*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z)))
        2ndspos(0(),Z) -> rnil()
        2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z)))
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        cons(X1,X2) -> n__cons(X1,X2)
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        pi(X) -> 2ndspos(X,from(0()))
        plus(0(),Y) -> Y
        plus(s(X),Y) -> s(plus(X,Y))
        s(X) -> n__s(X)
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
        times(s(X),Y) -> plus(Y,times(X,Y))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,n__cons/2,n__from/1,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square,times}/{0,n__cons,n__from,n__s,negrecip,posrecip,rcons,rnil}
    Applied Processor:
      InnermostRuleRemoval
    Proof:
      Arguments of following rules are not normal-forms.
        2ndsneg(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),2ndspos(N,activate(Z)))
        2ndspos(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),2ndsneg(N,activate(Z)))
        plus(s(X),Y) -> s(plus(X,Y))
        times(s(X),Y) -> plus(Y,times(X,Y))
      All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndspos(0(),Z) -> rnil()
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        cons(X1,X2) -> n__cons(X1,X2)
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        pi(X) -> 2ndspos(X,from(0()))
        plus(0(),Y) -> Y
        s(X) -> n__s(X)
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,n__cons/2,n__from/1,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square,times}/{0,n__cons,n__from,n__s,negrecip,posrecip,rcons,rnil}
    Applied Processor:
      NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(2ndspos) = {2},
        uargs(cons) = {1},
        uargs(from) = {1},
        uargs(s) = {1}
      
      Following symbols are considered usable:
        {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square,times}
      TcT has computed the following interpretation:
               p(0) = [0]                  
         p(2ndsneg) = [10]                 
         p(2ndspos) = [4] x2 + [4]         
        p(activate) = [2] x1 + [0]         
            p(cons) = [1] x1 + [2]         
            p(from) = [1] x1 + [2]         
         p(n__cons) = [1] x1 + [2]         
         p(n__from) = [1] x1 + [2]         
            p(n__s) = [1] x1 + [3]         
        p(negrecip) = [0]                  
              p(pi) = [13]                 
            p(plus) = [4] x1 + [2] x2 + [2]
        p(posrecip) = [1]                  
           p(rcons) = [1] x2 + [2]         
            p(rnil) = [0]                  
               p(s) = [1] x1 + [4]         
          p(square) = [10] x1 + [1]        
           p(times) = [4] x1 + [6] x2 + [0]
      
      Following rules are strictly oriented:
                2ndsneg(0(),Z) = [10]                 
                               > [0]                  
                               = rnil()               
      
                2ndspos(0(),Z) = [4] Z + [4]          
                               > [0]                  
                               = rnil()               
      
      activate(n__cons(X1,X2)) = [2] X1 + [4]         
                               > [2] X1 + [2]         
                               = cons(activate(X1),X2)
      
          activate(n__from(X)) = [2] X + [4]          
                               > [2] X + [2]          
                               = from(activate(X))    
      
             activate(n__s(X)) = [2] X + [6]          
                               > [2] X + [4]          
                               = s(activate(X))       
      
                         pi(X) = [13]                 
                               > [12]                 
                               = 2ndspos(X,from(0())) 
      
                   plus(0(),Y) = [2] Y + [2]          
                               > [1] Y + [0]          
                               = Y                    
      
                          s(X) = [1] X + [4]          
                               > [1] X + [3]          
                               = n__s(X)              
      
                     square(X) = [10] X + [1]         
                               > [10] X + [0]         
                               = times(X,X)           
      
      
      Following rules are (at-least) weakly oriented:
       activate(X) =  [2] X + [0]             
                   >= [1] X + [0]             
                   =  X                       
      
       cons(X1,X2) =  [1] X1 + [2]            
                   >= [1] X1 + [2]            
                   =  n__cons(X1,X2)          
      
           from(X) =  [1] X + [2]             
                   >= [1] X + [2]             
                   =  cons(X,n__from(n__s(X)))
      
           from(X) =  [1] X + [2]             
                   >= [1] X + [2]             
                   =  n__from(X)              
      
      times(0(),Y) =  [6] Y + [0]             
                   >= [0]                     
                   =  0()                     
      
*** 1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        cons(X1,X2) -> n__cons(X1,X2)
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        times(0(),Y) -> 0()
      Weak DP Rules:
        
