*** 1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z)))
        2ndspos(0(),Z) -> rnil()
        2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z)))
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(X1,X2)
        activate(n__from(X)) -> from(X)
        cons(X1,X2) -> n__cons(X1,X2)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        pi(X) -> 2ndspos(X,from(0()))
        plus(0(),Y) -> Y
        plus(s(X),Y) -> s(plus(X,Y))
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
        times(s(X),Y) -> plus(Y,times(X,Y))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,cons,from,pi,plus,square,times}/{0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z)))
        2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z)))
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndspos(0(),Z) -> rnil()
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(X1,X2)
        activate(n__from(X)) -> from(X)
        cons(X1,X2) -> n__cons(X1,X2)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        pi(X) -> 2ndspos(X,from(0()))
        plus(0(),Y) -> Y
        plus(s(X),Y) -> s(plus(X,Y))
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
        times(s(X),Y) -> plus(Y,times(X,Y))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,cons,from,pi,plus,square,times}/{0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(2ndspos) = {2},
          uargs(plus) = {2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
           p(2ndsneg) = [0]                  
           p(2ndspos) = [1] x2 + [0]         
          p(activate) = [8] x1 + [3]         
              p(cons) = [1]                  
              p(from) = [8] x1 + [0]         
           p(n__cons) = [0]                  
           p(n__from) = [1] x1 + [2]         
          p(negrecip) = [1] x1 + [0]         
                p(pi) = [0]                  
              p(plus) = [1] x2 + [1]         
          p(posrecip) = [1] x1 + [0]         
             p(rcons) = [1] x1 + [1] x2 + [0]
              p(rnil) = [0]                  
                 p(s) = [1] x1 + [0]         
            p(square) = [1] x1 + [0]         
             p(times) = [1] x1 + [9]         
        
        Following rules are strictly oriented:
                     activate(X) = [8] X + [3]   
                                 > [1] X + [0]   
                                 = X             
        
        activate(n__cons(X1,X2)) = [3]           
                                 > [1]           
                                 = cons(X1,X2)   
        
            activate(n__from(X)) = [8] X + [19]  
                                 > [8] X + [0]   
                                 = from(X)       
        
                     cons(X1,X2) = [1]           
                                 > [0]           
                                 = n__cons(X1,X2)
        
                     plus(0(),Y) = [1] Y + [1]   
                                 > [1] Y + [0]   
                                 = Y             
        
                    times(0(),Y) = [9]           
                                 > [0]           
                                 = 0()           
        
        
        Following rules are (at-least) weakly oriented:
        2ndsneg(0(),Z) =  [0]                  
                       >= [0]                  
                       =  rnil()               
        
        2ndspos(0(),Z) =  [1] Z + [0]          
                       >= [0]                  
                       =  rnil()               
        
               from(X) =  [8] X + [0]          
                       >= [1]                  
                       =  cons(X,n__from(s(X)))
        
               from(X) =  [8] X + [0]          
                       >= [1] X + [2]          
                       =  n__from(X)           
        
                 pi(X) =  [0]                  
                       >= [0]                  
                       =  2ndspos(X,from(0())) 
        
          plus(s(X),Y) =  [1] Y + [1]          
                       >= [1] Y + [1]          
                       =  s(plus(X,Y))         
        
             square(X) =  [1] X + [0]          
                       >= [1] X + [9]          
                       =  times(X,X)           
        
