We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__eq(X, Y) -> false()
  , a__eq(X1, X2) -> eq(X1, X2)
  , a__eq(0(), 0()) -> true()
  , a__eq(s(X), s(Y)) -> a__eq(X, Y)
  , a__inf(X) -> cons(X, inf(s(X)))
  , a__inf(X) -> inf(X)
  , a__take(X1, X2) -> take(X1, X2)
  , a__take(0(), X) -> nil()
  , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
  , a__length(X) -> length(X)
  , a__length(cons(X, L)) -> s(length(L))
  , a__length(nil()) -> 0()
  , mark(0()) -> 0()
  , mark(true()) -> true()
  , mark(s(X)) -> s(X)
  , mark(false()) -> false()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(inf(X)) -> a__inf(mark(X))
  , mark(nil()) -> nil()
  , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2))
  , mark(length(X)) -> a__length(mark(X))
  , mark(eq(X1, X2)) -> a__eq(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2},
  Uargs(a__length) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

    [a__eq](x1, x2) = [0]                  
                                           
                [0] = [0]                  
                                           
             [true] = [0]                  
                                           
            [s](x1) = [0]                  
                                           
            [false] = [0]                  
                                           
       [a__inf](x1) = [1] x1 + [0]         
                                           
     [cons](x1, x2) = [0]                  
                                           
          [inf](x1) = [0]                  
                                           
  [a__take](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
              [nil] = [4]                  
                                           
     [take](x1, x2) = [0]                  
                                           
    [a__length](x1) = [1] x1 + [0]         
                                           
       [length](x1) = [0]                  
                                           
         [mark](x1) = [0]                  
                                           
       [eq](x1, x2) = [0]                  

The order satisfies the following ordering constraints:

                [a__eq(X, Y)] =  [0]                          
                              >= [0]                          
                              =  [false()]                    
                                                              
              [a__eq(X1, X2)] =  [0]                          
                              >= [0]                          
                              =  [eq(X1, X2)]                 
                                                              
            [a__eq(0(), 0())] =  [0]                          
                              >= [0]                          
                              =  [true()]                     
                                                              
          [a__eq(s(X), s(Y))] =  [0]                          
                              >= [0]                          
                              =  [a__eq(X, Y)]                
                                                              
                  [a__inf(X)] =  [1] X + [0]                  
                              >= [0]                          
                              =  [cons(X, inf(s(X)))]         
                                                              
                  [a__inf(X)] =  [1] X + [0]                  
                              >= [0]                          
                              =  [inf(X)]                     
                                                              
            [a__take(X1, X2)] =  [1] X1 + [1] X2 + [0]        
                              >= [0]                          
                              =  [take(X1, X2)]               
                                                              
            [a__take(0(), X)] =  [1] X + [0]                  
                              ?  [4]                          
                              =  [nil()]                      
                                                              
  [a__take(s(X), cons(Y, L))] =  [0]                          
                              >= [0]                          
                              =  [cons(Y, take(X, L))]        
                                                              
               [a__length(X)] =  [1] X + [0]                  
                              >= [0]                          
                              =  [length(X)]                  
                                                              
      [a__length(cons(X, L))] =  [0]                          
                              >= [0]                          
                              =  [s(length(L))]               
                                                              
           [a__length(nil())] =  [4]                          
                              >  [0]                          
                              =  [0()]                        
                                                              
                  [mark(0())] =  [0]                          
                              >= [0]                          
                              =  [0()]                        
                                                              
               [mark(true())] =  [0]                          
                              >= [0]                          
                              =  [true()]                     
                                                              
                 [mark(s(X))] =  [0]                          
                              >= [0]                          
                              =  [s(X)]                       
                                                              
              [mark(false())] =  [0]                          
                              >= [0]                          
                              =  [false()]                    
                                                              
         [mark(cons(X1, X2))] =  [0]                          
                              >= [0]                          
                              =  [cons(X1, X2)]               
                                                              
               [mark(inf(X))] =  [0]                          
                              >= [0]                          
                              =  [a__inf(mark(X))]            
                                                              
                [mark(nil())] =  [0]                          
                              ?  [4]                          
                              =  [nil()]                      
                                                              
         [mark(take(X1, X2))] =  [0]                          
                              >= [0]                          
                              =  [a__take(mark(X1), mark(X2))]
                                                              
            [mark(length(X))] =  [0]                          
                              >= [0]                          
                              =  [a__length(mark(X))]         
                                                              
           [mark(eq(X1, X2))] =  [0]                          
                              >= [0]                          
                              =  [a__eq(X1, X2)]              
                                                              

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__eq(X, Y) -> false()
  , a__eq(X1, X2) -> eq(X1, X2)
  , a__eq(0(), 0()) -> true()
  , a__eq(s(X), s(Y)) -> a__eq(X, Y)
  , a__inf(X) -> cons(X, inf(s(X)))
  , a__inf(X) -> inf(X)
  , a__take(X1, X2) -> take(X1, X2)
  , a__take(0(), X) -> nil()
  , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
  , a__length(X) -> length(X)
  , a__length(cons(X, L)) -> s(length(L))
  , mark(0()) -> 0()
  , mark(true()) -> true()
  , mark(s(X)) -> s(X)
  , mark(false()) -> false()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(inf(X)) -> a__inf(mark(X))
  , mark(nil()) -> nil()
  , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2))
  , mark(length(X)) -> a__length(mark(X))
  , mark(eq(X1, X2)) -> a__eq(X1, X2) }
Weak Trs: { a__length(nil()) -> 0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2},
  Uargs(a__length) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

    [a__eq](x1, x2) = [4]                  
                                           
                [0] = [0]                  
                                           
             [true] = [0]                  
                                           
            [s](x1) = [0]                  
                                           
            [false] = [0]                  
                                           
       [a__inf](x1) = [1] x1 + [0]         
                                           
     [cons](x1, x2) = [0]                  
                                           
          [inf](x1) = [0]                  
                                           
  [a__take](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
              [nil] = [4]                  
                                           
     [take](x1, x2) = [0]                  
                                           
    [a__length](x1) = [1] x1 + [0]         
                                           
       [length](x1) = [0]                  
                                           
         [mark](x1) = [0]                  
                                           
