*** 1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        sel(0(),cons(X,Z)) -> X
        sel(s(X),cons(Y,Z)) -> sel(X,activate(Z))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,first/2,from/1,sel/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {activate,first,from,sel}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      DependencyPairs {dpKind_ = WIDP}
    Proof:
      We add the following weak innermost dependency pairs:
      
      Strict DPs
        activate#(X) -> c_1()
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__from(X)) -> c_3(from#(X))
        first#(X1,X2) -> c_4()
        first#(0(),Z) -> c_5()
        first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
        from#(X) -> c_7()
        from#(X) -> c_8()
        sel#(0(),cons(X,Z)) -> c_9()
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1()
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__from(X)) -> c_3(from#(X))
        first#(X1,X2) -> c_4()
        first#(0(),Z) -> c_5()
        first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
        from#(X) -> c_7()
        from#(X) -> c_8()
        sel#(0(),cons(X,Z)) -> c_9()
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
      Strict TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        sel(0(),cons(X,Z)) -> X
        sel(s(X),cons(Y,Z)) -> sel(X,activate(Z))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
      Obligation:
        Innermost
        basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        activate#(X) -> c_1()
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__from(X)) -> c_3(from#(X))
        first#(X1,X2) -> c_4()
        first#(0(),Z) -> c_5()
        first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
        from#(X) -> c_7()
        from#(X) -> c_8()
        sel#(0(),cons(X,Z)) -> c_9()
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
*** 1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1()
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__from(X)) -> c_3(from#(X))
        first#(X1,X2) -> c_4()
        first#(0(),Z) -> c_5()
        first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
        from#(X) -> c_7()
        from#(X) -> c_8()
        sel#(0(),cons(X,Z)) -> c_9()
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
      Strict TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
      Obligation:
        Innermost
        basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs}
    Proof:
      The weightgap principle applies using the following constant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons) = {2},
          uargs(n__first) = {2},
          uargs(sel#) = {2},
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_6) = {1},
          uargs(c_10) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                  p(0) = [0]                  
           p(activate) = [1] x1 + [2]         
               p(cons) = [1] x2 + [0]         
              p(first) = [1] x1 + [1] x2 + [8]
               p(from) = [9]                  
           p(n__first) = [1] x1 + [1] x2 + [7]
            p(n__from) = [8]                  
                p(nil) = [0]                  
                  p(s) = [1] x1 + [2]         
                p(sel) = [0]                  
          p(activate#) = [0]                  
             p(first#) = [0]                  
              p(from#) = [0]                  
               p(sel#) = [9] x1 + [1] x2 + [9]
                p(c_1) = [2]                  
                p(c_2) = [1] x1 + [0]         
                p(c_3) = [1] x1 + [0]         
                p(c_4) = [0]                  
                p(c_5) = [1]                  
                p(c_6) = [1] x1 + [4]         
                p(c_7) = [0]                  
                p(c_8) = [1]                  
                p(c_9) = [0]                  
               p(c_10) = [1] x1 + [9]         
        
        Following rules are strictly oriented:
              sel#(0(),cons(X,Z)) = [1] Z + [9]                    
                                  > [0]                            
                                  = c_9()                          
        
             sel#(s(X),cons(Y,Z)) = [9] X + [1] Z + [27]           
                                  > [9] X + [1] Z + [20]           
                                  = c_10(sel#(X,activate(Z)))      
        
                      activate(X) = [1] X + [2]                    
                                  > [1] X + [0]                    
                                  = X                              
        
        activate(n__first(X1,X2)) = [1] X1 + [1] X2 + [9]          
                                  > [1] X1 + [1] X2 + [8]          
                                  = first(X1,X2)                   
        
             activate(n__from(X)) = [10]                           
                                  > [9]                            
                                  = from(X)                        
        
                     first(X1,X2) = [1] X1 + [1] X2 + [8]          
                                  > [1] X1 + [1] X2 + [7]          
                                  = n__first(X1,X2)                
        
                     first(0(),Z) = [1] Z + [8]                    
                                  > [0]                            
                                  = nil()                          
        
            first(s(X),cons(Y,Z)) = [1] X + [1] Z + [10]           
                                  > [1] X + [1] Z + [9]            
                                  = cons(Y,n__first(X,activate(Z)))
        
                          from(X) = [9]                            
                                  > [8]                            
                                  = cons(X,n__from(s(X)))          
        
                          from(X) = [9]                            
                                  > [8]                            
                                  = n__from(X)                     
        