         times(s(X),Y) =  [1] X + [9]          
                       >= [1] X + [10]         
                       =  plus(Y,times(X,Y))   
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndspos(0(),Z) -> rnil()
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        pi(X) -> 2ndspos(X,from(0()))
        plus(s(X),Y) -> s(plus(X,Y))
        square(X) -> times(X,X)
        times(s(X),Y) -> plus(Y,times(X,Y))
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(X1,X2)
        activate(n__from(X)) -> from(X)
        cons(X1,X2) -> n__cons(X1,X2)
        plus(0(),Y) -> Y
        times(0(),Y) -> 0()
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,cons,from,pi,plus,square,times}/{0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(2ndspos) = {2},
          uargs(plus) = {2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [4]                  
           p(2ndsneg) = [0]                  
           p(2ndspos) = [1] x2 + [0]         
          p(activate) = [6] x1 + [0]         
              p(cons) = [4] x1 + [0]         
              p(from) = [4] x1 + [10]        
           p(n__cons) = [1] x1 + [0]         
           p(n__from) = [1] x1 + [4]         
          p(negrecip) = [1] x1 + [0]         
                p(pi) = [4] x1 + [0]         
              p(plus) = [1] x2 + [0]         
          p(posrecip) = [1] x1 + [0]         
             p(rcons) = [1] x1 + [1] x2 + [0]
              p(rnil) = [0]                  
                 p(s) = [1] x1 + [0]         
            p(square) = [1] x1 + [0]         
             p(times) = [12]                 
        
        Following rules are strictly oriented:
        from(X) = [4] X + [10]         
                > [4] X + [0]          
                = cons(X,n__from(s(X)))
        
        from(X) = [4] X + [10]         
                > [1] X + [4]          
                = n__from(X)           
        
        
        Following rules are (at-least) weakly oriented:
                  2ndsneg(0(),Z) =  [0]                 
                                 >= [0]                 
                                 =  rnil()              
        
                  2ndspos(0(),Z) =  [1] Z + [0]         
                                 >= [0]                 
                                 =  rnil()              
        
                     activate(X) =  [6] X + [0]         
                                 >= [1] X + [0]         
                                 =  X                   
        
        activate(n__cons(X1,X2)) =  [6] X1 + [0]        
                                 >= [4] X1 + [0]        
                                 =  cons(X1,X2)         
        
            activate(n__from(X)) =  [6] X + [24]        
                                 >= [4] X + [10]        
                                 =  from(X)             
        
                     cons(X1,X2) =  [4] X1 + [0]        
                                 >= [1] X1 + [0]        
                                 =  n__cons(X1,X2)      
        
                           pi(X) =  [4] X + [0]         
                                 >= [26]                
                                 =  2ndspos(X,from(0()))
        
                     plus(0(),Y) =  [1] Y + [0]         
                                 >= [1] Y + [0]         
                                 =  Y                   
        
                    plus(s(X),Y) =  [1] Y + [0]         
                                 >= [1] Y + [0]         
                                 =  s(plus(X,Y))        
        
                       square(X) =  [1] X + [0]         
                                 >= [12]                
                                 =  times(X,X)          
        
                    times(0(),Y) =  [12]                
                                 >= [4]                 
                                 =  0()                 
        
                   times(s(X),Y) =  [12]                
                                 >= [12]                
                                 =  plus(Y,times(X,Y))  
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndspos(0(),Z) -> rnil()
        pi(X) -> 2ndspos(X,from(0()))
        plus(s(X),Y) -> s(plus(X,Y))
        square(X) -> times(X,X)
        times(s(X),Y) -> plus(Y,times(X,Y))
      Weak DP Rules:
        
      Weak TRS Rules:
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(X1,X2)
        activate(n__from(X)) -> from(X)
        cons(X1,X2) -> n__cons(X1,X2)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        plus(0(),Y) -> Y
        times(0(),Y) -> 0()
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,cons,from,pi,plus,square,times}/{0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(2ndspos) = {2},
          uargs(plus) = {2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
           p(2ndsneg) = [1]                  
           p(2ndspos) = [1] x2 + [0]         
          p(activate) = [1] x1 + [0]         
              p(cons) = [1] x2 + [0]         
              p(from) = [0]                  
           p(n__cons) = [1] x2 + [0]         
           p(n__from) = [0]                  
          p(negrecip) = [1] x1 + [0]         
                p(pi) = [0]                  
              p(plus) = [1] x2 + [0]         
          p(posrecip) = [1] x1 + [0]         
             p(rcons) = [1] x1 + [1] x2 + [0]
              p(rnil) = [0]                  
                 p(s) = [1] x1 + [9]         
            p(square) = [2] x1 + [0]         
             p(times) = [2] x1 + [0]         
        
