We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { a__eq(X, Y) -> false() , a__eq(X1, X2) -> eq(X1, X2) , a__eq(0(), 0()) -> true() , a__eq(s(X), s(Y)) -> a__eq(X, Y) , a__inf(X) -> cons(X, inf(s(X))) , a__inf(X) -> inf(X) , a__take(X1, X2) -> take(X1, X2) , a__take(0(), X) -> nil() , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) , a__length(X) -> length(X) , a__length(cons(X, L)) -> s(length(L)) , a__length(nil()) -> 0() , mark(0()) -> 0() , mark(true()) -> true() , mark(s(X)) -> s(X) , mark(false()) -> false() , mark(cons(X1, X2)) -> cons(X1, X2) , mark(inf(X)) -> a__inf(mark(X)) , mark(nil()) -> nil() , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) , mark(length(X)) -> a__length(mark(X)) , mark(eq(X1, X2)) -> a__eq(X1, X2) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2}, Uargs(a__length) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [a__eq](x1, x2) = [0] [0] = [0] [true] = [0] [s](x1) = [0] [false] = [0] [a__inf](x1) = [1] x1 + [0] [cons](x1, x2) = [0] [inf](x1) = [0] [a__take](x1, x2) = [1] x1 + [1] x2 + [0] [nil] = [4] [take](x1, x2) = [0] [a__length](x1) = [1] x1 + [0] [length](x1) = [0] [mark](x1) = [0] [eq](x1, x2) = [0] The order satisfies the following ordering constraints: [a__eq(X, Y)] = [0] >= [0] = [false()] [a__eq(X1, X2)] = [0] >= [0] = [eq(X1, X2)] [a__eq(0(), 0())] = [0] >= [0] = [true()] [a__eq(s(X), s(Y))] = [0] >= [0] = [a__eq(X, Y)] [a__inf(X)] = [1] X + [0] >= [0] = [cons(X, inf(s(X)))] [a__inf(X)] = [1] X + [0] >= [0] = [inf(X)] [a__take(X1, X2)] = [1] X1 + [1] X2 + [0] >= [0] = [take(X1, X2)] [a__take(0(), X)] = [1] X + [0] ? [4] = [nil()] [a__take(s(X), cons(Y, L))] = [0] >= [0] = [cons(Y, take(X, L))] [a__length(X)] = [1] X + [0] >= [0] = [length(X)] [a__length(cons(X, L))] = [0] >= [0] = [s(length(L))] [a__length(nil())] = [4] > [0] = [0()] [mark(0())] = [0] >= [0] = [0()] [mark(true())] = [0] >= [0] = [true()] [mark(s(X))] = [0] >= [0] = [s(X)] [mark(false())] = [0] >= [0] = [false()] [mark(cons(X1, X2))] = [0] >= [0] = [cons(X1, X2)] [mark(inf(X))] = [0] >= [0] = [a__inf(mark(X))] [mark(nil())] = [0] ? [4] = [nil()] [mark(take(X1, X2))] = [0] >= [0] = [a__take(mark(X1), mark(X2))] [mark(length(X))] = [0] >= [0] = [a__length(mark(X))] [mark(eq(X1, X2))] = [0] >= [0] = [a__eq(X1, X2)] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { a__eq(X, Y) -> false() , a__eq(X1, X2) -> eq(X1, X2) , a__eq(0(), 0()) -> true() , a__eq(s(X), s(Y)) -> a__eq(X, Y) , a__inf(X) -> cons(X, inf(s(X))) , a__inf(X) -> inf(X) , a__take(X1, X2) -> take(X1, X2) , a__take(0(), X) -> nil() , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) , a__length(X) -> length(X) , a__length(cons(X, L)) -> s(length(L)) , mark(0()) -> 0() , mark(true()) -> true() , mark(s(X)) -> s(X) , mark(false()) -> false() , mark(cons(X1, X2)) -> cons(X1, X2) , mark(inf(X)) -> a__inf(mark(X)) , mark(nil()) -> nil() , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) , mark(length(X)) -> a__length(mark(X)) , mark(eq(X1, X2)) -> a__eq(X1, X2) } Weak Trs: { a__length(nil()) -> 0() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2}, Uargs(a__length) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [a__eq](x1, x2) = [4] [0] = [0] [true] = [0] [s](x1) = [0] [false] = [0] [a__inf](x1) = [1] x1 + [0] [cons](x1, x2) = [0] [inf](x1) = [0] [a__take](x1, x2) = [1] x1 + [1] x2 + [0] [nil] = [4] [take](x1, x2) = [0] [a__length](x1) = [1] x1 + [0] [length](x1) = [0] [mark](x1) = [0] [eq](x1, x2) = [0] The order satisfies the following ordering constraints: [a__eq(X, Y)] = [4] > [0] = [false()] [a__eq(X1, X2)] = [4] > [0] = [eq(X1, X2)] [a__eq(0(), 0())] = [4] > [0] = [true()] [a__eq(s(X), s(Y))] = [4] >= [4] = [a__eq(X, Y)] [a__inf(X)] = [1] X + [0] >= [0] = [cons(X, inf(s(X)))] [a__inf(X)] = [1] X + [0] >= [0] = [inf(X)] [a__take(X1, X2)] = [1] X1 + [1] X2 + [0] >= [0] = [take(X1, X2)] [a__take(0(), X)] = [1] X + [0] ? [4] = [nil()] [a__take(s(X), cons(Y, L))] = [0] >= [0] = [cons(Y, take(X, L))] [a__length(X)] = [1] X + [0] >= [0] = [length(X)] [a__length(cons(X, L))] = [0] >= [0] = [s(length(L))] [a__length(nil())] = [4] > [0] = [0()] [mark(0())] = [0] >= [0] = [0()] [mark(true())] = [0] >= [0] = [true()] [mark(s(X))] = [0] >= [0] = [s(X)] [mark(false())] = [0] >= [0] = [false()] [mark(cons(X1, X2))] = [0] >= [0] = [cons(X1, X2)] [mark(inf(X))] = [0] >= [0] = [a__inf(mark(X))] [mark(nil())] = [0] ? [4] = [nil()] [mark(take(X1, X2))] = [0] >= [0] = [a__take(mark(X1), mark(X2))] [mark(length(X))] = [0] >= [0] = [a__length(mark(X))] [mark(eq(X1, X2))] = [0] ? [4] = [a__eq(X1, X2)] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { a__eq(s(X), s(Y)) -> a__eq(X, Y) , a__inf(X) -> cons(X, inf(s(X))) , a__inf(X) -> inf(X) , a__take(X1, X2) -> take(X1, X2) , a__take(0(), X) -> nil() , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) , a__length(X) -> length(X) , a__length(cons(X, L)) -> s(length(L)) , mark(0()) -> 0() , mark(true()) -> true() , mark(s(X)) -> s(X) , mark(false()) -> false() , mark(cons(X1, X2)) -> cons(X1, X2) , mark(inf(X)) -> a__inf(mark(X)) , mark(nil()) -> nil() , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) , mark(length(X)) -> a__length(mark(X)) , mark(eq(X1, X2)) -> a__eq(X1, X2) } Weak Trs: { a__eq(X, Y) -> false() , a__eq(X1, X2) -> eq(X1, X2) , a__eq(0(), 0()) -> true() , a__length(nil()) -> 0() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2}, Uargs(a__length) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [a__eq](x1, x2) = [4] [0] = [0] [true] = [0] [s](x1) = [0] [false] = [0] [a__inf](x1) = [1] x1 + [1] [cons](x1, x2) = [0] [inf](x1) = [0] [a__take](x1, x2) = [1] x1 + [1] x2 + [0] [nil] = [4] [take](x1, x2) = [0] [a__length](x1) = [1] x1 + [0] [length](x1) = [0] [mark](x1) = [0] [eq](x1, x2) = [0] The order satisfies the following ordering constraints: [a__eq(X, Y)] = [4] > [0] = [false()] [a__eq(X1, X2)] = [4] > [0] = [eq(X1, X2)] [a__eq(0(), 0())] = [4] > [0] = [true()] [a__eq(s(X), s(Y))] = [4] >= [4] = [a__eq(X, Y)] [a__inf(X)] = [1] X + [1] > [0] = [cons(X, inf(s(X)))] [a__inf(X)] = [1] X + [1] > [0] = [inf(X)] [a__take(X1, X2)] = [1] X1 + [1] X2 + [0] >= [0] = [take(X1, X2)] [a__take(0(), X)] = [1] X + [0] ? [4] = [nil()] [a__take(s(X), cons(Y, L))] = [0] >= [0] = [cons(Y, take(X, L))] [a__length(X)] = [1] X + [0] >= [0] = [length(X)] [a__length(cons(X, L))] = [0] >= [0] = [s(length(L))] [a__length(nil())] = [4] > [0] = [0()] [mark(0())] = [0] >= [0] = [0()] [mark(true())] = [0] >= [0] = [true()] [mark(s(X))] = [0] >= [0] = [s(X)] [mark(false())] = [0] >= [0] = [false()] [mark(cons(X1, X2))] = [0] >= [0] = [cons(X1, X2)] [mark(inf(X))] = [0] ? [1] = [a__inf(mark(X))] [mark(nil())] = [0] ? [4] = [nil()] [mark(take(X1, X2))] = [0] >= [0] = [a__take(mark(X1), mark(X2))] [mark(length(X))] = [0] >= [0] = [a__length(mark(X))] [mark(eq(X1, X2))] = [0] ? [4] = [a__eq(X1, X2)] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { a__eq(s(X), s(Y)) -> a__eq(X, Y) , a__take(X1, X2) -> take(X1, X2) , a__take(0(), X) -> nil() , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) , a__length(X) -> length(X) , a__length(cons(X, L)) -> s(length(L)) , mark(0()) -> 0() , mark(true()) -> true() , mark(s(X)) -> s(X) , mark(false()) -> false() , mark(cons(X1, X2)) -> cons(X1, X2) , mark(inf(X)) -> a__inf(mark(X)) , mark(nil()) -> nil() , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) , mark(length(X)) -> a__length(mark(X)) , mark(eq(X1, X2)) -> a__eq(X1, X2) } Weak Trs: { a__eq(X, Y) -> false() , a__eq(X1, X2) -> eq(X1, X2) , a__eq(0(), 0()) -> true() , a__inf(X) -> cons(X, inf(s(X))) , a__inf(X) -> inf(X) , a__length(nil()) -> 0() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2}, Uargs(a__length) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [a__eq](x1, x2) = [4] [0] = [0] [true] = [0] [s](x1) = [0] [false] = [0] [a__inf](x1) = [1] x1 + [0] [cons](x1, x2) = [0] [inf](x1) = [0] [a__take](x1, x2) = [1] x1 + [1] x2 + [4] [nil] = [4] [take](x1, x2) = [0] [a__length](x1) = [1] x1 + [0] [length](x1) = [0] [mark](x1) = [0] [eq](x1, x2) = [0] The order satisfies the following ordering constraints: [a__eq(X, Y)] = [4] > [0] = [false()] [a__eq(X1, X2)] = [4] > [0] = [eq(X1, X2)] [a__eq(0(), 0())] = [4] > [0] = [true()] [a__eq(s(X), s(Y))] = [4] >= [4] = [a__eq(X, Y)] [a__inf(X)] = [1] X + [0] >= [0] = [cons(X, inf(s(X)))] [a__inf(X)] = [1] X + [0] >= [0] = [inf(X)] [a__take(X1, X2)] = [1] X1 + [1] X2 + [4] > [0] = [take(X1, X2)] [a__take(0(), X)] = [1] X + [4] >= [4] = [nil()] [a__take(s(X), cons(Y, L))] = [4] > [0] = [cons(Y, take(X, L))] [a__length(X)] = [1] X + [0] >= [0] = [length(X)] [a__length(cons(X, L))] = [0] >= [0] = [s(length(L))] [a__length(nil())] = [4] > [0] = [0()] [mark(0())] = [0] >= [0] = [0()] [mark(true())] = [0] >= [0] = [true()] [mark(s(X))] = [0] >= [0] = [s(X)] [mark(false())] = [0] >= [0] = [false()] [mark(cons(X1, X2))] = [0] >= [0] = [cons(X1, X2)] [mark(inf(X))] = [0] >= [0] = [a__inf(mark(X))] [mark(nil())] = [0] ? [4] = [nil()] [mark(take(X1, X2))] = [0] ? [4] = [a__take(mark(X1), mark(X2))] [mark(length(X))] = [0] >= [0] = [a__length(mark(X))] [mark(eq(X1, X2))] = [0] ? [4] = [a__eq(X1, X2)] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { a__eq(s(X), s(Y)) -> a__eq(X, Y) , a__take(0(), X) -> nil() , a__length(X) -> length(X) , a__length(cons(X, L)) -> s(length(L)) , mark(0()) -> 0() , mark(true()) -> true() , mark(s(X)) -> s(X) , mark(false()) -> false() , mark(cons(X1, X2)) -> cons(X1, X2) , mark(inf(X)) -> a__inf(mark(X)) , mark(nil()) -> nil() , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) , mark(length(X)) -> a__length(mark(X)) , mark(eq(X1, X2)) -> a__eq(X1, X2) } Weak