        
        Following rules are (at-least) weakly oriented:
                      activate#(X) =  [0]               
                                   >= [2]               
                                   =  c_1()             
        
        activate#(n__first(X1,X2)) =  [0]               
                                   >= [0]               
                                   =  c_2(first#(X1,X2))
        
             activate#(n__from(X)) =  [0]               
                                   >= [0]               
                                   =  c_3(from#(X))     
        
                     first#(X1,X2) =  [0]               
                                   >= [0]               
                                   =  c_4()             
        
                     first#(0(),Z) =  [0]               
                                   >= [1]               
                                   =  c_5()             
        
            first#(s(X),cons(Y,Z)) =  [0]               
                                   >= [4]               
                                   =  c_6(activate#(Z)) 
        
                          from#(X) =  [0]               
                                   >= [0]               
                                   =  c_7()             
        
                          from#(X) =  [0]               
                                   >= [1]               
                                   =  c_8()             
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1()
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__from(X)) -> c_3(from#(X))
        first#(X1,X2) -> c_4()
        first#(0(),Z) -> c_5()
        first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
        from#(X) -> c_7()
        from#(X) -> c_8()
      Strict TRS Rules:
        
      Weak DP Rules:
        sel#(0(),cons(X,Z)) -> c_9()
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
      Weak TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
      Signature:
        {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
      Obligation:
        Innermost
        basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,4,5,7,8}
      by application of
        Pre({1,4,5,7,8}) = {2,3,6}.
      Here rules are labelled as follows:
        1:  activate#(X) -> c_1()        
        2:  activate#(n__first(X1,X2)) ->
              c_2(first#(X1,X2))         
        3:  activate#(n__from(X)) ->     
              c_3(from#(X))              
        4:  first#(X1,X2) -> c_4()       
        5:  first#(0(),Z) -> c_5()       
        6:  first#(s(X),cons(Y,Z)) ->    
              c_6(activate#(Z))          
        7:  from#(X) -> c_7()            
        8:  from#(X) -> c_8()            
        9:  sel#(0(),cons(X,Z)) -> c_9() 
        10: sel#(s(X),cons(Y,Z)) ->      
              c_10(sel#(X,activate(Z)))  
*** 1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__from(X)) -> c_3(from#(X))
        first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
      Strict TRS Rules:
        
      Weak DP Rules:
        activate#(X) -> c_1()
        first#(X1,X2) -> c_4()
        first#(0(),Z) -> c_5()
        from#(X) -> c_7()
        from#(X) -> c_8()
        sel#(0(),cons(X,Z)) -> c_9()
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
      Weak TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
      Signature:
        {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
      Obligation:
        Innermost
        basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {2}
      by application of
        Pre({2}) = {3}.
      Here rules are labelled as follows:
        1:  activate#(n__first(X1,X2)) ->
              c_2(first#(X1,X2))         
        2:  activate#(n__from(X)) ->     
              c_3(from#(X))              
        3:  first#(s(X),cons(Y,Z)) ->    
              c_6(activate#(Z))          
        4:  activate#(X) -> c_1()        
        5:  first#(X1,X2) -> c_4()       
        6:  first#(0(),Z) -> c_5()       
        7:  from#(X) -> c_7()            
        8:  from#(X) -> c_8()            
        9:  sel#(0(),cons(X,Z)) -> c_9() 
        10: sel#(s(X),cons(Y,Z)) ->      
              c_10(sel#(X,activate(Z)))  
*** 1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
      Strict TRS Rules:
        
      Weak DP Rules:
        activate#(X) -> c_1()
        activate#(n__from(X)) -> c_3(from#(X))
        first#(X1,X2) -> c_4()
        first#(0(),Z) -> c_5()
        from#(X) -> c_7()
        from#(X) -> c_8()
        sel#(0(),cons(X,Z)) -> c_9()
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
      Weak TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
      Signature:
        {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
      Obligation:
        Innermost
        basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
           -->_1 first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)):2
           -->_1 first#(0(),Z) -> c_5():6
           -->_1 first#(X1,X2) -> c_4():5
        
        2:S:first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
           -->_1 activate#(n__from(X)) -> c_3(from#(X)):4
           -->_1 activate#(X) -> c_1():3
           -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):1
        
        3:W:activate#(X) -> c_1()
           
        
        4:W:activate#(n__from(X)) -> c_3(from#(X))
           -->_1 from#(X) -> c_8():8
           -->_1 from#(X) -> c_7():7
        
        5:W:first#(X1,X2) -> c_4()
           