       [eq](x1, x2) = [0]                  

The order satisfies the following ordering constraints:

                [a__eq(X, Y)] =  [4]                          
                              >  [0]                          
                              =  [false()]                    
                                                              
              [a__eq(X1, X2)] =  [4]                          
                              >  [0]                          
                              =  [eq(X1, X2)]                 
                                                              
            [a__eq(0(), 0())] =  [4]                          
                              >  [0]                          
                              =  [true()]                     
                                                              
          [a__eq(s(X), s(Y))] =  [4]                          
                              >= [4]                          
                              =  [a__eq(X, Y)]                
                                                              
                  [a__inf(X)] =  [1] X + [0]                  
                              >= [0]                          
                              =  [cons(X, inf(s(X)))]         
                                                              
                  [a__inf(X)] =  [1] X + [0]                  
                              >= [0]                          
                              =  [inf(X)]                     
                                                              
            [a__take(X1, X2)] =  [1] X1 + [1] X2 + [0]        
                              >= [0]                          
                              =  [take(X1, X2)]               
                                                              
            [a__take(0(), X)] =  [1] X + [0]                  
                              ?  [4]                          
                              =  [nil()]                      
                                                              
  [a__take(s(X), cons(Y, L))] =  [0]                          
                              >= [0]                          
                              =  [cons(Y, take(X, L))]        
                                                              
               [a__length(X)] =  [1] X + [0]                  
                              >= [0]                          
                              =  [length(X)]                  
                                                              
      [a__length(cons(X, L))] =  [0]                          
                              >= [0]                          
                              =  [s(length(L))]               
                                                              
           [a__length(nil())] =  [4]                          
                              >  [0]                          
                              =  [0()]                        
                                                              
                  [mark(0())] =  [0]                          
                              >= [0]                          
                              =  [0()]                        
                                                              
               [mark(true())] =  [0]                          
                              >= [0]                          
                              =  [true()]                     
                                                              
                 [mark(s(X))] =  [0]                          
                              >= [0]                          
                              =  [s(X)]                       
                                                              
              [mark(false())] =  [0]                          
                              >= [0]                          
                              =  [false()]                    
                                                              
         [mark(cons(X1, X2))] =  [0]                          
                              >= [0]                          
                              =  [cons(X1, X2)]               
                                                              
               [mark(inf(X))] =  [0]                          
                              >= [0]                          
                              =  [a__inf(mark(X))]            
                                                              
                [mark(nil())] =  [0]                          
                              ?  [4]                          
                              =  [nil()]                      
                                                              
         [mark(take(X1, X2))] =  [0]                          
                              >= [0]                          
                              =  [a__take(mark(X1), mark(X2))]
                                                              
            [mark(length(X))] =  [0]                          
                              >= [0]                          
                              =  [a__length(mark(X))]         
                                                              
           [mark(eq(X1, X2))] =  [0]                          
                              ?  [4]                          
                              =  [a__eq(X1, X2)]              
                                                              

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__eq(s(X), s(Y)) -> a__eq(X, Y)
  , a__inf(X) -> cons(X, inf(s(X)))
  , a__inf(X) -> inf(X)
  , a__take(X1, X2) -> take(X1, X2)
  , a__take(0(), X) -> nil()
  , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
  , a__length(X) -> length(X)
  , a__length(cons(X, L)) -> s(length(L))
  , mark(0()) -> 0()
  , mark(true()) -> true()
  , mark(s(X)) -> s(X)
  , mark(false()) -> false()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(inf(X)) -> a__inf(mark(X))
  , mark(nil()) -> nil()
  , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2))
  , mark(length(X)) -> a__length(mark(X))
  , mark(eq(X1, X2)) -> a__eq(X1, X2) }
Weak Trs:
  { a__eq(X, Y) -> false()
  , a__eq(X1, X2) -> eq(X1, X2)
  , a__eq(0(), 0()) -> true()
  , a__length(nil()) -> 0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2},
  Uargs(a__length) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

    [a__eq](x1, x2) = [4]                  
                                           
                [0] = [0]                  
                                           
             [true] = [0]                  
                                           
            [s](x1) = [0]                  
                                           
            [false] = [0]                  
                                           
       [a__inf](x1) = [1] x1 + [1]         
                                           
     [cons](x1, x2) = [0]                  
                                           
          [inf](x1) = [0]                  
                                           
  [a__take](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
              [nil] = [4]                  
                                           
     [take](x1, x2) = [0]                  
                                           
    [a__length](x1) = [1] x1 + [0]         
                                           
       [length](x1) = [0]                  
                                           
         [mark](x1) = [0]                  
                                           
       [eq](x1, x2) = [0]                  

The order satisfies the following ordering constraints:

                [a__eq(X, Y)] =  [4]                          
                              >  [0]                          
                              =  [false()]                    
                                                              
              [a__eq(X1, X2)] =  [4]                          
                              >  [0]                          
                              =  [eq(X1, X2)]                 
                                                              
            [a__eq(0(), 0())] =  [4]                          
                              >  [0]                          
                              =  [true()]                     
                                                              
          [a__eq(s(X), s(Y))] =  [4]                          
                              >= [4]                          
                              =  [a__eq(X, Y)]                
                                                              
                  [a__inf(X)] =  [1] X + [1]                  
                              >  [0]                          
                              =  [cons(X, inf(s(X)))]         
                                                              
                  [a__inf(X)] =  [1] X + [1]                  
                              >  [0]                          
                              =  [inf(X)]                     
                                                              
            [a__take(X1, X2)] =  [1] X1 + [1] X2 + [0]        
                              >= [0]                          
                              =  [take(X1, X2)]               
                                                              
            [a__take(0(), X)] =  [1] X + [0]                  
                              ?  [4]                          
                              =  [nil()]                      
                                                              
  [a__take(s(X), cons(Y, L))] =  [0]                          
                              >= [0]                          
                              =  [cons(Y, take(X, L))]        
                                                              
               [a__length(X)] =  [1] X + [0]                  
                              >= [0]                          
                              =  [length(X)]                  
                                                              
      [a__length(cons(X, L))] =  [0]                          
                              >= [0]                          
                              =  [s(length(L))]               
                                                              
           [a__length(nil())] =  [4]                          
                              >  [0]                          
                              =  [0()]                        
                                                              
