We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , first(X1, X2) -> n__first(X1, X2)
  , first(0(), Z) -> nil()
  , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
  , sel(0(), cons(X, Z)) -> X
  , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

Arguments of following rules are not normal-forms:

{ first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))
, sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) }

All above mentioned rules can be savely removed.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , first(X1, X2) -> n__first(X1, X2)
  , first(0(), Z) -> nil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
  , sel(0(), cons(X, Z)) -> X }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We add the following weak dependency pairs:

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , first^#(X1, X2) -> c_3()
  , first^#(0(), Z) -> c_4()
  , s^#(X) -> c_5()
  , activate^#(X) -> c_6()
  , activate^#(n__from(X)) -> c_7(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_8(s^#(activate(X)))
  , activate^#(n__first(X1, X2)) ->
    c_9(first^#(activate(X1), activate(X2)))
  , sel^#(0(), cons(X, Z)) -> c_10() }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , first^#(X1, X2) -> c_3()
  , first^#(0(), Z) -> c_4()
  , s^#(X) -> c_5()
  , activate^#(X) -> c_6()
  , activate^#(n__from(X)) -> c_7(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_8(s^#(activate(X)))
  , activate^#(n__first(X1, X2)) ->
    c_9(first^#(activate(X1), activate(X2)))
  , sel^#(0(), cons(X, Z)) -> c_10() }
Strict Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , first(X1, X2) -> n__first(X1, X2)
  , first(0(), Z) -> nil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
  , sel(0(), cons(X, Z)) -> X }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We replace rewrite rules by usable rules:

  Strict Usable Rules:
    { from(X) -> cons(X, n__from(n__s(X)))
    , from(X) -> n__from(X)
    , first(X1, X2) -> n__first(X1, X2)
    , first(0(), Z) -> nil()
    , s(X) -> n__s(X)
    , activate(X) -> X
    , activate(n__from(X)) -> from(activate(X))
    , activate(n__s(X)) -> s(activate(X))
    , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , first^#(X1, X2) -> c_3()
  , first^#(0(), Z) -> c_4()
  , s^#(X) -> c_5()
  , activate^#(X) -> c_6()
  , activate^#(n__from(X)) -> c_7(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_8(s^#(activate(X)))
  , activate^#(n__first(X1, X2)) ->
    c_9(first^#(activate(X1), activate(X2)))
  , sel^#(0(), cons(X, Z)) -> c_10() }
Strict Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , first(X1, X2) -> n__first(X1, X2)
  , first(0(), Z) -> nil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following constant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(from) = {1}, Uargs(first) = {1, 2}, Uargs(s) = {1},
  Uargs(from^#) = {1}, Uargs(first^#) = {1, 2}, Uargs(s^#) = {1},
  Uargs(c_7) = {1}, Uargs(c_8) = {1}, Uargs(c_9) = {1}

TcT has computed the following constructor-restricted matrix
interpretation.

          [from](x1) = [1 0] x1 + [1]           
                       [0 1]      [2]           
                                                
      [cons](x1, x2) = [0]                      
                       [0]                      
                                                
       [n__from](x1) = [1 0] x1 + [0]           
                       [0 1]      [2]           
                                                
          [n__s](x1) = [1 0] x1 + [0]           
                       [0 1]      [2]           
                                                
     [first](x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                       [0 1]      [0 1]      [2]
                                                
                 [0] = [0]                      
                       [0]                      
                                                
               [nil] = [0]                      
                       [0]                      
                                                
             [s](x1) = [1 0] x1 + [1]           
                       [0 1]      [2]           
                                                
  [n__first](x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                       [0 1]      [0 1]      [2]
                                                
      [activate](x1) = [1 2] x1 + [2]           
                       [0 2]      [2]           
                                                
        [from^#](x1) = [1 0] x1 + [0]           
                       [0 0]      [0]           
                                                
               [c_1] = [0]                      
                       [0]                      
                                                
               [c_2] = [0]                      
                       [0]                      
                                                
   [first^#](x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                       [0 0]      [0 0]      [0]
                                                
               [c_3] = [0]                      
                       [0]                      
                                                
               [c_4] = [0]                      
                       [0]                      
                                                