Trs: { a__eq(X, Y) -> false() , a__eq(X1, X2) -> eq(X1, X2) , a__eq(0(), 0()) -> true() , a__inf(X) -> cons(X, inf(s(X))) , a__inf(X) -> inf(X) , a__take(X1, X2) -> take(X1, X2) , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) , a__length(nil()) -> 0() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2}, Uargs(a__length) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [a__eq](x1, x2) = [5] [0] = [0] [true] = [0] [s](x1) = [1] x1 + [0] [false] = [0] [a__inf](x1) = [1] x1 + [4] [cons](x1, x2) = [1] x2 + [4] [inf](x1) = [1] x1 + [0] [a__take](x1, x2) = [1] x1 + [1] x2 + [4] [nil] = [0] [take](x1, x2) = [1] x1 + [1] x2 + [1] [a__length](x1) = [1] x1 + [1] [length](x1) = [1] x1 + [0] [mark](x1) = [1] x1 + [0] [eq](x1, x2) = [4] The order satisfies the following ordering constraints: [a__eq(X, Y)] = [5] > [0] = [false()] [a__eq(X1, X2)] = [5] > [4] = [eq(X1, X2)] [a__eq(0(), 0())] = [5] > [0] = [true()] [a__eq(s(X), s(Y))] = [5] >= [5] = [a__eq(X, Y)] [a__inf(X)] = [1] X + [4] >= [1] X + [4] = [cons(X, inf(s(X)))] [a__inf(X)] = [1] X + [4] > [1] X + [0] = [inf(X)] [a__take(X1, X2)] = [1] X1 + [1] X2 + [4] > [1] X1 + [1] X2 + [1] = [take(X1, X2)] [a__take(0(), X)] = [1] X + [4] > [0] = [nil()] [a__take(s(X), cons(Y, L))] = [1] X + [1] L + [8] > [1] X + [1] L + [5] = [cons(Y, take(X, L))] [a__length(X)] = [1] X + [1] > [1] X + [0] = [length(X)] [a__length(cons(X, L))] = [1] L + [5] > [1] L + [0] = [s(length(L))] [a__length(nil())] = [1] > [0] = [0()] [mark(0())] = [0] >= [0] = [0()] [mark(true())] = [0] >= [0] = [true()] [mark(s(X))] = [1] X + [0] >= [1] X + [0] = [s(X)] [mark(false())] = [0] >= [0] = [false()] [mark(cons(X1, X2))] = [1] X2 + [4] >= [1] X2 + [4] = [cons(X1, X2)] [mark(inf(X))] = [1] X + [0] ? [1] X + [4] = [a__inf(mark(X))] [mark(nil())] = [0] >= [0] = [nil()] [mark(take(X1, X2))] = [1] X1 + [1] X2 + [1] ? [1] X1 + [1] X2 + [4] = [a__take(mark(X1), mark(X2))] [mark(length(X))] = [1] X + [0] ? [1] X + [1] = [a__length(mark(X))] [mark(eq(X1, X2))] = [4] ? [5] = [a__eq(X1, X2)] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { a__eq(s(X), s(Y)) -> a__eq(X, Y) , mark(0()) -> 0() , mark(true()) -> true() , mark(s(X)) -> s(X) , mark(false()) -> false() , mark(cons(X1, X2)) -> cons(X1, X2) , mark(inf(X)) -> a__inf(mark(X)) , mark(nil()) -> nil() , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) , mark(length(X)) -> a__length(mark(X)) , mark(eq(X1, X2)) -> a__eq(X1, X2) } Weak Trs: { a__eq(X, Y) -> false() , a__eq(X1, X2) -> eq(X1, X2) , a__eq(0(), 0()) -> true() , a__inf(X) -> cons(X, inf(s(X))) , a__inf(X) -> inf(X) , a__take(X1, X2) -> take(X1, X2) , a__take(0(), X) -> nil() , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) , a__length(X) -> length(X) , a__length(cons(X, L)) -> s(length(L)) , a__length(nil()) -> 0() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2}, Uargs(a__length) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [a__eq](x1, x2) = [1] x2 + [6] [0] = [1] [true] = [0] [s](x1) = [1] x1 + [1] [false] = [0] [a__inf](x1) = [1] x1 + [5] [cons](x1, x2) = [1] x2 + [0] [inf](x1) = [1] x1 + [0] [a__take](x1, x2) = [1] x1 + [1] x2 + [4] [nil] = [4] [take](x1, x2) = [1] x1 + [1] x2 + [0] [a__length](x1) = [1] x1 + [4] [length](x1) = [1] x1 + [0] [mark](x1) = [1] x1 + [0] [eq](x1, x2) = [1] x2 + [3] The order satisfies the following ordering constraints: [a__eq(X, Y)] = [1] Y + [6] > [0] = [false()] [a__eq(X1, X2)] = [1] X2 + [6] > [1] X2 + [3] = [eq(X1, X2)] [a__eq(0(), 0())] = [7] > [0] = [true()] [a__eq(s(X), s(Y))] = [1] Y + [7] > [1] Y + [6] = [a__eq(X, Y)] [a__inf(X)] = [1] X + [5] > [1] X + [1] = [cons(X, inf(s(X)))] [a__inf(X)] = [1] X + [5] > [1] X + [0] = [inf(X)] [a__take(X1, X2)] = [1] X1 + [1] X2 + [4] > [1] X1 + [1] X2 + [0] = [take(X1, X2)] [a__take(0(), X)] = [1] X + [5] > [4] = [nil()] [a__take(s(X), cons(Y, L))] = [1] X + [1] L + [5] > [1] X + [1] L + [0] = [cons(Y, take(X, L))] [a__length(X)] = [1] X + [4] > [1] X + [0] = [length(X)] [a__length(cons(X, L))] = [1] L + [4] > [1] L + [1] = [s(length(L))] [a__length(nil())] = [8] > [1] = [0()] [mark(0())] = [1] >= [1] = [0()] [mark(true())] = [0] >= [0] = [true()] [mark(s(X))] = [1] X + [1] >= [1] X + [1] = [s(X)] [mark(false())] = [0] >= [0] = [false()] [mark(cons(X1, X2))] = [1] X2 + [0] >= [1] X2 + [0] = [cons(X1, X2)] [mark(inf(X))] = [1] X + [0] ? [1] X + [5] = [a__inf(mark(X))] [mark(nil())] = [4] >= [4] = [nil()] [mark(take(X1, X2))] = [1] X1 + [1] X2 + [0] ? [1] X1 + [1] X2 + [4] = [a__take(mark(X1), mark(X2))] [mark(length(X))] = [1] X + [0] ? [1] X + [4] = [a__length(mark(X))] [mark(eq(X1, X2))] = [1] X2 + [3] ? [1] X2 + [6] = [a__eq(X1, X2)] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { mark(0()) -> 0() , mark(true()) -> true() , mark(s(X)) -> s(X) , mark(false()) -> false() , mark(cons(X1, X2)) -> cons(X1, X2) , mark(inf(X)) -> a__inf(mark(X)) , mark(nil()) -> nil() , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) , mark(length(X)) -> a__length(mark(X)) , mark(eq(X1, X2)) -> a__eq(X1, X2) } Weak Trs: { a__eq(X, Y) -> false() , a__eq(X1, X2) -> eq(X1, X2) , a__eq(0(), 0()) -> true() , a__eq(s(X), s(Y)) -> a__eq(X, Y) , a__inf(X) -> cons(X, inf(s(X))) , a__inf(X) -> inf(X) , a__take(X1, X2) -> take(X1, X2) , a__take(0(), X) -> nil() , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) , a__length(X) -> length(X) , a__length(cons(X, L)) -> s(length(L)) , a__length(nil()) -> 0() } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2}, Uargs(a__length) = {1} TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [a__eq](x1, x2) = [7] [0] = [4] [true] = [0] [s](x1) = [0] [false] = [0] [a__inf](x1) = [1] x1 + [7] [cons](x1, x2) = [0] [inf](x1) = [1] x1 + [7] [a__take](x1, x2) = [1] x1 + [1] x2 + [1] [nil] = [4] [take](x1, x2) = [1] x1 + [1] x2 + [0] [a__length](x1) = [1] x1 + [7] [length](x1) = [1] x1 + [4] [mark](x1) = [1] x1 + [1] [eq](x1, x2) = [7] The order satisfies the following ordering constraints: [a__eq(X, Y)] = [7] > [0] = [false()] [a__eq(X1, X2)] = [7] >= [7] = [eq(X1, X2)] [a__eq(0(), 0())] = [7] > [0] = [true()] [a__eq(s(X), s(Y))] = [7] >= [7] = [a__eq(X, Y)] [a__inf(X)] = [1] X + [7] > [0] = [cons(X, inf(s(X)))] [a__inf(X)] = [1] X + [7] >= [1] X + [7] = [inf(X)] [a__take(X1, X2)] = [1] X1 + [1] X2 + [1] > [1] X1 + [1] X2 + [0] = [take(X1, X2)] [a__take(0(), X)] = [1] X + [5] > [4] = [nil()] [a__take(s(X), cons(Y, L))] = [1] > [0] = [cons(Y, take(X, L))] [a__length(X)] = [1] X + [7] > [1] X + [4] = [length(X)] [a__length(cons(X, L))] = [7] > [0] = [s(length(L))] [a__length(nil())] = [11] > [4] = [0()] [mark(0())] = [5] > [4] = [0()] [mark(true())] = [1] > [0] = [true()] [mark(s(X))] = [1] > [0] = [s(X)] [mark(false())] = [1] > [0] = [false()] [mark(cons(X1, X2))] = [1] > [0] = [cons(X1, X2)] [mark(inf(X))] = [1] X + [8] >= [1] X + [8] = [a__inf(mark(X))] [mark(nil())] = [5] > [4] = [nil()] [mark(take(X1, X2))] = [1] X1 + [1] X2 + [1] ? [1] X1 + [1] X2 + [3] = [a__take(mark(X1), mark(X2))] [mark(length(X))] = [1] X + [5] ? [1] X + [8] = [a__length(mark(X))] [mark(eq(X1, X2))] = [8] > [7] = [a__eq(X1, X2)] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { mark(inf(X)) -> a__inf(mark(X)) , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) , mark(length(X)) -> a__length(mark(X)) } Weak Trs: { a__eq(X, Y) -> false() , a__eq(X1, X2) -> eq(X1, X2) , a__eq(0(), 0()) -> true() , a__eq(s(X), s(Y)) -> a__eq(X, Y) , a__inf(X) -> cons(X, inf(s(X))) , a__inf(X) -> inf(X) , a__take(X1, X2) -> take(X1, X2) , a__take(0(), X) -> nil() , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) , a__length(X) -> length(X) , a__length(cons(X, L)) -> s(length(L)) , a__length(nil()) -> 0() , mark(0()) -> 0() , mark(true()) -> true() , mark(s(X)) -> s(X) , mark(false()) -> false() , mark(cons(X1, X2)) -> cons(X1, X2) , mark(nil()) -> nil() , mark(eq(X1, X2)) -> a__eq(X1, X2) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. Trs: { mark(length(X)) -> a__length(mark(X)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The following argument positions are usable: Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2}, Uargs(a__length) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [a__eq](x1, x2) = [0] [0] = [0] [true] = [0] [s](x1) = [0] [false] = [0] [a__inf](x1) = [1] x1 + [0] [cons](x1, x2) = [0] [inf](x1) = [1] x1 + [0] [a__take](x1, x2) = [1] x1 + [1] x2 + [0] [nil] = [0] [take](x1, x2) = [1] x1 + [1] x2 + [0] [a__length](x1) = [1] x1 + [1] [length](x1) = [1] x1 + [1] [mark](x1) = [4] x1 + [0] [eq](x1, x2) = [0] The order satisfies the following ordering constraints: [a__eq(X, Y)] = [0] >= [0] = [false()] [a__eq(X1, X2)] = [0] >= [0] = [eq(X1, X2)] [a__eq(0(), 0())] = [0] >= [0] = [true()] [a__eq(s(X), s(Y))] = [0] >= [0] = [a__eq(X, Y)] [a__inf(X)] = [1] X + [0] >= [0] = [cons(X, inf(s(X)))] [a__inf(X)] = [1] X + [0] >= [1] X + [0] = [inf(X)] [a__take(X1, X2)] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [take(X1, X2)] [a__take(0(), X)] = [1] X + [0] >= [0] = [nil()] [a__take(s(X), cons(Y, L))] = [0] >= [0] = [cons(Y, take(X, L))] [a__length(X)] = [1] X + [1] >= [1] X + [1] = [length(X)] [a__length(cons(X, L))] = [1] > [0] = [s(length(L))] [a__length(nil())] = [1] > [0] = [0()] [mark(0())] = [0] >= [0] = [0()] [mark(true())] = [0] >= [0] = [true()] [mark(s(X))] = [0] >= [0] = [s(X)] [mark(false())] = [0] >= [0] = [false()] [mark(cons(X1, X2))] = [0] >= [0] = [cons(X1, X2)] [mark(inf(X))] = [4] X + [0] >= [4] X + [0] = [a__inf(mark(X))] [mark(nil())] = [0] >= [0] = [nil()] [mark(take(X1, X2))] = [4] X1 + [4] X2 + [0] >= [4] X1 + [4] X2 + [0] = [a__take(mark(X1), mark(X2))] [mark(length(X))] = [4] X + [4] > [4] X + [1] = [a__length(mark(X))] [mark(eq(X1, X2))] = [0] >= [0] = [a__eq(X1, X2)] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { mark(inf(X)) -> a__inf(mark(X)) , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) } Weak Trs: { a__eq(X, Y) -> false() , a__eq(X1, X2) -> eq(X1, X2) , a__eq(0(), 0()) -> true() , a__eq(s(X), s(Y)) -> a__eq(X, Y) , a__inf(X) -> cons(X, inf(s(X))) , a__inf(X) -> inf(X) , a__take(X1, X2) -> take(X1, X2) , a__take(0(), X) -> nil() , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) , a__length(X) -> length(X) , a__length(cons(X, L)) -> s(length(L)) , a__length(nil()) -> 0() , mark(0()) -> 0() , mark(true()) -> true() , mark(s(X)) -> s(X) , mark(false()) -> false() , mark(cons(X1, X2)) -> cons(X1, X2) , mark(nil()) -> nil() , mark(length(X)) -> a__length(mark(X)) , mark(eq(X1, X2)) -> a__eq(X1, X2) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. Trs: { mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The following argument positions are usable: Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2}, Uargs(a__length) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [a__eq](x1, x2) = [0] [0] = [0] [true] = [0] [s](x1) = [0] [false] = [0] [a__inf](x1) = [1] x1 + [0] [cons](x1, x2) = [0] [inf](x1) = [1] x1 + [0] [a__take](x1, x2) = [1] x1 + [1] x2 + [1] [nil] = [0] [take](x1, x2) = [1] x1 + [1] x2 + [1] [a__length](x1) = [1] x1 + [0] [length](x1) = [1] x1 + [0] [mark](x1) = [2] x1 + [0] [eq](x1, x2) = [0] The order satisfies the following ordering constraints: [a__eq(X, Y)] = [0] >= [0] = [false()] [a__eq(X1, X2)] = [0] >= [0] = [eq(X1, X2)] [a__eq(0(), 0())] = [0] >= [0] = [true()] [a__eq(s(X), s(Y))] = [0] >= [0] = [a__eq(X, Y)] [a__inf(X)] = [1] X + [0] >= [0] = [cons(X, inf(s(X)))] [a__inf(X)] = [1] X + [0] >= [1] X + [0] = [inf(X)] [a__take(X1, X2)] = [1] X1 + [1] X2 + [1] >= [1] X1 + [1] X2 + [1] = [take(X1, X2)] [a__take(0(), X)] = [1] X + [1] > [0] = [nil()] [a__take(s(X), cons(Y, L))] = [1] > [0] = [cons(Y, take(X, L))] [a__length(X)] = [1] X + [0] >= [1] X + [0] = [length(X)] [a__length(cons(X, L))] = [0] >= [0] = [s(length(L))] [a__length(nil())] = [0] >= [0] = [0()] [mark(0())] = [0] >= [0] = [0()] [mark(true())] = [0] >= [0] = [true()] [mark(s(X))] = [0] >= [0] = [s(X)] [mark(false())] = [0] >= [0] = [false()] [mark(cons(X1, X2))] = [0] >= [0] = [cons(X1, X2)] [mark(inf(X))] = [2] X + [0] >= [2] X + [0] = [a__inf(mark(X))] [mark(nil())] = [0] >= [0] = [nil()] [mark(take(X1, X2))] = [2] X1 + [2] X2 + [2] > [2] X1 + [2] X2 + [1] = [a__take(mark(X1), mark(X2))] [mark(length(X))] = [2] X + [0] >= [2] X + [0] = [a__length(mark(X))] [mark(eq(X1, X2))] = [0] >= [0] = [a__eq(X1, X2)] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { mark(inf(X)) -> a__inf(mark(X)) } Weak Trs: { a__eq(X, Y) -> false() , a__eq(X1, X2) -> eq(X1, X2) , a__eq(0(), 