                  [mark(0())] =  [0]                          
                              >= [0]                          
                              =  [0()]                        
                                                              
               [mark(true())] =  [0]                          
                              >= [0]                          
                              =  [true()]                     
                                                              
                 [mark(s(X))] =  [0]                          
                              >= [0]                          
                              =  [s(X)]                       
                                                              
              [mark(false())] =  [0]                          
                              >= [0]                          
                              =  [false()]                    
                                                              
         [mark(cons(X1, X2))] =  [0]                          
                              >= [0]                          
                              =  [cons(X1, X2)]               
                                                              
               [mark(inf(X))] =  [0]                          
                              ?  [1]                          
                              =  [a__inf(mark(X))]            
                                                              
                [mark(nil())] =  [0]                          
                              ?  [4]                          
                              =  [nil()]                      
                                                              
         [mark(take(X1, X2))] =  [0]                          
                              >= [0]                          
                              =  [a__take(mark(X1), mark(X2))]
                                                              
            [mark(length(X))] =  [0]                          
                              >= [0]                          
                              =  [a__length(mark(X))]         
                                                              
           [mark(eq(X1, X2))] =  [0]                          
                              ?  [4]                          
                              =  [a__eq(X1, X2)]              
                                                              

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__eq(s(X), s(Y)) -> a__eq(X, Y)
  , a__take(X1, X2) -> take(X1, X2)
  , a__take(0(), X) -> nil()
  , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
  , a__length(X) -> length(X)
  , a__length(cons(X, L)) -> s(length(L))
  , mark(0()) -> 0()
  , mark(true()) -> true()
  , mark(s(X)) -> s(X)
  , mark(false()) -> false()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(inf(X)) -> a__inf(mark(X))
  , mark(nil()) -> nil()
  , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2))
  , mark(length(X)) -> a__length(mark(X))
  , mark(eq(X1, X2)) -> a__eq(X1, X2) }
Weak Trs:
  { a__eq(X, Y) -> false()
  , a__eq(X1, X2) -> eq(X1, X2)
  , a__eq(0(), 0()) -> true()
  , a__inf(X) -> cons(X, inf(s(X)))
  , a__inf(X) -> inf(X)
  , a__length(nil()) -> 0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2},
  Uargs(a__length) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

    [a__eq](x1, x2) = [4]                  
                                           
                [0] = [0]                  
                                           
             [true] = [0]                  
                                           
            [s](x1) = [0]                  
                                           
            [false] = [0]                  
                                           
       [a__inf](x1) = [1] x1 + [0]         
                                           
     [cons](x1, x2) = [0]                  
                                           
          [inf](x1) = [0]                  
                                           
  [a__take](x1, x2) = [1] x1 + [1] x2 + [4]
                                           
              [nil] = [4]                  
                                           
     [take](x1, x2) = [0]                  
                                           
    [a__length](x1) = [1] x1 + [0]         
                                           
       [length](x1) = [0]                  
                                           
         [mark](x1) = [0]                  
                                           
       [eq](x1, x2) = [0]                  

The order satisfies the following ordering constraints:

                [a__eq(X, Y)] =  [4]                          
                              >  [0]                          
                              =  [false()]                    
                                                              
              [a__eq(X1, X2)] =  [4]                          
                              >  [0]                          
                              =  [eq(X1, X2)]                 
                                                              
            [a__eq(0(), 0())] =  [4]                          
                              >  [0]                          
                              =  [true()]                     
                                                              
          [a__eq(s(X), s(Y))] =  [4]                          
                              >= [4]                          
                              =  [a__eq(X, Y)]                
                                                              
                  [a__inf(X)] =  [1] X + [0]                  
                              >= [0]                          
                              =  [cons(X, inf(s(X)))]         
                                                              
                  [a__inf(X)] =  [1] X + [0]                  
                              >= [0]                          
                              =  [inf(X)]                     
                                                              
            [a__take(X1, X2)] =  [1] X1 + [1] X2 + [4]        
                              >  [0]                          
                              =  [take(X1, X2)]               
                                                              
            [a__take(0(), X)] =  [1] X + [4]                  
                              >= [4]                          
                              =  [nil()]                      
                                                              
  [a__take(s(X), cons(Y, L))] =  [4]                          
                              >  [0]                          
                              =  [cons(Y, take(X, L))]        
                                                              
               [a__length(X)] =  [1] X + [0]                  
                              >= [0]                          
                              =  [length(X)]                  
                                                              
      [a__length(cons(X, L))] =  [0]                          
                              >= [0]                          
                              =  [s(length(L))]               
                                                              
           [a__length(nil())] =  [4]                          
                              >  [0]                          
                              =  [0()]                        
                                                              
                  [mark(0())] =  [0]                          
                              >= [0]                          
                              =  [0()]                        
                                                              
               [mark(true())] =  [0]                          
                              >= [0]                          
                              =  [true()]                     
                                                              
                 [mark(s(X))] =  [0]                          
                              >= [0]                          
                              =  [s(X)]                       
                                                              
              [mark(false())] =  [0]                          
                              >= [0]                          
                              =  [false()]                    
                                                              
         [mark(cons(X1, X2))] =  [0]                          
                              >= [0]                          
                              =  [cons(X1, X2)]               
                                                              
               [mark(inf(X))] =  [0]                          
                              >= [0]                          
                              =  [a__inf(mark(X))]            
                                                              
                [mark(nil())] =  [0]                          
                              ?  [4]                          
                              =  [nil()]                      
                                                              
         [mark(take(X1, X2))] =  [0]                          
                              ?  [4]                          
                              =  [a__take(mark(X1), mark(X2))]
                                                              
            [mark(length(X))] =  [0]                          
                              >= [0]                          
                              =  [a__length(mark(X))]         
                                                              
           [mark(eq(X1, X2))] =  [0]                          
                              ?  [4]                          
                              =  [a__eq(X1, X2)]              
                                                              

