*** 1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
activate(X) -> X
activate(n__first(X1,X2)) -> first(X1,X2)
activate(n__from(X)) -> from(X)
first(X1,X2) -> n__first(X1,X2)
first(0(),Z) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
from(X) -> cons(X,n__from(s(X)))
from(X) -> n__from(X)
sel(0(),cons(X,Z)) -> X
sel(s(X),cons(Y,Z)) -> sel(X,activate(Z))
Weak DP Rules:
Weak TRS Rules:
Signature:
{activate/1,first/2,from/1,sel/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1}
Obligation:
Innermost
basic terms: {activate,first,from,sel}/{0,cons,n__first,n__from,nil,s}
Applied Processor:
DependencyPairs {dpKind_ = WIDP}
Proof:
We add the following weak innermost dependency pairs:
Strict DPs
activate#(X) -> c_1()
activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
activate#(n__from(X)) -> c_3(from#(X))
first#(X1,X2) -> c_4()
first#(0(),Z) -> c_5()
first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
from#(X) -> c_7()
from#(X) -> c_8()
sel#(0(),cons(X,Z)) -> c_9()
sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
Weak DPs
and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
activate#(X) -> c_1()
activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
activate#(n__from(X)) -> c_3(from#(X))
first#(X1,X2) -> c_4()
first#(0(),Z) -> c_5()
first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
from#(X) -> c_7()
from#(X) -> c_8()
sel#(0(),cons(X,Z)) -> c_9()
sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
Strict TRS Rules:
activate(X) -> X
activate(n__first(X1,X2)) -> first(X1,X2)
activate(n__from(X)) -> from(X)
first(X1,X2) -> n__first(X1,X2)
first(0(),Z) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
from(X) -> cons(X,n__from(s(X)))
from(X) -> n__from(X)
sel(0(),cons(X,Z)) -> X
sel(s(X),cons(Y,Z)) -> sel(X,activate(Z))
Weak DP Rules:
Weak TRS Rules:
Signature:
{activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
Obligation:
Innermost
basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
activate(X) -> X
activate(n__first(X1,X2)) -> first(X1,X2)
activate(n__from(X)) -> from(X)
first(X1,X2) -> n__first(X1,X2)
first(0(),Z) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
from(X) -> cons(X,n__from(s(X)))
from(X) -> n__from(X)
activate#(X) -> c_1()
activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
activate#(n__from(X)) -> c_3(from#(X))
first#(X1,X2) -> c_4()
first#(0(),Z) -> c_5()
first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
from#(X) -> c_7()
from#(X) -> c_8()
sel#(0(),cons(X,Z)) -> c_9()
sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
*** 1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
activate#(X) -> c_1()
activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
activate#(n__from(X)) -> c_3(from#(X))
first#(X1,X2) -> c_4()
first#(0(),Z) -> c_5()
first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
from#(X) -> c_7()
from#(X) -> c_8()
sel#(0(),cons(X,Z)) -> c_9()
sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
Strict TRS Rules:
activate(X) -> X
activate(n__first(X1,X2)) -> first(X1,X2)
activate(n__from(X)) -> from(X)
first(X1,X2) -> n__first(X1,X2)
first(0(),Z) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
from(X) -> cons(X,n__from(s(X)))
from(X) -> n__from(X)
Weak DP Rules:
Weak TRS Rules:
Signature:
{activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
Obligation:
Innermost
basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs}
Proof:
The weightgap principle applies using the following constant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(cons) = {2},
uargs(n__first) = {2},
uargs(sel#) = {2},
uargs(c_2) = {1},
uargs(c_3) = {1},
uargs(c_6) = {1},
uargs(c_10) = {1}
Following symbols are considered usable:
{}
