) -> 109 active_9(103) -> 110 cons_0(1,1) -> 3 cons_0(1,6) -> 3 cons_0(1,7) -> 3 cons_0(1,8) -> 3 cons_0(1,9) -> 3 cons_0(1,10) -> 3 cons_0(6,1) -> 3 cons_0(6,6) -> 3 cons_0(6,7) -> 3 cons_0(6,8) -> 3 cons_0(6,9) -> 3 cons_0(6,10) -> 3 cons_0(7,1) -> 3 cons_0(7,6) -> 3 cons_0(7,7) -> 3 cons_0(7,8) -> 3 cons_0(7,9) -> 3 cons_0(7,10) -> 3 cons_0(8,1) -> 3 cons_0(8,6) -> 3 cons_0(8,7) -> 3 cons_0(8,8) -> 3 cons_0(8,9) -> 3 cons_0(8,10) -> 3 cons_0(9,1) -> 3 cons_0(9,6) -> 3 cons_0(9,7) -> 3 cons_0(9,8) -> 3 cons_0(9,9) -> 3 cons_0(9,10) -> 3 cons_0(10,1) -> 3 cons_0(10,6) -> 3 cons_0(10,7) -> 3 cons_0(10,8) -> 3 cons_0(10,9) -> 3 cons_0(10,10) -> 3 cons_1(1,1) -> 20 cons_1(1,6) -> 20 cons_1(1,7) -> 20 cons_1(1,8) -> 20 cons_1(1,9) -> 20 cons_1(1,10) -> 20 cons_1(6,1) -> 20 cons_1(6,6) -> 20 cons_1(6,7) -> 20 cons_1(6,8) -> 20 cons_1(6,9) -> 20 cons_1(6,10) -> 20 cons_1(7,1) -> 20 cons_1(7,6) -> 20 cons_1(7,7) -> 20 cons_1(7,8) -> 20 cons_1(7,9) -> 20 cons_1(7,10) -> 20 cons_1(8,1) -> 20 cons_1(8,6) -> 20 cons_1(8,7) -> 20 cons_1(8,8) -> 20 cons_1(8,9) -> 20 cons_1(8,10) -> 20 cons_1(9,1) -> 20 cons_1(9,6) -> 20 cons_1(9,7) -> 20 cons_1(9,8) -> 20 cons_1(9,9) -> 20 cons_1(9,10) -> 20 cons_1(10,1) -> 20 cons_1(10,6) -> 20 cons_1(10,7) -> 20 cons_1(10,8) -> 20 cons_1(10,9) -> 20 cons_1(10,10) -> 20 cons_1(16,17) -> 15 cons_2(28,29) -> 27 cons_2(32,33) -> 26 cons_3(28,37) -> 38 cons_3(39,40) -> 36 cons_3(47,48) -> 46 cons_4(47,50) -> 51 cons_4(53,37) -> 36 cons_4(56,57) -> 55 cons_4(62,63) -> 54 cons_5(56,67) -> 72 cons_5(61,50) -> 52 cons_5(68,69) -> 65 cons_6(75,73) -> 79 cons_6(77,78) -> 76 cons_6(82,67) -> 65 cons_7(85,86) -> 84 cons_7(87,88) -> 81 cons_7(92,73) -> 83 cons_7(99,86) -> 105 cons_8(93,94) -> 91 cons_8(103,106) -> 108 cons_8(107,86) -> 91 cons_9(110,106) -> 109 head_0(1) -> 4 head_0(6) -> 4 head_0(7) -> 4 head_0(8) -> 4 head_0(9) -> 4 head_0(10) -> 4 head_1(1) -> 21 head_1(6) -> 21 head_1(7) -> 21 head_1(8) -> 21 head_1(9) -> 21 head_1(10) -> 21 incr_0(1) -> 5 incr_0(6) -> 5 incr_0(7) -> 5 incr_0(8) -> 5 incr_0(9) -> 5 incr_0(10) -> 5 incr_1(1) -> 22 incr_1(6) -> 22 incr_1(7) -> 22 incr_1(8) -> 22 incr_1(9) -> 22 incr_1(10) -> 22 incr_1(18) -> 17 incr_1(19) -> 15 incr_2(30) -> 29 incr_2(31) -> 27 incr_2(34) -> 33 incr_2(35) -> 26 incr_3(30) -> 37 incr_3(31) -> 38 incr_3(41) -> 40 incr_3(42) -> 36 incr_3(43) -> 48 incr_4(43) -> 50 incr_4(44) -> 51 incr_4(45) -> 36 