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__eq(s(X), s(Y)) -> a__eq(X, Y)
  , a__take(0(), X) -> nil()
  , a__length(X) -> length(X)
  , a__length(cons(X, L)) -> s(length(L))
  , mark(0()) -> 0()
  , mark(true()) -> true()
  , mark(s(X)) -> s(X)
  , mark(false()) -> false()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(inf(X)) -> a__inf(mark(X))
  , mark(nil()) -> nil()
  , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2))
  , mark(length(X)) -> a__length(mark(X))
  , mark(eq(X1, X2)) -> a__eq(X1, X2) }
Weak Trs:
  { a__eq(X, Y) -> false()
  , a__eq(X1, X2) -> eq(X1, X2)
  , a__eq(0(), 0()) -> true()
  , a__inf(X) -> cons(X, inf(s(X)))
  , a__inf(X) -> inf(X)
  , a__take(X1, X2) -> take(X1, X2)
  , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
  , a__length(nil()) -> 0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2},
  Uargs(a__length) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

    [a__eq](x1, x2) = [5]                  
                                           
                [0] = [0]                  
                                           
             [true] = [0]                  
                                           
            [s](x1) = [1] x1 + [0]         
                                           
            [false] = [0]                  
                                           
       [a__inf](x1) = [1] x1 + [4]         
                                           
     [cons](x1, x2) = [1] x2 + [4]         
                                           
          [inf](x1) = [1] x1 + [0]         
                                           
  [a__take](x1, x2) = [1] x1 + [1] x2 + [4]
                                           
              [nil] = [0]                  
                                           
     [take](x1, x2) = [1] x1 + [1] x2 + [1]
                                           
    [a__length](x1) = [1] x1 + [1]         
                                           
       [length](x1) = [1] x1 + [0]         
                                           
         [mark](x1) = [1] x1 + [0]         
                                           
       [eq](x1, x2) = [4]                  

The order satisfies the following ordering constraints:

                [a__eq(X, Y)] =  [5]                          
                              >  [0]                          
                              =  [false()]                    
                                                              
              [a__eq(X1, X2)] =  [5]                          
                              >  [4]                          
                              =  [eq(X1, X2)]                 
                                                              
            [a__eq(0(), 0())] =  [5]                          
                              >  [0]                          
                              =  [true()]                     
                                                              
          [a__eq(s(X), s(Y))] =  [5]                          
                              >= [5]                          
                              =  [a__eq(X, Y)]                
                                                              
                  [a__inf(X)] =  [1] X + [4]                  
                              >= [1] X + [4]                  
                              =  [cons(X, inf(s(X)))]         
                                                              
                  [a__inf(X)] =  [1] X + [4]                  
                              >  [1] X + [0]                  
                              =  [inf(X)]                     
                                                              
            [a__take(X1, X2)] =  [1] X1 + [1] X2 + [4]        
                              >  [1] X1 + [1] X2 + [1]        
                              =  [take(X1, X2)]               
                                                              
            [a__take(0(), X)] =  [1] X + [4]                  
                              >  [0]                          
                              =  [nil()]                      
                                                              
  [a__take(s(X), cons(Y, L))] =  [1] X + [1] L + [8]          
                              >  [1] X + [1] L + [5]          
                              =  [cons(Y, take(X, L))]        
                                                              
               [a__length(X)] =  [1] X + [1]                  
                              >  [1] X + [0]                  
                              =  [length(X)]                  
                                                              
      [a__length(cons(X, L))] =  [1] L + [5]                  
                              >  [1] L + [0]                  
                              =  [s(length(L))]               
                                                              
           [a__length(nil())] =  [1]                          
                              >  [0]                          
                              =  [0()]                        
                                                              
                  [mark(0())] =  [0]                          
                              >= [0]                          
                              =  [0()]                        
                                                              
               [mark(true())] =  [0]                          
                              >= [0]                          
                              =  [true()]                     
                                                              
                 [mark(s(X))] =  [1] X + [0]                  
                              >= [1] X + [0]                  
                              =  [s(X)]                       
                                                              
              [mark(false())] =  [0]                          
                              >= [0]                          
                              =  [false()]                    
                                                              
         [mark(cons(X1, X2))] =  [1] X2 + [4]                 
                              >= [1] X2 + [4]                 
                              =  [cons(X1, X2)]               
                                                              
               [mark(inf(X))] =  [1] X + [0]                  
                              ?  [1] X + [4]                  
                              =  [a__inf(mark(X))]            
                                                              
                [mark(nil())] =  [0]                          
                              >= [0]                          
                              =  [nil()]                      
                                                              
         [mark(take(X1, X2))] =  [1] X1 + [1] X2 + [1]        
                              ?  [1] X1 + [1] X2 + [4]        
                              =  [a__take(mark(X1), mark(X2))]
                                                              
            [mark(length(X))] =  [1] X + [0]                  
                              ?  [1] X + [1]                  
                              =  [a__length(mark(X))]         
                                                              
           [mark(eq(X1, X2))] =  [4]                          
                              ?  [5]                          
                              =  [a__eq(X1, X2)]              
                                                              

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__eq(s(X), s(Y)) -> a__eq(X, Y)
  , mark(0()) -> 0()
  , mark(true()) -> true()
  , mark(s(X)) -> s(X)
  , mark(false()) -> false()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(inf(X)) -> a__inf(mark(X))
  , mark(nil()) -> nil()
  , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2))
  , mark(length(X)) -> a__length(mark(X))
  , mark(eq(X1, X2)) -> a__eq(X1, X2) }
Weak Trs:
  { a__eq(X, Y) -> false()
  , a__eq(X1, X2) -> eq(X1, X2)
  , a__eq(0(), 0()) -> true()
  , a__inf(X) -> cons(X, inf(s(X)))
  , a__inf(X) -> inf(X)
  , a__take(X1, X2) -> take(X1, X2)
  , a__take(0(), X) -> nil()
  , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
  , a__length(X) -> length(X)
  , a__length(cons(X, L)) -> s(length(L))
  , a__length(nil()) -> 0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2},
  Uargs(a__length) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

    [a__eq](x1, x2) = [1] x2 + [6]         
                                           
                [0] = [1]                  
                                           
             [true] = [0]                  
                                           
            [s](x1) = [1] x1 + [1]         
                                           
            [false] = [0]                  
                                           
       [a__inf](x1) = [1] x1 + [5]         
                                           
     [cons](x1, x2) = [1] x2 + [0]         
                                           
          [inf](x1) = [1] x1 + [0]         
                                           