        Following rules are strictly oriented:
        2ndsneg(0(),Z) = [1]               
                       > [0]               
                       = rnil()            
        
         times(s(X),Y) = [2] X + [18]      
                       > [2] X + [0]       
                       = plus(Y,times(X,Y))
        
        
        Following rules are (at-least) weakly oriented:
                  2ndspos(0(),Z) =  [1] Z + [0]          
                                 >= [0]                  
                                 =  rnil()               
        
                     activate(X) =  [1] X + [0]          
                                 >= [1] X + [0]          
                                 =  X                    
        
        activate(n__cons(X1,X2)) =  [1] X2 + [0]         
                                 >= [1] X2 + [0]         
                                 =  cons(X1,X2)          
        
            activate(n__from(X)) =  [0]                  
                                 >= [0]                  
                                 =  from(X)              
        
                     cons(X1,X2) =  [1] X2 + [0]         
                                 >= [1] X2 + [0]         
                                 =  n__cons(X1,X2)       
        
                         from(X) =  [0]                  
                                 >= [0]                  
                                 =  cons(X,n__from(s(X)))
        
                         from(X) =  [0]                  
                                 >= [0]                  
                                 =  n__from(X)           
        
                           pi(X) =  [0]                  
                                 >= [0]                  
                                 =  2ndspos(X,from(0())) 
        
                     plus(0(),Y) =  [1] Y + [0]          
                                 >= [1] Y + [0]          
                                 =  Y                    
        
                    plus(s(X),Y) =  [1] Y + [0]          
                                 >= [1] Y + [9]          
                                 =  s(plus(X,Y))         
        
                       square(X) =  [2] X + [0]          
                                 >= [2] X + [0]          
                                 =  times(X,X)           
        
                    times(0(),Y) =  [0]                  
                                 >= [0]                  
                                 =  0()                  
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        2ndspos(0(),Z) -> rnil()
        pi(X) -> 2ndspos(X,from(0()))
        plus(s(X),Y) -> s(plus(X,Y))
        square(X) -> times(X,X)
      Weak DP Rules:
        
      Weak TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(X1,X2)
        activate(n__from(X)) -> from(X)
        cons(X1,X2) -> n__cons(X1,X2)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        plus(0(),Y) -> Y
        times(0(),Y) -> 0()
        times(s(X),Y) -> plus(Y,times(X,Y))
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,cons,from,pi,plus,square,times}/{0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(2ndspos) = {2},
          uargs(plus) = {2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [3]                  
           p(2ndsneg) = [4] x1 + [0]         
           p(2ndspos) = [1] x2 + [0]         
          p(activate) = [1] x1 + [4]         
              p(cons) = [2]                  
              p(from) = [1] x1 + [4]         
           p(n__cons) = [0]                  
           p(n__from) = [1] x1 + [0]         
          p(negrecip) = [1]                  
                p(pi) = [2] x1 + [0]         
              p(plus) = [1] x2 + [6]         
          p(posrecip) = [1]                  
             p(rcons) = [1] x1 + [1] x2 + [2]
              p(rnil) = [0]                  
                 p(s) = [1] x1 + [5]         
            p(square) = [4] x1 + [4]         
             p(times) = [3] x1 + [1] x2 + [0]
        
        Following rules are strictly oriented:
        square(X) = [4] X + [4]
                  > [4] X + [0]
                  = times(X,X) 
        
        
        Following rules are (at-least) weakly oriented:
                  2ndsneg(0(),Z) =  [12]                 
                                 >= [0]                  
                                 =  rnil()               
        
                  2ndspos(0(),Z) =  [1] Z + [0]          
                                 >= [0]                  
                                 =  rnil()               
        
                     activate(X) =  [1] X + [4]          
                                 >= [1] X + [0]          
                                 =  X                    
        
        activate(n__cons(X1,X2)) =  [4]                  
                                 >= [2]                  
                                 =  cons(X1,X2)          
        
            activate(n__from(X)) =  [1] X + [4]          
                                 >= [1] X + [4]          
                                 =  from(X)              
        
                     cons(X1,X2) =  [2]                  
                                 >= [0]                  
                                 =  n__cons(X1,X2)       
        