TcT has computed the following interpretation:
p(0) = [0]
p(activate) = [1] x1 + [2]
p(cons) = [1] x2 + [0]
p(first) = [1] x1 + [1] x2 + [8]
p(from) = [9]
p(n__first) = [1] x1 + [1] x2 + [7]
p(n__from) = [8]
p(nil) = [0]
p(s) = [1] x1 + [2]
p(sel) = [0]
p(activate#) = [0]
p(first#) = [0]
p(from#) = [0]
p(sel#) = [9] x1 + [1] x2 + [9]
p(c_1) = [2]
p(c_2) = [1] x1 + [0]
p(c_3) = [1] x1 + [0]
p(c_4) = [0]
p(c_5) = [1]
p(c_6) = [1] x1 + [4]
p(c_7) = [0]
p(c_8) = [1]
p(c_9) = [0]
p(c_10) = [1] x1 + [9]
Following rules are strictly oriented:
sel#(0(),cons(X,Z)) = [1] Z + [9]
> [0]
= c_9()
sel#(s(X),cons(Y,Z)) = [9] X + [1] Z + [27]
> [9] X + [1] Z + [20]
= c_10(sel#(X,activate(Z)))
activate(X) = [1] X + [2]
> [1] X + [0]
= X
activate(n__first(X1,X2)) = [1] X1 + [1] X2 + [9]
> [1] X1 + [1] X2 + [8]
= first(X1,X2)
activate(n__from(X)) = [10]
> [9]
= from(X)
first(X1,X2) = [1] X1 + [1] X2 + [8]
> [1] X1 + [1] X2 + [7]
= n__first(X1,X2)
first(0(),Z) = [1] Z + [8]
> [0]
= nil()
first(s(X),cons(Y,Z)) = [1] X + [1] Z + [10]
> [1] X + [1] Z + [9]
= cons(Y,n__first(X,activate(Z)))
from(X) = [9]
> [8]
= cons(X,n__from(s(X)))
from(X) = [9]
> [8]
= n__from(X)
Following rules are (at-least) weakly oriented:
activate#(X) = [0]
>= [2]
= c_1()
activate#(n__first(X1,X2)) = [0]
>= [0]
= c_2(first#(X1,X2))
activate#(n__from(X)) = [0]
>= [0]
= c_3(from#(X))
first#(X1,X2) = [0]
>= [0]
= c_4()
first#(0(),Z) = [0]
>= [1]
= c_5()
first#(s(X),cons(Y,Z)) = [0]
>= [4]
= c_6(activate#(Z))
from#(X) = [0]
>= [0]
= c_7()
from#(X) = [0]
>= [1]
= c_8()
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
activate#(X) -> c_1()
activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
activate#(n__from(X)) -> c_3(from#(X))
first#(X1,X2) -> c_4()
first#(0(),Z) -> c_5()
first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
from#(X) -> c_7()
from#(X) -> c_8()
Strict TRS Rules:
Weak DP Rules:
sel#(0(),cons(X,Z)) -> c_9()
sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
Weak TRS Rules:
activate(X) -> X
activate(n__first(X1,X2)) -> first(X1,X2)
activate(n__from(X)) -> from(X)
first(X1,X2) -> n__first(X1,X2)
first(0(),Z) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
from(X) -> cons(X,n__from(s(X)))
from(X) -> n__from(X)
Signature:
{activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
Obligation:
Innermost
basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
Proof:
We estimate the number of application of
{1,4,5,7,8}
by application of
Pre({1,4,5,7,8}) = {2,3,6}.
Here rules are labelled as follows:
1: activate#(X) -> c_1()
2: activate#(n__first(X1,X2)) ->
c_2(first#(X1,X2))
3: activate#(n__from(X)) ->
c_3(from#(X))
4: first#(X1,X2) -> c_4()
5: first#(0(),Z) -> c_5()
6: first#(s(X),cons(Y,Z)) ->
c_6(activate#(Z))
7: from#(X) -> c_7()
8: from#(X) -> c_8()
9: sel#(0(),cons(X,Z)) -> c_9()
10: sel#(s(X),cons(Y,Z)) ->
c_10(sel#(X,activate(Z)))
*** 1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
activate#(n__from(X)) -> c_3(from#(X))
first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
Strict TRS Rules:
Weak DP Rules:
activate#(X) -> c_1()
first#(X1,X2) -> c_4()
first#(0(),Z) -> c_5()
from#(X) -> c_7()
from#(X) -> c_8()
sel#(0(),cons(X,Z)) -> c_9()
sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
Weak TRS Rules:
activate(X) -> X
activate(n__first(X1,X2)) -> first(X1,X2)
activate(n__from(X)) -> from(X)
first(X1,X2) -> n__first(X1,X2)
first(0(),Z) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
from(X) -> cons(X,n__from(s(X)))
from(X) -> n__from(X)
Signature:
{activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
Obligation:
Innermost
basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
Proof:
We estimate the number of application of
{2}
by application of
Pre({2}) = {3}.