  [a__take](x1, x2) = [1] x1 + [1] x2 + [4]
                                           
              [nil] = [4]                  
                                           
     [take](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
    [a__length](x1) = [1] x1 + [4]         
                                           
       [length](x1) = [1] x1 + [0]         
                                           
         [mark](x1) = [1] x1 + [0]         
                                           
       [eq](x1, x2) = [1] x2 + [3]         

The order satisfies the following ordering constraints:

                [a__eq(X, Y)] =  [1] Y + [6]                  
                              >  [0]                          
                              =  [false()]                    
                                                              
              [a__eq(X1, X2)] =  [1] X2 + [6]                 
                              >  [1] X2 + [3]                 
                              =  [eq(X1, X2)]                 
                                                              
            [a__eq(0(), 0())] =  [7]                          
                              >  [0]                          
                              =  [true()]                     
                                                              
          [a__eq(s(X), s(Y))] =  [1] Y + [7]                  
                              >  [1] Y + [6]                  
                              =  [a__eq(X, Y)]                
                                                              
                  [a__inf(X)] =  [1] X + [5]                  
                              >  [1] X + [1]                  
                              =  [cons(X, inf(s(X)))]         
                                                              
                  [a__inf(X)] =  [1] X + [5]                  
                              >  [1] X + [0]                  
                              =  [inf(X)]                     
                                                              
            [a__take(X1, X2)] =  [1] X1 + [1] X2 + [4]        
                              >  [1] X1 + [1] X2 + [0]        
                              =  [take(X1, X2)]               
                                                              
            [a__take(0(), X)] =  [1] X + [5]                  
                              >  [4]                          
                              =  [nil()]                      
                                                              
  [a__take(s(X), cons(Y, L))] =  [1] X + [1] L + [5]          
                              >  [1] X + [1] L + [0]          
                              =  [cons(Y, take(X, L))]        
                                                              
               [a__length(X)] =  [1] X + [4]                  
                              >  [1] X + [0]                  
                              =  [length(X)]                  
                                                              
      [a__length(cons(X, L))] =  [1] L + [4]                  
                              >  [1] L + [1]                  
                              =  [s(length(L))]               
                                                              
           [a__length(nil())] =  [8]                          
                              >  [1]                          
                              =  [0()]                        
                                                              
                  [mark(0())] =  [1]                          
                              >= [1]                          
                              =  [0()]                        
                                                              
               [mark(true())] =  [0]                          
                              >= [0]                          
                              =  [true()]                     
                                                              
                 [mark(s(X))] =  [1] X + [1]                  
                              >= [1] X + [1]                  
                              =  [s(X)]                       
                                                              
              [mark(false())] =  [0]                          
                              >= [0]                          
                              =  [false()]                    
                                                              
         [mark(cons(X1, X2))] =  [1] X2 + [0]                 
                              >= [1] X2 + [0]                 
                              =  [cons(X1, X2)]               
                                                              
               [mark(inf(X))] =  [1] X + [0]                  
                              ?  [1] X + [5]                  
                              =  [a__inf(mark(X))]            
                                                              
                [mark(nil())] =  [4]                          
                              >= [4]                          
                              =  [nil()]                      
                                                              
         [mark(take(X1, X2))] =  [1] X1 + [1] X2 + [0]        
                              ?  [1] X1 + [1] X2 + [4]        
                              =  [a__take(mark(X1), mark(X2))]
                                                              
            [mark(length(X))] =  [1] X + [0]                  
                              ?  [1] X + [4]                  
                              =  [a__length(mark(X))]         
                                                              
           [mark(eq(X1, X2))] =  [1] X2 + [3]                 
                              ?  [1] X2 + [6]                 
                              =  [a__eq(X1, X2)]              
                                                              

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { mark(0()) -> 0()
  , mark(true()) -> true()
  , mark(s(X)) -> s(X)
  , mark(false()) -> false()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(inf(X)) -> a__inf(mark(X))
  , mark(nil()) -> nil()
  , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2))
  , mark(length(X)) -> a__length(mark(X))
  , mark(eq(X1, X2)) -> a__eq(X1, X2) }
Weak Trs:
  { a__eq(X, Y) -> false()
  , a__eq(X1, X2) -> eq(X1, X2)
  , a__eq(0(), 0()) -> true()
  , a__eq(s(X), s(Y)) -> a__eq(X, Y)
  , a__inf(X) -> cons(X, inf(s(X)))
  , a__inf(X) -> inf(X)
  , a__take(X1, X2) -> take(X1, X2)
  , a__take(0(), X) -> nil()
  , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
  , a__length(X) -> length(X)
  , a__length(cons(X, L)) -> s(length(L))
  , a__length(nil()) -> 0() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following nonconstant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2},
  Uargs(a__length) = {1}

TcT has computed the following matrix interpretation satisfying
not(EDA) and not(IDA(1)).

    [a__eq](x1, x2) = [7]                  
                                           
                [0] = [4]                  
                                           
             [true] = [0]                  
                                           
            [s](x1) = [0]                  
                                           
            [false] = [0]                  
                                           
       [a__inf](x1) = [1] x1 + [7]         
                                           
     [cons](x1, x2) = [0]                  
                                           
          [inf](x1) = [1] x1 + [7]         
                                           
  [a__take](x1, x2) = [1] x1 + [1] x2 + [1]
                                           
              [nil] = [4]                  
                                           
     [take](x1, x2) = [1] x1 + [1] x2 + [0]
                                           
    [a__length](x1) = [1] x1 + [7]         
                                           
       [length](x1) = [1] x1 + [4]         
                                           
         [mark](x1) = [1] x1 + [1]         
                                           
       [eq](x1, x2) = [7]                  

The order satisfies the following ordering constraints:

                [a__eq(X, Y)] =  [7]                          
                              >  [0]                          
                              =  [false()]                    
                                                              
              [a__eq(X1, X2)] =  [7]                          
                              >= [7]                          
                              =  [eq(X1, X2)]                 
                                                              
            [a__eq(0(), 0())] =  [7]                          
                              >  [0]                          
                              =  [true()]                     
                                                              
          [a__eq(s(X), s(Y))] =  [7]                          
                              >= [7]                          
                              =  [a__eq(X, Y)]                
                                                              