                         from(X) =  [1] X + [4]          
                                 >= [2]                  
                                 =  cons(X,n__from(s(X)))
        
                         from(X) =  [1] X + [4]          
                                 >= [1] X + [0]          
                                 =  n__from(X)           
        
                           pi(X) =  [2] X + [0]          
                                 >= [7]                  
                                 =  2ndspos(X,from(0())) 
        
                     plus(0(),Y) =  [1] Y + [6]          
                                 >= [1] Y + [0]          
                                 =  Y                    
        
                    plus(s(X),Y) =  [1] Y + [6]          
                                 >= [1] Y + [11]         
                                 =  s(plus(X,Y))         
        
                    times(0(),Y) =  [1] Y + [9]          
                                 >= [3]                  
                                 =  0()                  
        
                   times(s(X),Y) =  [3] X + [1] Y + [15] 
                                 >= [3] X + [1] Y + [6]  
                                 =  plus(Y,times(X,Y))   
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        2ndspos(0(),Z) -> rnil()
        pi(X) -> 2ndspos(X,from(0()))
        plus(s(X),Y) -> s(plus(X,Y))
      Weak DP Rules:
        
      Weak TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(X1,X2)
        activate(n__from(X)) -> from(X)
        cons(X1,X2) -> n__cons(X1,X2)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        plus(0(),Y) -> Y
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
        times(s(X),Y) -> plus(Y,times(X,Y))
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,cons,from,pi,plus,square,times}/{0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(2ndspos) = {2},
          uargs(plus) = {2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [4]                  
           p(2ndsneg) = [1] x1 + [7]         
           p(2ndspos) = [1] x2 + [1]         
          p(activate) = [2] x1 + [4]         
              p(cons) = [1] x2 + [0]         
              p(from) = [1]                  
           p(n__cons) = [1] x2 + [0]         
           p(n__from) = [1]                  
          p(negrecip) = [1] x1 + [0]         
                p(pi) = [2]                  
              p(plus) = [1] x2 + [0]         
          p(posrecip) = [1] x1 + [0]         
             p(rcons) = [1] x1 + [1] x2 + [0]
              p(rnil) = [0]                  
                 p(s) = [1] x1 + [1]         
            p(square) = [7] x1 + [4]         
             p(times) = [2] x1 + [4] x2 + [2]
        
        Following rules are strictly oriented:
        2ndspos(0(),Z) = [1] Z + [1]
                       > [0]        
                       = rnil()     
        
        
        Following rules are (at-least) weakly oriented:
                  2ndsneg(0(),Z) =  [11]                 
                                 >= [0]                  
                                 =  rnil()               
        
                     activate(X) =  [2] X + [4]          
                                 >= [1] X + [0]          
                                 =  X                    
        
        activate(n__cons(X1,X2)) =  [2] X2 + [4]         
                                 >= [1] X2 + [0]         
                                 =  cons(X1,X2)          
        
            activate(n__from(X)) =  [6]                  
                                 >= [1]                  
                                 =  from(X)              
        
                     cons(X1,X2) =  [1] X2 + [0]         
                                 >= [1] X2 + [0]         
                                 =  n__cons(X1,X2)       
        
                         from(X) =  [1]                  
                                 >= [1]                  
                                 =  cons(X,n__from(s(X)))
        
                         from(X) =  [1]                  
                                 >= [1]                  
                                 =  n__from(X)           
        