           [s^#](x1) = [1 0] x1 + [0]           
                       [0 0]      [0]           
                                                
               [c_5] = [0]                      
                       [0]                      
                                                
    [activate^#](x1) = [2 2] x1 + [0]           
                       [0 0]      [0]           
                                                
               [c_6] = [0]                      
                       [0]                      
                                                
           [c_7](x1) = [1 0] x1 + [0]           
                       [0 1]      [0]           
                                                
           [c_8](x1) = [1 0] x1 + [0]           
                       [0 1]      [0]           
                                                
           [c_9](x1) = [1 0] x1 + [0]           
                       [0 1]      [0]           
                                                
     [sel^#](x1, x2) = [0]                      
                       [0]                      
                                                
              [c_10] = [0]                      
                       [0]                      

The order satisfies the following ordering constraints:

                       [from(X)] =  [1 0] X + [1]                             
                                    [0 1]     [2]                             
                                 >  [0]                                       
                                    [0]                                       
                                 =  [cons(X, n__from(n__s(X)))]               
                                                                              
                       [from(X)] =  [1 0] X + [1]                             
                                    [0 1]     [2]                             
                                 >  [1 0] X + [0]                             
                                    [0 1]     [2]                             
                                 =  [n__from(X)]                              
                                                                              
                 [first(X1, X2)] =  [1 0] X1 + [1 0] X2 + [1]                 
                                    [0 1]      [0 1]      [2]                 
                                 >  [1 0] X1 + [1 0] X2 + [0]                 
                                    [0 1]      [0 1]      [2]                 
                                 =  [n__first(X1, X2)]                        
                                                                              
                 [first(0(), Z)] =  [1 0] Z + [1]                             
                                    [0 1]     [2]                             
                                 >  [0]                                       
                                    [0]                                       
                                 =  [nil()]                                   
                                                                              
                          [s(X)] =  [1 0] X + [1]                             
                                    [0 1]     [2]                             
                                 >  [1 0] X + [0]                             
                                    [0 1]     [2]                             
                                 =  [n__s(X)]                                 
                                                                              
                   [activate(X)] =  [1 2] X + [2]                             
                                    [0 2]     [2]                             
                                 >  [1 0] X + [0]                             
                                    [0 1]     [0]                             
                                 =  [X]                                       
                                                                              
          [activate(n__from(X))] =  [1 2] X + [6]                             
                                    [0 2]     [6]                             
                                 >  [1 2] X + [3]                             
                                    [0 2]     [4]                             
                                 =  [from(activate(X))]                       
                                                                              
             [activate(n__s(X))] =  [1 2] X + [6]                             
                                    [0 2]     [6]                             
                                 >  [1 2] X + [3]                             
                                    [0 2]     [4]                             
                                 =  [s(activate(X))]                          
                                                                              
    [activate(n__first(X1, X2))] =  [1 2] X1 + [1 2] X2 + [6]                 
                                    [0 2]      [0 2]      [6]                 
                                 >  [1 2] X1 + [1 2] X2 + [5]                 
                                    [0 2]      [0 2]      [6]                 
                                 =  [first(activate(X1), activate(X2))]       
                                                                              
                     [from^#(X)] =  [1 0] X + [0]                             
                                    [0 0]     [0]                             
                                 >= [0]                                       
                                    [0]                                       
                                 =  [c_1()]                                   
                                                                              
                     [from^#(X)] =  [1 0] X + [0]                             
                                    [0 0]     [0]                             
                                 >= [0]                                       
                                    [0]                                       
                                 =  [c_2()]                                   
                                                                              
               [first^#(X1, X2)] =  [1 0] X1 + [1 0] X2 + [0]                 
                                    [0 0]      [0 0]      [0]                 
                                 >= [0]                                       
                                    [0]                                       
                                 =  [c_3()]                                   
                                                                              
               [first^#(0(), Z)] =  [1 0] Z + [0]                             
                                    [0 0]     [0]                             
                                 >= [0]                                       
                                    [0]                                       
                                 =  [c_4()]                                   
                                                                              
                        [s^#(X)] =  [1 0] X + [0]                             
                                    [0 0]     [0]                             
                                 >= [0]                                       
                                    [0]                                       
                                 =  [c_5()]                                   
                                                                              