                  [a__inf(X)] =  [1] X + [7]                  
                              >  [0]                          
                              =  [cons(X, inf(s(X)))]         
                                                              
                  [a__inf(X)] =  [1] X + [7]                  
                              >= [1] X + [7]                  
                              =  [inf(X)]                     
                                                              
            [a__take(X1, X2)] =  [1] X1 + [1] X2 + [1]        
                              >  [1] X1 + [1] X2 + [0]        
                              =  [take(X1, X2)]               
                                                              
            [a__take(0(), X)] =  [1] X + [5]                  
                              >  [4]                          
                              =  [nil()]                      
                                                              
  [a__take(s(X), cons(Y, L))] =  [1]                          
                              >  [0]                          
                              =  [cons(Y, take(X, L))]        
                                                              
               [a__length(X)] =  [1] X + [7]                  
                              >  [1] X + [4]                  
                              =  [length(X)]                  
                                                              
      [a__length(cons(X, L))] =  [7]                          
                              >  [0]                          
                              =  [s(length(L))]               
                                                              
           [a__length(nil())] =  [11]                         
                              >  [4]                          
                              =  [0()]                        
                                                              
                  [mark(0())] =  [5]                          
                              >  [4]                          
                              =  [0()]                        
                                                              
               [mark(true())] =  [1]                          
                              >  [0]                          
                              =  [true()]                     
                                                              
                 [mark(s(X))] =  [1]                          
                              >  [0]                          
                              =  [s(X)]                       
                                                              
              [mark(false())] =  [1]                          
                              >  [0]                          
                              =  [false()]                    
                                                              
         [mark(cons(X1, X2))] =  [1]                          
                              >  [0]                          
                              =  [cons(X1, X2)]               
                                                              
               [mark(inf(X))] =  [1] X + [8]                  
                              >= [1] X + [8]                  
                              =  [a__inf(mark(X))]            
                                                              
                [mark(nil())] =  [5]                          
                              >  [4]                          
                              =  [nil()]                      
                                                              
         [mark(take(X1, X2))] =  [1] X1 + [1] X2 + [1]        
                              ?  [1] X1 + [1] X2 + [3]        
                              =  [a__take(mark(X1), mark(X2))]
                                                              
            [mark(length(X))] =  [1] X + [5]                  
                              ?  [1] X + [8]                  
                              =  [a__length(mark(X))]         
                                                              
           [mark(eq(X1, X2))] =  [8]                          
                              >  [7]                          
                              =  [a__eq(X1, X2)]              
                                                              

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { mark(inf(X)) -> a__inf(mark(X))
  , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2))
  , mark(length(X)) -> a__length(mark(X)) }
Weak Trs:
  { a__eq(X, Y) -> false()
  , a__eq(X1, X2) -> eq(X1, X2)
  , a__eq(0(), 0()) -> true()
  , a__eq(s(X), s(Y)) -> a__eq(X, Y)
  , a__inf(X) -> cons(X, inf(s(X)))
  , a__inf(X) -> inf(X)
  , a__take(X1, X2) -> take(X1, X2)
  , a__take(0(), X) -> nil()
  , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
  , a__length(X) -> length(X)
  , a__length(cons(X, L)) -> s(length(L))
  , a__length(nil()) -> 0()
  , mark(0()) -> 0()
  , mark(true()) -> true()
  , mark(s(X)) -> s(X)
  , mark(false()) -> false()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(nil()) -> nil()
  , mark(eq(X1, X2)) -> a__eq(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

Trs: { mark(length(X)) -> a__length(mark(X)) }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^1)) . These rules are moved into the corresponding weak
component(s).

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2},
    Uargs(a__length) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
      [a__eq](x1, x2) = [0]                  
                                             
                  [0] = [0]                  
                                             
               [true] = [0]                  
                                             
              [s](x1) = [0]                  
                                             
              [false] = [0]                  
                                             
         [a__inf](x1) = [1] x1 + [0]         
                                             
       [cons](x1, x2) = [0]                  
                                             
            [inf](x1) = [1] x1 + [0]         
                                             
    [a__take](x1, x2) = [1] x1 + [1] x2 + [0]
                                             
                [nil] = [0]                  
                                             
       [take](x1, x2) = [1] x1 + [1] x2 + [0]
                                             
      [a__length](x1) = [1] x1 + [1]         
                                             
         [length](x1) = [1] x1 + [1]         
                                             
           [mark](x1) = [4] x1 + [0]         
                                             
         [eq](x1, x2) = [0]                  
  
  The order satisfies the following ordering constraints:
  
                  [a__eq(X, Y)] =  [0]                          
                                >= [0]                          
                                =  [false()]                    
                                                                
                [a__eq(X1, X2)] =  [0]                          
                                >= [0]                          
                                =  [eq(X1, X2)]                 
                                                                
              [a__eq(0(), 0())] =  [0]                          
                                >= [0]                          
                                =  [true()]                     
                                                                
            [a__eq(s(X), s(Y))] =  [0]                          
                                >= [0]                          
                                =  [a__eq(X, Y)]                
                                                                
                    [a__inf(X)] =  [1] X + [0]                  
                                >= [0]                          
                                =  [cons(X, inf(s(X)))]         
                                                                
                    [a__inf(X)] =  [1] X + [0]                  
                                >= [1] X + [0]                  
                                =  [inf(X)]                     
                                                                
              [a__take(X1, X2)] =  [1] X1 + [1] X2 + [0]        
                                >= [1] X1 + [1] X2 + [0]        
                                =  [take(X1, X2)]               
                                                                
              [a__take(0(), X)] =  [1] X + [0]                  
                                >= [0]                          
                                =  [nil()]                      
                                                                
    [a__take(s(X), cons(Y, L))] =  [0]                          
                                >= [0]                          
                                =  [cons(Y, take(X, L))]        
                                                                
                 [a__length(X)] =  [1] X + [1]                  
                                >= [1] X + [1]                  
                                =  [length(X)]                  
                                                                
        [a__length(cons(X, L))] =  [1]                          
                                >  [0]                          
                                =  [s(length(L))]               
                                                                
             [a__length(nil())] =  [1]                          
                                >  [0]                          
                                =  [0()]                        
                                                                