Here rules are labelled as follows:
1: activate#(n__first(X1,X2)) ->
c_2(first#(X1,X2))
2: activate#(n__from(X)) ->
c_3(from#(X))
3: first#(s(X),cons(Y,Z)) ->
c_6(activate#(Z))
4: activate#(X) -> c_1()
5: first#(X1,X2) -> c_4()
6: first#(0(),Z) -> c_5()
7: from#(X) -> c_7()
8: from#(X) -> c_8()
9: sel#(0(),cons(X,Z)) -> c_9()
10: sel#(s(X),cons(Y,Z)) ->
c_10(sel#(X,activate(Z)))
*** 1.1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
Strict TRS Rules:
Weak DP Rules:
activate#(X) -> c_1()
activate#(n__from(X)) -> c_3(from#(X))
first#(X1,X2) -> c_4()
first#(0(),Z) -> c_5()
from#(X) -> c_7()
from#(X) -> c_8()
sel#(0(),cons(X,Z)) -> c_9()
sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
Weak TRS Rules:
activate(X) -> X
activate(n__first(X1,X2)) -> first(X1,X2)
activate(n__from(X)) -> from(X)
first(X1,X2) -> n__first(X1,X2)
first(0(),Z) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
from(X) -> cons(X,n__from(s(X)))
from(X) -> n__from(X)
Signature:
{activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
Obligation:
Innermost
basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
-->_1 first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)):2
-->_1 first#(0(),Z) -> c_5():6
-->_1 first#(X1,X2) -> c_4():5
2:S:first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
-->_1 activate#(n__from(X)) -> c_3(from#(X)):4
-->_1 activate#(X) -> c_1():3
-->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):1
3:W:activate#(X) -> c_1()
4:W:activate#(n__from(X)) -> c_3(from#(X))
-->_1 from#(X) -> c_8():8
-->_1 from#(X) -> c_7():7
5:W:first#(X1,X2) -> c_4()
6:W:first#(0(),Z) -> c_5()
7:W:from#(X) -> c_7()
8:W:from#(X) -> c_8()
9:W:sel#(0(),cons(X,Z)) -> c_9()
10:W:sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
-->_1 sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z))):10
-->_1 sel#(0(),cons(X,Z)) -> c_9():9
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
10: sel#(s(X),cons(Y,Z)) ->
c_10(sel#(X,activate(Z)))
9: sel#(0(),cons(X,Z)) -> c_9()
5: first#(X1,X2) -> c_4()
6: first#(0(),Z) -> c_5()
3: activate#(X) -> c_1()
4: activate#(n__from(X)) ->
c_3(from#(X))
7: from#(X) -> c_7()
8: from#(X) -> c_8()
*** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
activate(X) -> X
activate(n__first(X1,X2)) -> first(X1,X2)
activate(n__from(X)) -> from(X)
first(X1,X2) -> n__first(X1,X2)
first(0(),Z) -> nil()
first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
from(X) -> cons(X,n__from(s(X)))
from(X) -> n__from(X)
Signature:
{activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
Obligation:
Innermost
basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
*** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
Obligation:
Innermost
basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
2: first#(s(X),cons(Y,Z)) ->
c_6(activate#(Z))
Consider the set of all dependency pairs
1: activate#(n__first(X1,X2)) ->
c_2(first#(X1,X2))
2: first#(s(X),cons(Y,Z)) ->
c_6(activate#(Z))
Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
SPACE(?,?)on application of the dependency pairs
{2}
These cover all (indirect) predecessors of dependency pairs
{1,2}
their number of applications is equally bounded.
The dependency pairs are shifted into the weak component.
*** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
Obligation:
Innermost
basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_2) = {1},
uargs(c_6) = {1}
Following symbols are considered usable:
{activate#,first#,from#,sel#}
TcT has computed the following interpretation:
p(0) = [1]
p(activate) = [1] x1 + [1]
p(cons) = [1] x1 + [1] x2 + [1]
p(first) = [2] x2 + [0]
p(from) = [1]
p(n__first) = [1] x1 + [1] x2 + [0]
p(n__from) = [8]
p(nil) = [4]
p(s) = [1]
p(sel) = [2] x1 + [1] x2 + [0]
p(activate#) = [8] x1 + [0]
p(first#) = [8] x1 + [8] x2 + [0]
p(from#) = [1]
p(sel#) = [0]
p(c_1) = [1]
p(c_2) = [1] x1 + [0]
p(c_3) = [1] x1 + [1]
p(c_4) = [1]
p(c_5) = [1]
p(c_6) = [1] x1 + [15]
p(c_7) = [0]
p(c_8) = [0]
p(c_9) = [1]
p(c_10) = [2]
Following rules are strictly oriented:
first#(s(X),cons(Y,Z)) = [8] Y + [8] Z + [16]
> [8] Z + [15]
= c_6(activate#(Z))
Following rules are (at-least) weakly oriented:
activate#(n__first(X1,X2)) = [8] X1 + [8] X2 + [0]
>= [8] X1 + [8] X2 + [0]
= c_2(first#(X1,X2))
*** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
Strict TRS Rules:
Weak DP Rules:
first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
Weak TRS Rules:
Signature:
{activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
Obligation:
Innermost
basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
Weak TRS Rules:
Signature:
{activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
Obligation:
Innermost
basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
-->_1 first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)):2
2:W:first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
-->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: activate#(n__first(X1,X2)) ->
c_2(first#(X1,X2))
2: first#(s(X),cons(Y,Z)) ->
c_6(activate#(Z))
*** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
Obligation:
Innermost
basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).