                 [activate^#(X)] =  [2 2] X + [0]                             
                                    [0 0]     [0]                             
                                 >= [0]                                       
                                    [0]                                       
                                 =  [c_6()]                                   
                                                                              
        [activate^#(n__from(X))] =  [2 2] X + [4]                             
                                    [0 0]     [0]                             
                                 >  [1 2] X + [2]                             
                                    [0 0]     [0]                             
                                 =  [c_7(from^#(activate(X)))]                
                                                                              
           [activate^#(n__s(X))] =  [2 2] X + [4]                             
                                    [0 0]     [0]                             
                                 >  [1 2] X + [2]                             
                                    [0 0]     [0]                             
                                 =  [c_8(s^#(activate(X)))]                   
                                                                              
  [activate^#(n__first(X1, X2))] =  [2 2] X1 + [2 2] X2 + [4]                 
                                    [0 0]      [0 0]      [0]                 
                                 >= [1 2] X1 + [1 2] X2 + [4]                 
                                    [0 0]      [0 0]      [0]                 
                                 =  [c_9(first^#(activate(X1), activate(X2)))]
                                                                              
        [sel^#(0(), cons(X, Z))] =  [0]                                       
                                    [0]                                       
                                 >= [0]                                       
                                    [0]                                       
                                 =  [c_10()]                                  
                                                                              

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , first^#(X1, X2) -> c_3()
  , first^#(0(), Z) -> c_4()
  , s^#(X) -> c_5()
  , activate^#(X) -> c_6()
  , activate^#(n__first(X1, X2)) ->
    c_9(first^#(activate(X1), activate(X2)))
  , sel^#(0(), cons(X, Z)) -> c_10() }
Weak DPs:
  { activate^#(n__from(X)) -> c_7(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_8(s^#(activate(X))) }
Weak Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , first(X1, X2) -> n__first(X1, X2)
  , first(0(), Z) -> nil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

We estimate the number of application of {3,4,6,8} by applications
of Pre({3,4,6,8}) = {7}. Here rules are labeled as follows:

  DPs:
    { 1: from^#(X) -> c_1()
    , 2: from^#(X) -> c_2()
    , 3: first^#(X1, X2) -> c_3()
    , 4: first^#(0(), Z) -> c_4()
    , 5: s^#(X) -> c_5()
    , 6: activate^#(X) -> c_6()
    , 7: activate^#(n__first(X1, X2)) ->
         c_9(first^#(activate(X1), activate(X2)))
    , 8: sel^#(0(), cons(X, Z)) -> c_10()
    , 9: activate^#(n__from(X)) -> c_7(from^#(activate(X)))
    , 10: activate^#(n__s(X)) -> c_8(s^#(activate(X))) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , s^#(X) -> c_5()
  , activate^#(n__first(X1, X2)) ->
    c_9(first^#(activate(X1), activate(X2))) }
Weak DPs:
  { first^#(X1, X2) -> c_3()
  , first^#(0(), Z) -> c_4()
  , activate^#(X) -> c_6()
  , activate^#(n__from(X)) -> c_7(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_8(s^#(activate(X)))
  , sel^#(0(), cons(X, Z)) -> c_10() }
Weak Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , first(X1, X2) -> n__first(X1, X2)
  , first(0(), Z) -> nil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

We estimate the number of application of {4} by applications of
Pre({4}) = {}. Here rules are labeled as follows:

  DPs:
    { 1: from^#(X) -> c_1()
    , 2: from^#(X) -> c_2()
    , 3: s^#(X) -> c_5()
    , 4: activate^#(n__first(X1, X2)) ->
         c_9(first^#(activate(X1), activate(X2)))
    , 5: first^#(X1, X2) -> c_3()
    , 6: first^#(0(), Z) -> c_4()
    , 7: activate^#(X) -> c_6()
    , 8: activate^#(n__from(X)) -> c_7(from^#(activate(X)))
    , 9: activate^#(n__s(X)) -> c_8(s^#(activate(X)))
    , 10: sel^#(0(), cons(X, Z)) -> c_10() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , s^#(X) -> c_5() }
Weak DPs:
  { first^#(X1, X2) -> c_3()
  , first^#(0(), Z) -> c_4()
  , activate^#(X) -> c_6()
  , activate^#(n__from(X)) -> c_7(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_8(s^#(activate(X)))
  , activate^#(n__first(X1, X2)) ->
    c_9(first^#(activate(X1), activate(X2)))
  , sel^#(0(), cons(X, Z)) -> c_10() }
Weak Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , first(X1, X2) -> n__first(X1, X2)
  , first(0(), Z) -> nil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ first^#(X1, X2) -> c_3()
, first^#(0(), Z) -> c_4()
, activate^#(X) -> c_6()
, activate^#(n__first(X1, X2)) ->
  c_9(first^#(activate(X1), activate(X2)))
, sel^#(0(), cons(X, Z)) -> c_10() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { from^#(X) -> c_1()
  , from^#(X) -> c_2()
  , s^#(X) -> c_5() }
Weak DPs:
  { activate^#(n__from(X)) -> c_7(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_8(s^#(activate(X))) }
Weak Trs:
  { from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , first(X1, X2) -> n__first(X1, X2)
  , first(0(), Z) -> nil()
  , s(X) -> n__s(X)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict
rules from (R) into the weak component:

Problem (R):
------------
  Strict DPs: { from^#(X) -> c_2() }
  Weak DPs:
    { from^#(X) -> c_1()
    , s^#(X) -> c_5()
    , activate^#(n__from(X)) -> c_7(from^#(activate(X)))
    , activate^#(n__s(X)) -> c_8(s^#(activate(X))) }
  Weak Trs:
    { from(X) -> cons(X, n__from(n__s(X)))
    , from(X) -> n__from(X)
    , first(X1, X2) -> n__first(X1, X2)
    , first(0(), Z) -> nil()
    , s(X) -> n__s(X)
    , activate(X) -> X
    , activate(n__from(X)) -> from(activate(X))
    , activate(n__s(X)) -> s(activate(X))
    , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
  StartTerms: basic terms
  Strategy: innermost

Problem (S):
------------
  Strict DPs:
    { from^#(X) -> c_1()
    , s^#(X) -> c_5() }
  Weak DPs:
    { from^#(X) -> c_2()
    , activate^#(n__from(X)) -> c_7(from^#(activate(X)))
    , activate^#(n__s(X)) -> c_8(s^#(activate(X))) }
  Weak Trs:
    { from(X) -> cons(X, n__from(n__s(X)))
    , from(X) -> n__from(X)
    , first(X1, X2) -> n__first(X1, X2)
    , first(0(), Z) -> nil()
    , s(X) -> n__s(X)
    , activate(X) -> X
    , activate(n__from(X)) -> from(activate(X))
    , activate(n__s(X)) -> s(activate(X))
    , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
  StartTerms: basic terms
  Strategy: innermost

Overall, the transformation results in the following sub-problem(s):

Generated new problems:
-----------------------
R) Strict DPs: { from^#(X) -> c_2() }
   Weak DPs:
     { from^#(X) -> c_1()
     , s^#(X) -> c_5()
     , activate^#(n__from(X)) -> c_7(from^#(activate(X)))
     , activate^#(n__s(X)) -> c_8(s^#(activate(X))) }
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , first(X1, X2) -> n__first(X1, X2)
     , first(0(), Z) -> nil()
     , s(X) -> n__s(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
   StartTerms: basic terms
   Strategy: innermost
   
   This problem was proven YES(O(1),O(1)).

S) Strict DPs:
     { from^#(X) -> c_1()
     , s^#(X) -> c_5() }
   Weak DPs:
     { from^#(X) -> c_2()
     , activate^#(n__from(X)) -> c_7(from^#(activate(X)))
     , activate^#(n__s(X)) -> c_8(s^#(activate(X))) }
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , first(X1, X2) -> n__first(X1, X2)
     , first(0(), Z) -> nil()
     , s(X) -> n__s(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
   StartTerms: basic terms
   Strategy: innermost
   
   This problem was proven YES(O(1),O(1)).