                    [mark(0())] =  [0]                          
                                >= [0]                          
                                =  [0()]                        
                                                                
                 [mark(true())] =  [0]                          
                                >= [0]                          
                                =  [true()]                     
                                                                
                   [mark(s(X))] =  [0]                          
                                >= [0]                          
                                =  [s(X)]                       
                                                                
                [mark(false())] =  [0]                          
                                >= [0]                          
                                =  [false()]                    
                                                                
           [mark(cons(X1, X2))] =  [0]                          
                                >= [0]                          
                                =  [cons(X1, X2)]               
                                                                
                 [mark(inf(X))] =  [4] X + [0]                  
                                >= [4] X + [0]                  
                                =  [a__inf(mark(X))]            
                                                                
                  [mark(nil())] =  [0]                          
                                >= [0]                          
                                =  [nil()]                      
                                                                
           [mark(take(X1, X2))] =  [4] X1 + [4] X2 + [0]        
                                >= [4] X1 + [4] X2 + [0]        
                                =  [a__take(mark(X1), mark(X2))]
                                                                
              [mark(length(X))] =  [4] X + [4]                  
                                >  [4] X + [1]                  
                                =  [a__length(mark(X))]         
                                                                
             [mark(eq(X1, X2))] =  [0]                          
                                >= [0]                          
                                =  [a__eq(X1, X2)]              
                                                                

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { mark(inf(X)) -> a__inf(mark(X))
  , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) }
Weak Trs:
  { a__eq(X, Y) -> false()
  , a__eq(X1, X2) -> eq(X1, X2)
  , a__eq(0(), 0()) -> true()
  , a__eq(s(X), s(Y)) -> a__eq(X, Y)
  , a__inf(X) -> cons(X, inf(s(X)))
  , a__inf(X) -> inf(X)
  , a__take(X1, X2) -> take(X1, X2)
  , a__take(0(), X) -> nil()
  , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
  , a__length(X) -> length(X)
  , a__length(cons(X, L)) -> s(length(L))
  , a__length(nil()) -> 0()
  , mark(0()) -> 0()
  , mark(true()) -> true()
  , mark(s(X)) -> s(X)
  , mark(false()) -> false()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(nil()) -> nil()
  , mark(length(X)) -> a__length(mark(X))
  , mark(eq(X1, X2)) -> a__eq(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

Trs: { mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^1)) . These rules are moved into the corresponding weak
component(s).

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2},
    Uargs(a__length) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
      [a__eq](x1, x2) = [0]                  
                                             
                  [0] = [0]                  
                                             
               [true] = [0]                  
                                             
              [s](x1) = [0]                  
                                             
              [false] = [0]                  
                                             
         [a__inf](x1) = [1] x1 + [0]         
                                             
       [cons](x1, x2) = [0]                  
                                             
            [inf](x1) = [1] x1 + [0]         
                                             
    [a__take](x1, x2) = [1] x1 + [1] x2 + [1]
                                             
                [nil] = [0]                  
                                             
       [take](x1, x2) = [1] x1 + [1] x2 + [1]
                                             
      [a__length](x1) = [1] x1 + [0]         
                                             
         [length](x1) = [1] x1 + [0]         
                                             
           [mark](x1) = [2] x1 + [0]         
                                             
         [eq](x1, x2) = [0]                  
  
  The order satisfies the following ordering constraints:
  
                  [a__eq(X, Y)] =  [0]                          
                                >= [0]                          
                                =  [false()]                    
                                                                
                [a__eq(X1, X2)] =  [0]                          
                                >= [0]                          
                                =  [eq(X1, X2)]                 
                                                                
              [a__eq(0(), 0())] =  [0]                          
                                >= [0]                          
                                =  [true()]                     
                                                                
            [a__eq(s(X), s(Y))] =  [0]                          
                                >= [0]                          
                                =  [a__eq(X, Y)]                
                                                                
                    [a__inf(X)] =  [1] X + [0]                  
                                >= [0]                          
                                =  [cons(X, inf(s(X)))]         
                                                                
                    [a__inf(X)] =  [1] X + [0]                  
                                >= [1] X + [0]                  
                                =  [inf(X)]                     
                                                                
              [a__take(X1, X2)] =  [1] X1 + [1] X2 + [1]        
                                >= [1] X1 + [1] X2 + [1]        
                                =  [take(X1, X2)]               
                                                                
              [a__take(0(), X)] =  [1] X + [1]                  
                                >  [0]                          
                                =  [nil()]                      
                                                                
    [a__take(s(X), cons(Y, L))] =  [1]                          
                                >  [0]                          
                                =  [cons(Y, take(X, L))]        
                                                                
                 [a__length(X)] =  [1] X + [0]                  
                                >= [1] X + [0]                  
                                =  [length(X)]                  
                                                                
        [a__length(cons(X, L))] =  [0]                          
                                >= [0]                          
                                =  [s(length(L))]               
                                                                
             [a__length(nil())] =  [0]                          
                                >= [0]                          
                                =  [0()]                        
                                                                
                    [mark(0())] =  [0]                          
                                >= [0]                          
                                =  [0()]                        
                                                                
                 [mark(true())] =  [0]                          
                                >= [0]                          
                                =  [true()]                     
                                                                
                   [mark(s(X))] =  [0]                          
                                >= [0]                          
                                =  [s(X)]                       
                                                                
                [mark(false())] =  [0]                          
                                >= [0]                          
                                =  [false()]                    
                                                                
           [mark(cons(X1, X2))] =  [0]                          
                                >= [0]                          
                                =  [cons(X1, X2)]               
                                                                
                 [mark(inf(X))] =  [2] X + [0]                  
                                >= [2] X + [0]                  
                                =  [a__inf(mark(X))]            
                                                                
                  [mark(nil())] =  [0]                          
                                >= [0]                          
                                =  [nil()]                      
                                                                
           [mark(take(X1, X2))] =  [2] X1 + [2] X2 + [2]        
                                >  [2] X1 + [2] X2 + [1]        
                                =  [a__take(mark(X1), mark(X2))]
                                                                
              [mark(length(X))] =  [2] X + [0]                  
                                >= [2] X + [0]                  
                                =  [a__length(mark(X))]         
                                                                