      Weak TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndspos(0(),Z) -> rnil()
        activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        pi(X) -> 2ndspos(X,from(0()))
        plus(0(),Y) -> Y
        s(X) -> n__s(X)
        square(X) -> times(X,X)
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,n__cons/2,n__from/1,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square,times}/{0,n__cons,n__from,n__s,negrecip,posrecip,rcons,rnil}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(2ndspos) = {2},
          uargs(cons) = {1},
          uargs(from) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
           p(2ndsneg) = [0]                  
           p(2ndspos) = [1] x2 + [0]         
          p(activate) = [14] x1 + [0]        
              p(cons) = [1] x1 + [0]         
              p(from) = [1] x1 + [0]         
           p(n__cons) = [1] x1 + [0]         
           p(n__from) = [1] x1 + [0]         
              p(n__s) = [1] x1 + [0]         
          p(negrecip) = [1] x1 + [0]         
                p(pi) = [0]                  
              p(plus) = [2] x2 + [0]         
          p(posrecip) = [1] x1 + [0]         
             p(rcons) = [1] x1 + [1] x2 + [0]
              p(rnil) = [0]                  
                 p(s) = [1] x1 + [0]         
            p(square) = [1]                  
             p(times) = [1]                  
        
        Following rules are strictly oriented:
        times(0(),Y) = [1]
                     > [0]
                     = 0()
        
        
        Following rules are (at-least) weakly oriented:
                  2ndsneg(0(),Z) =  [0]                     
                                 >= [0]                     
                                 =  rnil()                  
        
                  2ndspos(0(),Z) =  [1] Z + [0]             
                                 >= [0]                     
                                 =  rnil()                  
        
                     activate(X) =  [14] X + [0]            
                                 >= [1] X + [0]             
                                 =  X                       
        
        activate(n__cons(X1,X2)) =  [14] X1 + [0]           
                                 >= [14] X1 + [0]           
                                 =  cons(activate(X1),X2)   
        
            activate(n__from(X)) =  [14] X + [0]            
                                 >= [14] X + [0]            
                                 =  from(activate(X))       
        
               activate(n__s(X)) =  [14] X + [0]            
                                 >= [14] X + [0]            
                                 =  s(activate(X))          
        
                     cons(X1,X2) =  [1] X1 + [0]            
                                 >= [1] X1 + [0]            
                                 =  n__cons(X1,X2)          
        
                         from(X) =  [1] X + [0]             
                                 >= [1] X + [0]             
                                 =  cons(X,n__from(n__s(X)))
        
                         from(X) =  [1] X + [0]             
                                 >= [1] X + [0]             
                                 =  n__from(X)              
        
                           pi(X) =  [0]                     
                                 >= [0]                     
                                 =  2ndspos(X,from(0()))    
        
                     plus(0(),Y) =  [2] Y + [0]             
                                 >= [1] Y + [0]             
                                 =  Y                       
        
                            s(X) =  [1] X + [0]             
                                 >= [1] X + [0]             
                                 =  n__s(X)                 
        
                       square(X) =  [1]                     
                                 >= [1]                     
                                 =  times(X,X)              
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        cons(X1,X2) -> n__cons(X1,X2)
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndspos(0(),Z) -> rnil()
        activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        pi(X) -> 2ndspos(X,from(0()))
        plus(0(),Y) -> Y
        s(X) -> n__s(X)
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,n__cons/2,n__from/1,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square,times}/{0,n__cons,n__from,n__s,negrecip,posrecip,rcons,rnil}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(2ndspos) = {2},
          uargs(cons) = {1},
          uargs(from) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]          
           p(2ndsneg) = [1]          
           p(2ndspos) = [1] x2 + [0] 
          p(activate) = [1] x1 + [11]
              p(cons) = [1] x1 + [0] 
              p(from) = [1] x1 + [0] 
           p(n__cons) = [1] x1 + [0] 
           p(n__from) = [1] x1 + [2] 
              p(n__s) = [1] x1 + [4] 
          p(negrecip) = [1] x1 + [2] 
                p(pi) = [0]          
              p(plus) = [2] x2 + [0] 
          p(posrecip) = [1] x1 + [0] 
             p(rcons) = [1] x1 + [0] 
              p(rnil) = [0]          
                 p(s) = [1] x1 + [4] 
            p(square) = [0]          
             p(times) = [0]          
        
        Following rules are strictly oriented:
        activate(X) = [1] X + [11]
                    > [1] X + [0] 
                    = X           
        
        
        Following rules are (at-least) weakly oriented:
                  2ndsneg(0(),Z) =  [1]                     
                                 >= [0]                     
                                 =  rnil()                  
        