Proofs for generated problems:
------------------------------
R) We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Strict DPs: { from^#(X) -> c_2() }
   Weak DPs:
     { from^#(X) -> c_1()
     , s^#(X) -> c_5()
     , activate^#(n__from(X)) -> c_7(from^#(activate(X)))
     , activate^#(n__s(X)) -> c_8(s^#(activate(X))) }
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , first(X1, X2) -> n__first(X1, X2)
     , first(0(), Z) -> nil()
     , s(X) -> n__s(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   The following weak DPs constitute a sub-graph of the DG that is
   closed under successors. The DPs are removed.
   
   { from^#(X) -> c_1()
   , s^#(X) -> c_5()
   , activate^#(n__s(X)) -> c_8(s^#(activate(X))) }
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Strict DPs: { from^#(X) -> c_2() }
   Weak DPs: { activate^#(n__from(X)) -> c_7(from^#(activate(X))) }
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , first(X1, X2) -> n__first(X1, X2)
     , first(0(), Z) -> nil()
     , s(X) -> n__s(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   The dependency graph contains no loops, we remove all dependency
   pairs.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , first(X1, X2) -> n__first(X1, X2)
     , first(0(), Z) -> nil()
     , s(X) -> n__s(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   No rule is usable, rules are removed from the input problem.
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Rules: Empty
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   Empty rules are trivially bounded

S) We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Strict DPs:
     { from^#(X) -> c_1()
     , s^#(X) -> c_5() }
   Weak DPs:
     { from^#(X) -> c_2()
     , activate^#(n__from(X)) -> c_7(from^#(activate(X)))
     , activate^#(n__s(X)) -> c_8(s^#(activate(X))) }
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , first(X1, X2) -> n__first(X1, X2)
     , first(0(), Z) -> nil()
     , s(X) -> n__s(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   The following weak DPs constitute a sub-graph of the DG that is
   closed under successors. The DPs are removed.
   
   { from^#(X) -> c_2() }
   
   We are left with following problem, upon which TcT provides the
   certificate YES(O(1),O(1)).
   
   Strict DPs:
     { from^#(X) -> c_1()
     , s^#(X) -> c_5() }
   Weak DPs:
     { activate^#(n__from(X)) -> c_7(from^#(activate(X)))
     , activate^#(n__s(X)) -> c_8(s^#(activate(X))) }
   Weak Trs:
     { from(X) -> cons(X, n__from(n__s(X)))
     , from(X) -> n__from(X)
     , first(X1, X2) -> n__first(X1, X2)
     , first(0(), Z) -> nil()
     , s(X) -> n__s(X)
     , activate(X) -> X
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
   Obligation:
     innermost runtime complexity
   Answer:
     YES(O(1),O(1))
   
   We analyse the complexity of following sub-problems (R) and (S).
   Problem (S) is obtained from the input problem by shifting strict
   rules from (R) into the weak component:
   
   Problem (R):
   ------------
     Strict DPs: { from^#(X) -> c_1() }
     Weak DPs:
       { s^#(X) -> c_5()
       , activate^#(n__from(X)) -> c_7(from^#(activate(X)))
       , activate^#(n__s(X)) -> c_8(s^#(activate(X))) }
     Weak Trs:
       { from(X) -> cons(X, n__from(n__s(X)))
       , from(X) -> n__from(X)
       , first(X1, X2) -> n__first(X1, X2)
       , first(0(), Z) -> nil()
       , s(X) -> n__s(X)
       , activate(X) -> X
       , activate(n__from(X)) -> from(activate(X))
       , activate(n__s(X)) -> s(activate(X))
       , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
     StartTerms: basic terms
     Strategy: innermost
   
   Problem (S):
   ------------
     Strict DPs: { s^#(X) -> c_5() }
     Weak DPs:
       { from^#(X) -> c_1()
       , activate^#(n__from(X)) -> c_7(from^#(activate(X)))
       , activate^#(n__s(X)) -> c_8(s^#(activate(X))) }
     Weak Trs:
       { from(X) -> cons(X, n__from(n__s(X)))
       , from(X) -> n__from(X)
       , first(X1, X2) -> n__first(X1, X2)
       , first(0(), Z) -> nil()
       , s(X) -> n__s(X)
       , activate(X) -> X
       , activate(n__from(X)) -> from(activate(X))
       , activate(n__s(X)) -> s(activate(X))
       , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
     StartTerms: basic terms
     Strategy: innermost
   
   Overall, the transformation results in the following sub-problem(s):
   
   Generated new problems:
   -----------------------
   R) Strict DPs: { from^#(X) -> c_1() }
      Weak DPs:
        { s^#(X) -> c_5()
        , activate^#(n__from(X)) -> c_7(from^#(activate(X)))
        , activate^#(n__s(X)) -> c_8(s^#(activate(X))) }
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , first(X1, X2) -> n__first(X1, X2)
        , first(0(), Z) -> nil()
        , s(X) -> n__s(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
      StartTerms: basic terms
      Strategy: innermost
      
      This problem was proven YES(O(1),O(1)).
   