        
        6:W:first#(0(),Z) -> c_5()
           
        
        7:W:from#(X) -> c_7()
           
        
        8:W:from#(X) -> c_8()
           
        
        9:W:sel#(0(),cons(X,Z)) -> c_9()
           
        
        10:W:sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
           -->_1 sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z))):10
           -->_1 sel#(0(),cons(X,Z)) -> c_9():9
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        10: sel#(s(X),cons(Y,Z)) ->     
              c_10(sel#(X,activate(Z))) 
        9:  sel#(0(),cons(X,Z)) -> c_9()
        5:  first#(X1,X2) -> c_4()      
        6:  first#(0(),Z) -> c_5()      
        3:  activate#(X) -> c_1()       
        4:  activate#(n__from(X)) ->    
              c_3(from#(X))             
        7:  from#(X) -> c_7()           
        8:  from#(X) -> c_8()           
*** 1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
      Signature:
        {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
      Obligation:
        Innermost
        basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
*** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
      Obligation:
        Innermost
        basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
    Proof:
      We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
        2: first#(s(X),cons(Y,Z)) ->
             c_6(activate#(Z))      
        
      Consider the set of all dependency pairs
        1: activate#(n__first(X1,X2)) ->
             c_2(first#(X1,X2))         
        2: first#(s(X),cons(Y,Z)) ->    
             c_6(activate#(Z))          
      Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^1))
      SPACE(?,?)on application of the dependency pairs
        {2}
      These cover all (indirect) predecessors of dependency pairs
        {1,2}
      their number of applications is equally bounded.
      The dependency pairs are shifted into the weak component.
  *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          
        Signature:
          {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
        Obligation:
          Innermost
          basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
      Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
      Proof:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_6) = {1}
        
        Following symbols are considered usable:
          {activate#,first#,from#,sel#}
        TcT has computed the following interpretation:
                  p(0) = [1]                  
           p(activate) = [1] x1 + [1]         
               p(cons) = [1] x1 + [1] x2 + [1]
              p(first) = [2] x2 + [0]         
               p(from) = [1]                  
           p(n__first) = [1] x1 + [1] x2 + [0]
            p(n__from) = [8]                  
                p(nil) = [4]                  
                  p(s) = [1]                  
                p(sel) = [2] x1 + [1] x2 + [0]
          p(activate#) = [8] x1 + [0]         
             p(first#) = [8] x1 + [8] x2 + [0]
              p(from#) = [1]                  
               p(sel#) = [0]                  
                p(c_1) = [1]                  
                p(c_2) = [1] x1 + [0]         
                p(c_3) = [1] x1 + [1]         
                p(c_4) = [1]                  
                p(c_5) = [1]                  
                p(c_6) = [1] x1 + [15]        
                p(c_7) = [0]                  
                p(c_8) = [0]                  
                p(c_9) = [1]                  
               p(c_10) = [2]                  
        
        Following rules are strictly oriented:
        first#(s(X),cons(Y,Z)) = [8] Y + [8] Z + [16]
                               > [8] Z + [15]        
                               = c_6(activate#(Z))   
        
        
        Following rules are (at-least) weakly oriented:
        activate#(n__first(X1,X2)) =  [8] X1 + [8] X2 + [0]
                                   >= [8] X1 + [8] X2 + [0]
                                   =  c_2(first#(X1,X2))   
        
  *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        Strict TRS Rules:
          
        Weak DP Rules:
          first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
        Weak TRS Rules:
          
        Signature:
          {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
        Obligation:
          Innermost
          basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
      Applied Processor:
        Assumption
      Proof:
        ()
  
  *** 1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          
        Strict TRS Rules:
          
        Weak DP Rules:
          activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
          first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
        Weak TRS Rules:
          
        Signature:
          {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
        Obligation:
          Innermost
          basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:W:activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
             -->_1 first#(s(X),cons(Y,Z)) -> c_6(activate#(Z)):2
          
          2:W:first#(s(X),cons(Y,Z)) -> c_6(activate#(Z))
             -->_1 activate#(n__first(X1,X2)) -> c_2(first#(X1,X2)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: activate#(n__first(X1,X2)) ->
               c_2(first#(X1,X2))         
          2: first#(s(X),cons(Y,Z)) ->    
               c_6(activate#(Z))          
  *** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          
        Signature:
          {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1}
        Obligation:
          Innermost
          basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
      Applied Processor:
        EmptyProcessor
      Proof:
        The problem is already closed. The intended complexity is O(1).