                  2ndspos(0(),Z) =  [1] Z + [0]             
                                 >= [0]                     
                                 =  rnil()                  
        
        activate(n__cons(X1,X2)) =  [1] X1 + [11]           
                                 >= [1] X1 + [11]           
                                 =  cons(activate(X1),X2)   
        
            activate(n__from(X)) =  [1] X + [13]            
                                 >= [1] X + [11]            
                                 =  from(activate(X))       
        
               activate(n__s(X)) =  [1] X + [15]            
                                 >= [1] X + [15]            
                                 =  s(activate(X))          
        
                     cons(X1,X2) =  [1] X1 + [0]            
                                 >= [1] X1 + [0]            
                                 =  n__cons(X1,X2)          
        
                         from(X) =  [1] X + [0]             
                                 >= [1] X + [0]             
                                 =  cons(X,n__from(n__s(X)))
        
                         from(X) =  [1] X + [0]             
                                 >= [1] X + [2]             
                                 =  n__from(X)              
        
                           pi(X) =  [0]                     
                                 >= [0]                     
                                 =  2ndspos(X,from(0()))    
        
                     plus(0(),Y) =  [2] Y + [0]             
                                 >= [1] Y + [0]             
                                 =  Y                       
        
                            s(X) =  [1] X + [4]             
                                 >= [1] X + [4]             
                                 =  n__s(X)                 
        
                       square(X) =  [0]                     
                                 >= [0]                     
                                 =  times(X,X)              
        
                    times(0(),Y) =  [0]                     
                                 >= [0]                     
                                 =  0()                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        cons(X1,X2) -> n__cons(X1,X2)
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndspos(0(),Z) -> rnil()
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        pi(X) -> 2ndspos(X,from(0()))
        plus(0(),Y) -> Y
        s(X) -> n__s(X)
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,n__cons/2,n__from/1,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square,times}/{0,n__cons,n__from,n__s,negrecip,posrecip,rcons,rnil}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(2ndspos) = {2},
          uargs(cons) = {1},
          uargs(from) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [2]                  
           p(2ndsneg) = [6] x1 + [5]         
           p(2ndspos) = [1] x2 + [9]         
          p(activate) = [2] x1 + [3]         
              p(cons) = [1] x1 + [14]        
              p(from) = [1] x1 + [0]         
           p(n__cons) = [1] x1 + [13]        
           p(n__from) = [1] x1 + [0]         
              p(n__s) = [1] x1 + [1]         
          p(negrecip) = [1] x1 + [0]         
                p(pi) = [11]                 
              p(plus) = [1] x2 + [0]         
          p(posrecip) = [1] x1 + [0]         
             p(rcons) = [1] x1 + [1] x2 + [0]
              p(rnil) = [0]                  
                 p(s) = [1] x1 + [1]         
            p(square) = [9] x1 + [0]         
             p(times) = [8] x1 + [0]         
        
        Following rules are strictly oriented:
        cons(X1,X2) = [1] X1 + [14] 
                    > [1] X1 + [13] 
                    = n__cons(X1,X2)
        
        
        Following rules are (at-least) weakly oriented:
                  2ndsneg(0(),Z) =  [17]                    
                                 >= [0]                     
                                 =  rnil()                  
        
                  2ndspos(0(),Z) =  [1] Z + [9]             
                                 >= [0]                     
                                 =  rnil()                  
        
                     activate(X) =  [2] X + [3]             
                                 >= [1] X + [0]             
                                 =  X                       
        
        activate(n__cons(X1,X2)) =  [2] X1 + [29]           
                                 >= [2] X1 + [17]           
                                 =  cons(activate(X1),X2)   
        
            activate(n__from(X)) =  [2] X + [3]             
                                 >= [2] X + [3]             
                                 =  from(activate(X))       
        
               activate(n__s(X)) =  [2] X + [5]             
                                 >= [2] X + [4]             
                                 =  s(activate(X))          
        
                         from(X) =  [1] X + [0]             
                                 >= [1] X + [14]            
                                 =  cons(X,n__from(n__s(X)))
        
                         from(X) =  [1] X + [0]             
                                 >= [1] X + [0]             
                                 =  n__from(X)              
        
                           pi(X) =  [11]                    
                                 >= [11]                    
                                 =  2ndspos(X,from(0()))    
        
                     plus(0(),Y) =  [1] Y + [0]             
                                 >= [1] Y + [0]             
                                 =  Y                       
        
