*** 1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: activate(X) -> X activate(n__first(X1,X2)) -> first(X1,X2) activate(n__from(X)) -> from(X) first(X1,X2) -> n__first(X1,X2) first(0(),Z) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) sel(0(),cons(X,Z)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) Weak DP Rules: Weak TRS Rules: Signature: {activate/1,first/2,from/1,sel/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1} Obligation: Innermost basic terms: {activate,first,from,sel}/{0,cons,n__first,n__from,nil,s} Applied Processor: DependencyPairs {dpKind_ = WIDP} Proof: We add the following weak innermost dependency pairs: Strict DPs activate#(X) -> c_1() activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__from(X)) -> c_3(from#(X)) first#(X1,X2) -> c_4() first#(0(),Z) -> c_5() first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) from#(X) -> c_7() from#(X) -> c_8() sel#(0(),cons(X,Z)) -> c_9() sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z))) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(X) -> c_1() activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__from(X)) -> c_3(from#(X)) first#(X1,X2) -> c_4() first#(0(),Z) -> c_5() first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) from#(X) -> c_7() from#(X) -> c_8() sel#(0(),cons(X,Z)) -> c_9() sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z))) Strict TRS Rules: activate(X) -> X activate(n__first(X1,X2)) -> first(X1,X2) activate(n__from(X)) -> from(X) first(X1,X2) -> n__first(X1,X2) first(0(),Z) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) sel(0(),cons(X,Z)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) Weak DP Rules: Weak TRS Rules: Signature: {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1} Obligation: Innermost basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: activate(X) -> X activate(n__first(X1,X2)) -> first(X1,X2) activate(n__from(X)) -> from(X) first(X1,X2) -> n__first(X1,X2) first(0(),Z) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) activate#(X) -> c_1() activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__from(X)) -> c_3(from#(X)) first#(X1,X2) -> c_4() first#(0(),Z) -> c_5() first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) from#(X) -> c_7() from#(X) -> c_8() sel#(0(),cons(X,Z)) -> c_9() sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z))) *** 1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(X) -> c_1() activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__from(X)) -> c_3(from#(X)) first#(X1,X2) -> c_4() first#(0(),Z) -> c_5() first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) from#(X) -> c_7() from#(X) -> c_8() sel#(0(),cons(X,Z)) -> c_9() sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z))) Strict TRS Rules: activate(X) -> X activate(n__first(X1,X2)) -> first(X1,X2) activate(n__from(X)) -> from(X) first(X1,X2) -> n__first(X1,X2) first(0(),Z) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) Weak DP Rules: Weak TRS Rules: Signature: {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1} Obligation: Innermost basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs} Proof: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {2}, uargs(n__first) = {2}, uargs(sel#) = {2}, uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_6) = {1}, uargs(c_10) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(activate) = [1] x1 + [2] p(cons) = [1] x2 + [0] p(first) = [1] x1 + [1] x2 + [8] p(from) = [9] p(n__first) = [1] x1 + [1] x2 + [7] p(n__from) = [8] p(nil) = [0] p(s) = [1] x1 + [2] p(sel) = [0] p(activate#) = [0] p(first#) = [0] p(from#) = [0] p(sel#) = [9] x1 + [1] x2 + [9] p(c_1) = [2] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [0] p(c_4) = [0] p(c_5) = [1] p(c_6) = [1] x1 + [4] p(c_7) = [0] p(c_8) = [1] p(c_9) = [0] p(c_10) = [1] x1 + [9] Following rules are strictly oriented: sel#(0(),cons(X,Z)) = [1] Z + [9] > [0] = c_9() sel#(s(X),cons(Y,Z)) = [9] X + [1] Z + [27] > [9] X + [1] Z + [20] = c_10(sel#(X,activate(Z))) activate(X) = [1] X + [2] > [1] X + [0] = X activate(n__first(X1,X2)) = [1] X1 + [1] X2 + [9] > [1] X1 + [1] X2 + [8] = first(X1,X2) activate(n__from(X)) = [10] > [9] = from(X) first(X1,X2) = [1] X1 + [1] X2 + [8] > [1] X1 + [1] X2 + [7] = n__first(X1,X2) first(0(),Z) = [1] Z + [8] > [0] = nil() first(s(X),cons(Y,Z)) = [1] X + [1] Z + [10] > [1] X + [1] Z + [9] = cons(Y,n__first(X,activate(Z))) from(X) = [9] > [8] = cons(X,n__from(s(X))) from(X) = [9] > [8] = n__from(X) Following rules are (at-least) weakly oriented: activate#(X) = [0] >= [2] = c_1() activate#(n__first(X1,X2)) = [0] >= [0] = c_2(first#(X1,X2)) activate#(n__from(X)) = [0] >= [0] = c_3(from#(X)) first#(X1,X2) = [0] >= [0] = c_4() first#(0(),Z) = [0] >= [1] = c_5() first#(s(X),cons(Y,Z)) = [0] >= [4] = c_6(activate#(Z)) from#(X) = [0] >= [0] = c_7() from#(X) = [0] >= [1] = c_8() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(X) -> c_1() activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__from(X)) -> c_3(from#(X)) first#(X1,X2) -> c_4() first#(0(),Z) -> c_5() first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) from#(X) -> c_7() from#(X) -> c_8() Strict TRS Rules: Weak DP Rules: sel#(0(),cons(X,Z)) -> c_9() sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z))) Weak TRS Rules: activate(X) -> X activate(n__first(X1,X2)) -> first(X1,X2) activate(n__from(X)) -> from(X) first(X1,X2) -> n__first(X1,X2) first(0(),Z) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) Signature: {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1} Obligation: Innermost basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,4,5,7,8} by application of Pre({1,4,5,7,8}) = {2,3,6}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) 3: activate#(n__from(X)) -> c_3(from#(X)) 