incr_4(46) -> 49 incr_4(58) -> 57 incr_4(64) -> 63 incr_5(54) -> 52 incr_5(55) -> 59 incr_5(58) -> 67 incr_5(66) -> 67 incr_5(70) -> 69 incr_6(65) -> 60 incr_6(67) -> 78 incr_6(71) -> 73 incr_6(72) -> 74 incr_6(95) -> 89 incr_6(97) -> 73 incr_7(73) -> 86 incr_7(79) -> 80 incr_7(83) -> 81 incr_7(89) -> 88 incr_7(101) -> 96 incr_7(102) -> 104 incr_8(96) -> 94 incr_8(104) -> 106 mark_0(1) -> 6 mark_0(6) -> 6 mark_0(7) -> 6 mark_0(8) -> 6 mark_0(9) -> 6 mark_0(10) -> 6 mark_1(15) -> 2 mark_1(15) -> 25 mark_1(20) -> 3 mark_1(20) -> 20 mark_1(21) -> 4 mark_1(21) -> 21 mark_1(22) -> 5 mark_1(22) -> 22 mark_1(23) -> 12 mark_1(23) -> 23 mark_1(24) -> 13 mark_1(24) -> 24 mark_2(27) -> 26 mark_3(46) -> 45 mark_4(49) -> 36 mark_4(55) -> 54 mark_5(59) -> 52 mark_6(76) -> 60 mark_7(84) -> 81 nats_0() -> 7 nats_1() -> 18 nats_2() -> 30 nats_3() -> 43 nats_4() -> 66 nats_5() -> 97 nats_6() -> 102 odds_0() -> 8 odds_1() -> 18 odds_2() -> 30 odds_3() -> 43 odds_4() -> 58 odds_5() -> 71 odds_6() -> 102 ok_0(1) -> 9 ok_0(6) -> 9 ok_0(7) -> 9 ok_0(8) -> 9 ok_0(9) -> 9 ok_0(10) -> 9 ok_1(16) -> 11 ok_1(16) -> 25 ok_1(18) -> 11 ok_1(18) -> 25 ok_1(19) -> 11 ok_1(19) -> 25 ok_1(20) -> 3 ok_1(20) -> 20 ok_1(21) -> 4 ok_1(21) -> 21 ok_1(22) -> 5 ok_1(22) -> 22 ok_1(23) -> 12 ok_1(23) -> 23 ok_1(24) -> 13 ok_1(24) -> 24 ok_2(28) -> 32 ok_2(30) -> 34 ok_2(31) -> 35 ok_3(37) -> 33 ok_3(38) -> 26 ok_3(43) -> 41 ok_3(44) -> 42 ok_3(47) -> 39 ok_4(50) -> 40 ok_4(51) -> 36 ok_4(56) -> 62 ok_4(58) -> 64 ok_4(66) -> 64 ok_5(67) -> 63 ok_5(71) -> 70 ok_5(71) -> 95 ok_5(72) -> 54 ok_5(75) -> 68 ok_5(75) -> 90 ok_5(97) -> 95 ok_6(73) -> 69 ok_6(73) -> 89 ok_6(74) -> 52 ok_6(79) -> 65 ok_6(99) -> 87 ok_6(100) -> 98 ok_6(102) -> 101 ok_7(80) -> 60 ok_7(86) -> 88 ok_7(103) -> 93 ok_7(104) -> 96 ok_7(105) -> 81 ok_8(106) -> 94 ok_8(108) -> 91 pairs_0() -> 10 pairs_1() -> 19 pairs_2() -> 31 pairs_3() -> 44 proper_0(1) -> 11 proper_0(6) -> 11 proper_0(7) -> 11 proper_0(8) -> 11 proper_0(9) -> 11 proper_0(10) -> 11 proper_1(1) -> 25 proper_1(6) -> 25 proper_1(7) -> 25 proper_1(8) -> 25 proper_1(9) -> 25 proper_1(10) -> 25 proper_2(15) -> 26 proper_2(16) -> 32 proper_2(17) -> 33 proper_2(18) -> 34 proper_2(19) -> 35 proper_3(27) -> 36 proper_3(28) -> 39 proper_3(29) -> 40 proper_3(30) -> 41 proper_3(31) -> 42 proper_4(43) -> 64 proper_4(47) -> 62 proper_4(48) -> 63 proper_4(49) -> 52 proper_5(46) -> 54 proper_5(56) -> 68 proper_5(57) -> 