                            s(X) =  [1] X + [1]             
                                 >= [1] X + [1]             
                                 =  n__s(X)                 
        
                       square(X) =  [9] X + [0]             
                                 >= [8] X + [0]             
                                 =  times(X,X)              
        
                    times(0(),Y) =  [16]                    
                                 >= [2]                     
                                 =  0()                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndspos(0(),Z) -> rnil()
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        cons(X1,X2) -> n__cons(X1,X2)
        pi(X) -> 2ndspos(X,from(0()))
        plus(0(),Y) -> Y
        s(X) -> n__s(X)
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,n__cons/2,n__from/1,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square,times}/{0,n__cons,n__from,n__s,negrecip,posrecip,rcons,rnil}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(2ndspos) = {2},
          uargs(cons) = {1},
          uargs(from) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
           p(2ndsneg) = [0]                  
           p(2ndspos) = [1] x2 + [0]         
          p(activate) = [3] x1 + [0]         
              p(cons) = [1] x1 + [0]         
              p(from) = [1] x1 + [3]         
           p(n__cons) = [1] x1 + [0]         
           p(n__from) = [1] x1 + [1]         
              p(n__s) = [1] x1 + [0]         
          p(negrecip) = [1] x1 + [0]         
                p(pi) = [3]                  
              p(plus) = [2] x2 + [0]         
          p(posrecip) = [1] x1 + [0]         
             p(rcons) = [1] x1 + [1] x2 + [0]
              p(rnil) = [0]                  
                 p(s) = [1] x1 + [0]         
            p(square) = [0]                  
             p(times) = [0]                  
        
        Following rules are strictly oriented:
        from(X) = [1] X + [3]             
                > [1] X + [0]             
                = cons(X,n__from(n__s(X)))
        
        from(X) = [1] X + [3]             
                > [1] X + [1]             
                = n__from(X)              
        
        
        Following rules are (at-least) weakly oriented:
                  2ndsneg(0(),Z) =  [0]                  
                                 >= [0]                  
                                 =  rnil()               
        
                  2ndspos(0(),Z) =  [1] Z + [0]          
                                 >= [0]                  
                                 =  rnil()               
        
                     activate(X) =  [3] X + [0]          
                                 >= [1] X + [0]          
                                 =  X                    
        
        activate(n__cons(X1,X2)) =  [3] X1 + [0]         
                                 >= [3] X1 + [0]         
                                 =  cons(activate(X1),X2)
        
            activate(n__from(X)) =  [3] X + [3]          
                                 >= [3] X + [3]          
                                 =  from(activate(X))    
        
               activate(n__s(X)) =  [3] X + [0]          
                                 >= [3] X + [0]          
                                 =  s(activate(X))       
        
                     cons(X1,X2) =  [1] X1 + [0]         
                                 >= [1] X1 + [0]         
                                 =  n__cons(X1,X2)       
        
                           pi(X) =  [3]                  
                                 >= [3]                  
                                 =  2ndspos(X,from(0())) 
        
                     plus(0(),Y) =  [2] Y + [0]          
                                 >= [1] Y + [0]          
                                 =  Y                    
        
                            s(X) =  [1] X + [0]          
                                 >= [1] X + [0]          
                                 =  n__s(X)              
        
                       square(X) =  [0]                  
                                 >= [0]                  
                                 =  times(X,X)           
        
                    times(0(),Y) =  [0]                  
                                 >= [0]                  
                                 =  0()                  
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        2ndsneg(0(),Z) -> rnil()
        2ndspos(0(),Z) -> rnil()
        activate(X) -> X
        activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
        activate(n__from(X)) -> from(activate(X))
        activate(n__s(X)) -> s(activate(X))
        cons(X1,X2) -> n__cons(X1,X2)
        from(X) -> cons(X,n__from(n__s(X)))
        from(X) -> n__from(X)
        pi(X) -> 2ndspos(X,from(0()))
        plus(0(),Y) -> Y
        s(X) -> n__s(X)
        square(X) -> times(X,X)
        times(0(),Y) -> 0()
      Signature:
        {2ndsneg/2,2ndspos/2,activate/1,cons/2,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,n__cons/2,n__from/1,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
      Obligation:
        Innermost
        basic terms: {2ndsneg,2ndspos,activate,cons,from,pi,plus,s,square,times}/{0,n__cons,n__from,n__s,negrecip,posrecip,rcons,rnil}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).