             [mark(eq(X1, X2))] =  [0]                          
                                >= [0]                          
                                =  [a__eq(X1, X2)]              
                                                                

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs: { mark(inf(X)) -> a__inf(mark(X)) }
Weak Trs:
  { a__eq(X, Y) -> false()
  , a__eq(X1, X2) -> eq(X1, X2)
  , a__eq(0(), 0()) -> true()
  , a__eq(s(X), s(Y)) -> a__eq(X, Y)
  , a__inf(X) -> cons(X, inf(s(X)))
  , a__inf(X) -> inf(X)
  , a__take(X1, X2) -> take(X1, X2)
  , a__take(0(), X) -> nil()
  , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
  , a__length(X) -> length(X)
  , a__length(cons(X, L)) -> s(length(L))
  , a__length(nil()) -> 0()
  , mark(0()) -> 0()
  , mark(true()) -> true()
  , mark(s(X)) -> s(X)
  , mark(false()) -> false()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(nil()) -> nil()
  , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2))
  , mark(length(X)) -> a__length(mark(X))
  , mark(eq(X1, X2)) -> a__eq(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

Trs: { mark(inf(X)) -> a__inf(mark(X)) }

The induced complexity on above rules (modulo remaining rules) is
YES(?,O(n^1)) . These rules are moved into the corresponding weak
component(s).

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2},
    Uargs(a__length) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
      [a__eq](x1, x2) = [0]                  
                                             
                  [0] = [0]                  
                                             
               [true] = [0]                  
                                             
              [s](x1) = [0]                  
                                             
              [false] = [0]                  
                                             
         [a__inf](x1) = [1] x1 + [4]         
                                             
       [cons](x1, x2) = [0]                  
                                             
            [inf](x1) = [1] x1 + [4]         
                                             
    [a__take](x1, x2) = [1] x1 + [1] x2 + [0]
                                             
                [nil] = [0]                  
                                             
       [take](x1, x2) = [1] x1 + [1] x2 + [0]
                                             
      [a__length](x1) = [1] x1 + [0]         
                                             
         [length](x1) = [1] x1 + [0]         
                                             
           [mark](x1) = [3] x1 + [0]         
                                             
         [eq](x1, x2) = [0]                  
  
  The order satisfies the following ordering constraints:
  
                  [a__eq(X, Y)] =  [0]                          
                                >= [0]                          
                                =  [false()]                    
                                                                
                [a__eq(X1, X2)] =  [0]                          
                                >= [0]                          
                                =  [eq(X1, X2)]                 
                                                                
              [a__eq(0(), 0())] =  [0]                          
                                >= [0]                          
                                =  [true()]                     
                                                                
            [a__eq(s(X), s(Y))] =  [0]                          
                                >= [0]                          
                                =  [a__eq(X, Y)]                
                                                                
                    [a__inf(X)] =  [1] X + [4]                  
                                >  [0]                          
                                =  [cons(X, inf(s(X)))]         
                                                                
                    [a__inf(X)] =  [1] X + [4]                  
                                >= [1] X + [4]                  
                                =  [inf(X)]                     
                                                                
              [a__take(X1, X2)] =  [1] X1 + [1] X2 + [0]        
                                >= [1] X1 + [1] X2 + [0]        
                                =  [take(X1, X2)]               
                                                                
              [a__take(0(), X)] =  [1] X + [0]                  
                                >= [0]                          
                                =  [nil()]                      
                                                                
    [a__take(s(X), cons(Y, L))] =  [0]                          
                                >= [0]                          
                                =  [cons(Y, take(X, L))]        
                                                                
                 [a__length(X)] =  [1] X + [0]                  
                                >= [1] X + [0]                  
                                =  [length(X)]                  
                                                                
        [a__length(cons(X, L))] =  [0]                          
                                >= [0]                          
                                =  [s(length(L))]               
                                                                
             [a__length(nil())] =  [0]                          
                                >= [0]                          
                                =  [0()]                        
                                                                
                    [mark(0())] =  [0]                          
                                >= [0]                          
                                =  [0()]                        
                                                                
                 [mark(true())] =  [0]                          
                                >= [0]                          
                                =  [true()]                     
                                                                
                   [mark(s(X))] =  [0]                          
                                >= [0]                          
                                =  [s(X)]                       
                                                                
                [mark(false())] =  [0]                          
                                >= [0]                          
                                =  [false()]                    
                                                                
           [mark(cons(X1, X2))] =  [0]                          
                                >= [0]                          
                                =  [cons(X1, X2)]               
                                                                
                 [mark(inf(X))] =  [3] X + [12]                 
                                >  [3] X + [4]                  
                                =  [a__inf(mark(X))]            
                                                                
                  [mark(nil())] =  [0]                          
                                >= [0]                          
                                =  [nil()]                      
                                                                
           [mark(take(X1, X2))] =  [3] X1 + [3] X2 + [0]        
                                >= [3] X1 + [3] X2 + [0]        
                                =  [a__take(mark(X1), mark(X2))]
                                                                
              [mark(length(X))] =  [3] X + [0]                  
                                >= [3] X + [0]                  
                                =  [a__length(mark(X))]         
                                                                
             [mark(eq(X1, X2))] =  [0]                          
                                >= [0]                          
                                =  [a__eq(X1, X2)]              
                                                                

We return to the main proof.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak Trs:
  { a__eq(X, Y) -> false()
  , a__eq(X1, X2) -> eq(X1, X2)
  , a__eq(0(), 0()) -> true()
  , a__eq(s(X), s(Y)) -> a__eq(X, Y)
  , a__inf(X) -> cons(X, inf(s(X)))
  , a__inf(X) -> inf(X)
  , a__take(X1, X2) -> take(X1, X2)
  , a__take(0(), X) -> nil()
  , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L))
  , a__length(X) -> length(X)
  , a__length(cons(X, L)) -> s(length(L))
  , a__length(nil()) -> 0()
  , mark(0()) -> 0()
  , mark(true()) -> true()
  , mark(s(X)) -> s(X)
  , mark(false()) -> false()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(inf(X)) -> a__inf(mark(X))
  , mark(nil()) -> nil()
  , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2))
  , mark(length(X)) -> a__length(mark(X))
  , mark(eq(X1, X2)) -> a__eq(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^1))