4: first#(X1,X2) -> c_4() 5: first#(0(),Z) -> c_5() 6: first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) 7: from#(X) -> c_7() 8: from#(X) -> c_8() 9: sel#(0(),cons(X,Z)) -> c_9() 10: sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z))) *** 1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) activate#(n__from(X)) -> c_3(from#(X)) first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) Strict TRS Rules: Weak DP Rules: activate#(X) -> c_1() first#(X1,X2) -> c_4() first#(0(),Z) -> c_5() from#(X) -> c_7() from#(X) -> c_8() sel#(0(),cons(X,Z)) -> c_9() sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z))) Weak TRS Rules: activate(X) -> X activate(n__first(X1,X2)) -> first(X1,X2) activate(n__from(X)) -> from(X) first(X1,X2) -> n__first(X1,X2) first(0(),Z) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) Signature: {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1} Obligation: Innermost basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {2} by application of Pre({2}) = {3}. Here rules are labelled as follows: 1: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) 2: activate#(n__from(X)) -> c_3(from#(X)) 3: first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) 4: activate#(X) -> c_1() 5: first#(X1,X2) -> c_4() 6: first#(0(),Z) -> c_5() 7: from#(X) -> c_7() 8: from#(X) -> c_8() 9: sel#(0(),cons(X,Z)) -> c_9() 10: sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z))) *** 1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) Strict TRS Rules: Weak DP Rules: activate#(X) -> c_1() activate#(n__from(X)) -> c_3(from#(X)) first#(X1,X2) -> c_4() first#(0(),Z) -> c_5() from#(X) -> c_7() from#(X) -> c_8() sel#(0(),cons(X,Z)) -> c_9() sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z))) Weak TRS Rules: activate(X) -> X activate(n__first(X1,X2)) -> first(X1,X2) activate(n__from(X)) -> from(X) first(X1,X2) -> n__first(X1,X2) first(0(),Z) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) Signature: {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1} Obligation: Innermost basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) -->_1 first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)):2 -->_1 first#(0(),Z) -> c_5():6 -->_1 first#(X1,X2) -> c_4():5 2:S:first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) -->_1 activate#(n__from(X)) -> c_3(from#(X)):4 -->_1 activate#(X) -> c_1():3 -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):1 3:W:activate#(X) -> c_1() 4:W:activate#(n__from(X)) -> c_3(from#(X)) -->_1 from#(X) -> c_8():8 -->_1 from#(X) -> c_7():7 5:W:first#(X1,X2) -> c_4() 6:W:first#(0(),Z) -> c_5() 7:W:from#(X) -> c_7() 8:W:from#(X) -> c_8() 9:W:sel#(0(),cons(X,Z)) -> c_9() 10:W:sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z))) -->_1 sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z))):10 -->_1 sel#(0(),cons(X,Z)) -> c_9():9 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 10: sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z))) 9: sel#(0(),cons(X,Z)) -> c_9() 5: first#(X1,X2) -> c_4() 6: first#(0(),Z) -> c_5() 3: activate#(X) -> c_1() 4: activate#(n__from(X)) -> c_3(from#(X)) 7: from#(X) -> c_7() 8: from#(X) -> c_8() *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: activate(X) -> X activate(n__first(X1,X2)) -> first(X1,X2) activate(n__from(X)) -> from(X) first(X1,X2) -> n__first(X1,X2) first(0(),Z) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) Signature: {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1} Obligation: Innermost basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1} Obligation: Innermost basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 2: first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) Consider the set of all dependency pairs 1: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) 2: first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {2} These cover all (indirect) predecessors of dependency pairs {1,2} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1} Obligation: Innermost basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_6) = {1} Following symbols are considered usable: {activate#,first#,from#,sel#} TcT has computed the following interpretation: p(0) = [1] p(activate) = [1] x1 + [1] p(cons) = [1] x1 + [1] x2 + [1] p(first) = [2] x2 + [0] p(from) = [1] p(n__first) = [1] x1 + [1] x2 + [0] p(n__from) = [8] p(nil) = [4] p(s) = [1] p(sel) = [2] x1 + [1] x2 + [0] p(activate#) = [8] x1 + [0] p(first#) = [8] x1 + [8] x2 + [0] p(from#) = [1] p(sel#) = [0] p(c_1) = [1] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [1] p(c_4) = [1] p(c_5) = [1] p(c_6) = [1] x1 + [15] p(c_7) = [0] p(c_8) = [0] p(c_9) = [1] p(c_10) = [2] Following rules are strictly oriented: first#(s(X),cons(Y,Z)) = [8] Y + [8] Z + [16] > [8] Z + [15] = c_6(activate#(Z)) Following rules are (at-least) weakly oriented: activate#(n__first(X1,X2)) = [8] X1 + [8] X2 + [0] >= [8] X1 + [8] X2 + [0] = c_2(first#(X1,X2)) *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) Strict TRS Rules: Weak DP Rules: first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) Weak TRS Rules: Signature: {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1} Obligation: Innermost basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) Weak TRS Rules: Signature: {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1} Obligation: Innermost basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) -->_1 first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)):2 2:W:first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)) 2: first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)) *** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1} Obligation: Innermost basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).