*** 1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
a() -> n__a()
activate(X) -> X
activate(n__a()) -> a()
activate(n__f(X)) -> f(activate(X))
f(X) -> n__f(X)
f(f(a())) -> f(g(n__f(n__a())))
Weak DP Rules:
Weak TRS Rules:
Signature:
{a/0,activate/1,f/1} / {g/1,n__a/0,n__f/1}
Obligation:
Innermost
basic terms: {a,activate,f}/{g,n__a,n__f}
Applied Processor:
InnermostRuleRemoval
Proof:
Arguments of following rules are not normal-forms.
f(f(a())) -> f(g(n__f(n__a())))
All above mentioned rules can be savely removed.
*** 1.1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
a() -> n__a()
activate(X) -> X
activate(n__a()) -> a()
activate(n__f(X)) -> f(activate(X))
f(X) -> n__f(X)
Weak DP Rules:
Weak TRS Rules:
Signature:
{a/0,activate/1,f/1} / {g/1,n__a/0,n__f/1}
Obligation:
Innermost
basic terms: {a,activate,f}/{g,n__a,n__f}
Applied Processor:
Bounds {initialAutomaton = minimal, enrichment = match}
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with follwoing automaton.
a_0() -> 1
a_1() -> 1
a_1() -> 3
activate_0(2) -> 1
activate_1(2) -> 3
f_0(2) -> 1
f_1(3) -> 1
f_1(3) -> 3
g_0(2) -> 1
g_0(2) -> 2
g_0(2) -> 3
n__a_0() -> 1
n__a_0() -> 2
n__a_0() -> 3
n__a_1() -> 1
n__a_2() -> 1
n__a_2() -> 3
n__f_0(2) -> 1
n__f_0(2) -> 2
n__f_0(2) -> 3
n__f_1(2) -> 1
n__f_2(3) -> 1
n__f_2(3) -> 3
2 -> 1
2 -> 3
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
a() -> n__a()
activate(X) -> X
activate(n__a()) -> a()
activate(n__f(X)) -> f(activate(X))
f(X) -> n__f(X)
Signature:
{a/0,activate/1,f/1} / {g/1,n__a/0,n__f/1}
Obligation:
Innermost
basic terms: {a,activate,f}/{g,n__a,n__f}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).