0()) -> true() , a__eq(s(X), s(Y)) -> a__eq(X, Y) , a__inf(X) -> cons(X, inf(s(X))) , a__inf(X) -> inf(X) , a__take(X1, X2) -> take(X1, X2) , a__take(0(), X) -> nil() , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) , a__length(X) -> length(X) , a__length(cons(X, L)) -> s(length(L)) , a__length(nil()) -> 0() , mark(0()) -> 0() , mark(true()) -> true() , mark(s(X)) -> s(X) , mark(false()) -> false() , mark(cons(X1, X2)) -> cons(X1, X2) , mark(nil()) -> nil() , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) , mark(length(X)) -> a__length(mark(X)) , mark(eq(X1, X2)) -> a__eq(X1, X2) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. Trs: { mark(inf(X)) -> a__inf(mark(X)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The following argument positions are usable: Uargs(a__inf) = {1}, Uargs(a__take) = {1, 2}, Uargs(a__length) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [a__eq](x1, x2) = [0] [0] = [0] [true] = [0] [s](x1) = [0] [false] = [0] [a__inf](x1) = [1] x1 + [4] [cons](x1, x2) = [0] [inf](x1) = [1] x1 + [4] [a__take](x1, x2) = [1] x1 + [1] x2 + [0] [nil] = [0] [take](x1, x2) = [1] x1 + [1] x2 + [0] [a__length](x1) = [1] x1 + [0] [length](x1) = [1] x1 + [0] [mark](x1) = [3] x1 + [0] [eq](x1, x2) = [0] The order satisfies the following ordering constraints: [a__eq(X, Y)] = [0] >= [0] = [false()] [a__eq(X1, X2)] = [0] >= [0] = [eq(X1, X2)] [a__eq(0(), 0())] = [0] >= [0] = [true()] [a__eq(s(X), s(Y))] = [0] >= [0] = [a__eq(X, Y)] [a__inf(X)] = [1] X + [4] > [0] = [cons(X, inf(s(X)))] [a__inf(X)] = [1] X + [4] >= [1] X + [4] = [inf(X)] [a__take(X1, X2)] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [take(X1, X2)] [a__take(0(), X)] = [1] X + [0] >= [0] = [nil()] [a__take(s(X), cons(Y, L))] = [0] >= [0] = [cons(Y, take(X, L))] [a__length(X)] = [1] X + [0] >= [1] X + [0] = [length(X)] [a__length(cons(X, L))] = [0] >= [0] = [s(length(L))] [a__length(nil())] = [0] >= [0] = [0()] [mark(0())] = [0] >= [0] = [0()] [mark(true())] = [0] >= [0] = [true()] [mark(s(X))] = [0] >= [0] = [s(X)] [mark(false())] = [0] >= [0] = [false()] [mark(cons(X1, X2))] = [0] >= [0] = [cons(X1, X2)] [mark(inf(X))] = [3] X + [12] > [3] X + [4] = [a__inf(mark(X))] [mark(nil())] = [0] >= [0] = [nil()] [mark(take(X1, X2))] = [3] X1 + [3] X2 + [0] >= [3] X1 + [3] X2 + [0] = [a__take(mark(X1), mark(X2))] [mark(length(X))] = [3] X + [0] >= [3] X + [0] = [a__length(mark(X))] [mark(eq(X1, X2))] = [0] >= [0] = [a__eq(X1, X2)] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { a__eq(X, Y) -> false() , a__eq(X1, X2) -> eq(X1, X2) , a__eq(0(), 0()) -> true() , a__eq(s(X), s(Y)) -> a__eq(X, Y) , a__inf(X) -> cons(X, inf(s(X))) , a__inf(X) -> inf(X) , a__take(X1, X2) -> take(X1, X2) , a__take(0(), X) -> nil() , a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) , a__length(X) -> length(X) , a__length(cons(X, L)) -> s(length(L)) , a__length(nil()) -> 0() , mark(0()) -> 0() , mark(true()) -> true() , mark(s(X)) -> s(X) , mark(false()) -> false() , mark(cons(X1, X2)) -> cons(X1, X2) , mark(inf(X)) -> a__inf(mark(X)) , mark(nil()) -> nil() , mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) , mark(length(X)) -> a__length(mark(X)) , mark(eq(X1, X2)) -> a__eq(X1, X2) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^1))