69 proper_5(58) -> 70 proper_5(59) -> 60 proper_6(55) -> 65 proper_6(58) -> 95 proper_6(66) -> 95 proper_6(76) -> 81 proper_7(56) -> 90 proper_7(67) -> 89 proper_7(71) -> 101 proper_7(77) -> 87 proper_7(78) -> 88 proper_7(84) -> 91 proper_7(97) -> 101 proper_8(73) -> 96 proper_8(75) -> 98 proper_8(85) -> 93 proper_8(86) -> 94 s_0(1) -> 12 s_0(6) -> 12 s_0(7) -> 12 s_0(8) -> 12 s_0(9) -> 12 s_0(10) -> 12 s_1(1) -> 23 s_1(6) -> 23 s_1(7) -> 23 s_1(8) -> 23 s_1(9) -> 23 s_1(10) -> 23 s_6(56) -> 77 s_6(75) -> 99 s_7(75) -> 85 s_7(90) -> 87 s_7(92) -> 107 s_7(100) -> 103 s_8(98) -> 93 s_8(111) -> 110 tail_0(1) -> 13 tail_0(6) -> 13 tail_0(7) -> 13 tail_0(8) -> 13 tail_0(9) -> 13 tail_0(10) -> 13 tail_1(1) -> 24 tail_1(6) -> 24 tail_1(7) -> 24 tail_1(8) -> 24 tail_1(9) -> 24 tail_1(10) -> 24 top_0(1) -> 14 top_0(6) -> 14 top_0(7) -> 14 top_0(8) -> 14 top_0(9) -> 14 top_0(10) -> 14 top_1(25) -> 14 top_2(26) -> 14 top_3(36) -> 14 top_4(52) -> 14 top_5(60) -> 14 top_6(81) -> 14 top_7(91) -> 14 top_8(109) -> 14 *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: active(cons(X1,X2)) -> cons(active(X1),X2) active(head(X)) -> head(active(X)) active(head(cons(X,XS))) -> mark(X) active(incr(X)) -> incr(active(X)) active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS))) active(nats()) -> mark(cons(0(),incr(nats()))) active(odds()) -> mark(incr(pairs())) active(pairs()) -> mark(cons(0(),incr(odds()))) active(s(X)) -> s(active(X)) active(tail(X)) -> tail(active(X)) active(tail(cons(X,XS))) -> mark(XS) cons(mark(X1),X2) -> mark(cons(X1,X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) head(mark(X)) -> mark(head(X)) head(ok(X)) -> ok(head(X)) incr(mark(X)) -> mark(incr(X)) incr(ok(X)) -> ok(incr(X)) proper(0()) -> ok(0()) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(head(X)) -> head(proper(X)) proper(incr(X)) -> incr(proper(X)) proper(nats()) -> ok(nats()) proper(odds()) -> ok(odds()) proper(pairs()) -> ok(pairs()) proper(s(X)) -> s(proper(X)) proper(tail(X)) -> tail(proper(X)) s(mark(X)) -> mark(s(X)) s(ok(X)) -> ok(s(X)) tail(mark(X)) -> mark(tail(X)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Signature: {active/1,cons/2,head/1,incr/1,proper/1,s/1,tail/1,top/1} / {0/0,mark/1,nats/0,odds/0,ok/1,pairs/0} Obligation: Innermost basic terms: {active,cons,head,incr,proper,s,tail,top}/{0,mark,nats,odds,ok,pairs} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).