                           pi(X) =  [2]                  
                                 >= [2]                  
                                 =  2ndspos(X,from(0())) 
        
                     plus(0(),Y) =  [1] Y + [0]          
                                 >= [1] Y + [0]          
                                 =  Y                    
        
                    plus(s(X),Y) =  [1] Y + [0]          
                                 >= [1] Y + [1]          
                                 =  s(plus(X,Y))         
        
                       square(X) =  [7] X + [4]          
                                 >= [6] X + [2]          
                                 =  times(X,X)           
        
                    times(0(),Y) =  [4] Y + [10]         
                                 >= [4]                  
                                 =  0()                  
        
                   times(s(X),Y) =  [2] X + [4] Y + [4]  
                                 >= [2] X + [4] Y + [2]  
                                 =  plus(Y,times(X,Y))   
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        pi(X) -> 2ndspos(X,from(0()))
        plus(s(X),Y) -> s(plus(X,Y))
      Weak DP Rules:
        
      Weak TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndspos(0(),Z) -> rnil()
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(X1,X2)
        activate(n__from(X)) -> from(X)
        cons(X1,X2) -> n__cons(X1,X2)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        plus(0(),Y) -> Y
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
        times(s(X),Y) -> plus(Y,times(X,Y))
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,cons,from,pi,plus,square,times}/{0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(2ndspos) = {2},
          uargs(plus) = {2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [1]                  
           p(2ndsneg) = [2] x1 + [0]         
           p(2ndspos) = [1] x2 + [1]         
          p(activate) = [2] x1 + [6]         
              p(cons) = [1] x1 + [0]         
              p(from) = [1] x1 + [0]         
           p(n__cons) = [1] x1 + [0]         
           p(n__from) = [1] x1 + [0]         
          p(negrecip) = [1] x1 + [0]         
                p(pi) = [3]                  
              p(plus) = [1] x2 + [0]         
          p(posrecip) = [1] x1 + [0]         
             p(rcons) = [1] x1 + [1] x2 + [0]
              p(rnil) = [0]                  
                 p(s) = [1] x1 + [1]         
            p(square) = [5] x1 + [1]         
             p(times) = [4] x2 + [1]         
        
        Following rules are strictly oriented:
        pi(X) = [3]                 
              > [2]                 
              = 2ndspos(X,from(0()))
        
        
        Following rules are (at-least) weakly oriented:
                  2ndsneg(0(),Z) =  [2]                  
                                 >= [0]                  
                                 =  rnil()               
        
                  2ndspos(0(),Z) =  [1] Z + [1]          
                                 >= [0]                  
                                 =  rnil()               
        
                     activate(X) =  [2] X + [6]          
                                 >= [1] X + [0]          
                                 =  X                    
        
        activate(n__cons(X1,X2)) =  [2] X1 + [6]         
                                 >= [1] X1 + [0]         
                                 =  cons(X1,X2)          
        
            activate(n__from(X)) =  [2] X + [6]          
                                 >= [1] X + [0]          
                                 =  from(X)              
        
                     cons(X1,X2) =  [1] X1 + [0]         
                                 >= [1] X1 + [0]         
                                 =  n__cons(X1,X2)       
        
                         from(X) =  [1] X + [0]          
                                 >= [1] X + [0]          
                                 =  cons(X,n__from(s(X)))
        
                         from(X) =  [1] X + [0]          
                                 >= [1] X + [0]          
                                 =  n__from(X)           
        
                     plus(0(),Y) =  [1] Y + [0]          
                                 >= [1] Y + [0]          
                                 =  Y                    
        
                    plus(s(X),Y) =  [1] Y + [0]          
                                 >= [1] Y + [1]          
                                 =  s(plus(X,Y))         
        
                       square(X) =  [5] X + [1]          
                                 >= [4] X + [1]          
                                 =  times(X,X)           
        
                    times(0(),Y) =  [4] Y + [1]          
                                 >= [1]                  
                                 =  0()                  
        
                   times(s(X),Y) =  [4] Y + [1]          
                                 >= [4] Y + [1]          
                                 =  plus(Y,times(X,Y))   
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        plus(s(X),Y) -> s(plus(X,Y))
      Weak DP Rules:
        