   S) Strict DPs: { s^#(X) -> c_5() }
      Weak DPs:
        { from^#(X) -> c_1()
        , activate^#(n__from(X)) -> c_7(from^#(activate(X)))
        , activate^#(n__s(X)) -> c_8(s^#(activate(X))) }
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , first(X1, X2) -> n__first(X1, X2)
        , first(0(), Z) -> nil()
        , s(X) -> n__s(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
      StartTerms: basic terms
      Strategy: innermost
      
      This problem was proven YES(O(1),O(1)).
   
   
   Proofs for generated problems:
   ------------------------------
   R) We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Strict DPs: { from^#(X) -> c_1() }
      Weak DPs:
        { s^#(X) -> c_5()
        , activate^#(n__from(X)) -> c_7(from^#(activate(X)))
        , activate^#(n__s(X)) -> c_8(s^#(activate(X))) }
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , first(X1, X2) -> n__first(X1, X2)
        , first(0(), Z) -> nil()
        , s(X) -> n__s(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      The following weak DPs constitute a sub-graph of the DG that is
      closed under successors. The DPs are removed.
      
      { s^#(X) -> c_5()
      , activate^#(n__s(X)) -> c_8(s^#(activate(X))) }
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Strict DPs: { from^#(X) -> c_1() }
      Weak DPs: { activate^#(n__from(X)) -> c_7(from^#(activate(X))) }
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , first(X1, X2) -> n__first(X1, X2)
        , first(0(), Z) -> nil()
        , s(X) -> n__s(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      The dependency graph contains no loops, we remove all dependency
      pairs.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , first(X1, X2) -> n__first(X1, X2)
        , first(0(), Z) -> nil()
        , s(X) -> n__s(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      No rule is usable, rules are removed from the input problem.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Rules: Empty
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      Empty rules are trivially bounded
   
   S) We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Strict DPs: { s^#(X) -> c_5() }
      Weak DPs:
        { from^#(X) -> c_1()
        , activate^#(n__from(X)) -> c_7(from^#(activate(X)))
        , activate^#(n__s(X)) -> c_8(s^#(activate(X))) }
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , first(X1, X2) -> n__first(X1, X2)
        , first(0(), Z) -> nil()
        , s(X) -> n__s(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      The following weak DPs constitute a sub-graph of the DG that is
      closed under successors. The DPs are removed.
      
      { from^#(X) -> c_1()
      , activate^#(n__from(X)) -> c_7(from^#(activate(X))) }
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Strict DPs: { s^#(X) -> c_5() }
      Weak DPs: { activate^#(n__s(X)) -> c_8(s^#(activate(X))) }
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , first(X1, X2) -> n__first(X1, X2)
        , first(0(), Z) -> nil()
        , s(X) -> n__s(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      The dependency graph contains no loops, we remove all dependency
      pairs.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Weak Trs:
        { from(X) -> cons(X, n__from(n__s(X)))
        , from(X) -> n__from(X)
        , first(X1, X2) -> n__first(X1, X2)
        , first(0(), Z) -> nil()
        , s(X) -> n__s(X)
        , activate(X) -> X
        , activate(n__from(X)) -> from(activate(X))
        , activate(n__s(X)) -> s(activate(X))
        , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) }
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      No rule is usable, rules are removed from the input problem.
      
      We are left with following problem, upon which TcT provides the
      certificate YES(O(1),O(1)).
      
      Rules: Empty
      Obligation:
        innermost runtime complexity
      Answer:
        YES(O(1),O(1))
      
      Empty rules are trivially bounded
   


Hurray, we answered YES(O(1),O(n^1))