      Weak TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndspos(0(),Z) -> rnil()
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(X1,X2)
        activate(n__from(X)) -> from(X)
        cons(X1,X2) -> n__cons(X1,X2)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        pi(X) -> 2ndspos(X,from(0()))
        plus(0(),Y) -> Y
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
        times(s(X),Y) -> plus(Y,times(X,Y))
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,cons,from,pi,plus,square,times}/{0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    Applied Processor:
      NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a polynomial interpretation of kind constructor-based(mixed(2)):
      The following argument positions are considered usable:
        uargs(2ndspos) = {2},
        uargs(plus) = {2},
        uargs(s) = {1}
      
      Following symbols are considered usable:
        {2ndsneg,2ndspos,activate,cons,from,pi,plus,square,times}
      TcT has computed the following interpretation:
               p(0) = 0                        
         p(2ndsneg) = 4 + 2*x1 + 2*x1^2 + 2*x2 
         p(2ndspos) = 2 + 2*x1*x2 + 3*x2 + x2^2
        p(activate) = 4 + 4*x1 + 5*x1^2        
            p(cons) = 2*x1 + 5*x1^2            
            p(from) = 3*x1 + 5*x1^2            
         p(n__cons) = x1                       
         p(n__from) = x1                       
        p(negrecip) = x1                       
              p(pi) = 2                        
            p(plus) = 1 + 3*x1 + x2            
        p(posrecip) = 1                        
           p(rcons) = x2                       
            p(rnil) = 0                        
               p(s) = 1 + x1                   
          p(square) = 1 + x1 + 6*x1^2          
           p(times) = x1 + 3*x1*x2 + 2*x2^2    
      
      Following rules are strictly oriented:
      plus(s(X),Y) = 4 + 3*X + Y 
                   > 2 + 3*X + Y 
                   = s(plus(X,Y))
      
      
      Following rules are (at-least) weakly oriented:
                2ndsneg(0(),Z) =  4 + 2*Z                    
                               >= 0                          
                               =  rnil()                     
      
                2ndspos(0(),Z) =  2 + 3*Z + Z^2              
                               >= 0                          
                               =  rnil()                     
      
                   activate(X) =  4 + 4*X + 5*X^2            
                               >= X                          
                               =  X                          
      
      activate(n__cons(X1,X2)) =  4 + 4*X1 + 5*X1^2          
                               >= 2*X1 + 5*X1^2              
                               =  cons(X1,X2)                
      
          activate(n__from(X)) =  4 + 4*X + 5*X^2            
                               >= 3*X + 5*X^2                
                               =  from(X)                    
      
                   cons(X1,X2) =  2*X1 + 5*X1^2              
                               >= X1                         
                               =  n__cons(X1,X2)             
      
                       from(X) =  3*X + 5*X^2                
                               >= 2*X + 5*X^2                
                               =  cons(X,n__from(s(X)))      
      
                       from(X) =  3*X + 5*X^2                
                               >= X                          
                               =  n__from(X)                 
      
                         pi(X) =  2                          
                               >= 2                          
                               =  2ndspos(X,from(0()))       
      
                   plus(0(),Y) =  1 + Y                      
                               >= Y                          
                               =  Y                          
      
                     square(X) =  1 + X + 6*X^2              
                               >= X + 5*X^2                  
                               =  times(X,X)                 
      
                  times(0(),Y) =  2*Y^2                      
                               >= 0                          
                               =  0()                        
      
                 times(s(X),Y) =  1 + X + 3*X*Y + 3*Y + 2*Y^2
                               >= 1 + X + 3*X*Y + 3*Y + 2*Y^2
                               =  plus(Y,times(X,Y))         
      
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndspos(0(),Z) -> rnil()
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(X1,X2)
        activate(n__from(X)) -> from(X)
        cons(X1,X2) -> n__cons(X1,X2)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        pi(X) -> 2ndspos(X,from(0()))
        plus(0(),Y) -> Y
        plus(s(X),Y) -> s(plus(X,Y))
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
        times(s(X),Y) -> plus(Y,times(X,Y))
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,square/1,times/2} / {0/0,n__cons/2,n__from/1,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,cons,from,pi,plus,square,times}/{0,n__cons,n__from,negrecip,posrecip,rcons,rnil,s}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).