*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(activate(X)) f(X) -> n__f(X) f(f(a())) -> f(g(n__f(n__a()))) Weak DP Rules: Weak TRS Rules: Signature: {a/0,activate/1,f/1} / {g/1,n__a/0,n__f/1} Obligation: Innermost basic terms: {a,activate,f}/{g,n__a,n__f} Applied Processor: InnermostRuleRemoval Proof: Arguments of following rules are not normal-forms. f(f(a())) -> f(g(n__f(n__a()))) All above mentioned rules can be savely removed. *** 1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(activate(X)) f(X) -> n__f(X) Weak DP Rules: Weak TRS Rules: Signature: {a/0,activate/1,f/1} / {g/1,n__a/0,n__f/1} Obligation: Innermost basic terms: {a,activate,f}/{g,n__a,n__f} Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} Proof: The problem is match-bounded by 2. The enriched problem is compatible with follwoing automaton. a_0() -> 1 a_1() -> 1 a_1() -> 3 activate_0(2) -> 1 activate_1(2) -> 3 f_0(2) -> 1 f_1(3) -> 1 f_1(3) -> 3 g_0(2) -> 1 g_0(2) -> 2 g_0(2) -> 3 n__a_0() -> 1 n__a_0() -> 2 n__a_0() -> 3 n__a_1() -> 1 n__a_2() -> 1 n__a_2() -> 3 n__f_0(2) -> 1 n__f_0(2) -> 2 n__f_0(2) -> 3 n__f_1(2) -> 1 n__f_2(3) -> 1 n__f_2(3) -> 3 2 -> 1 2 -> 3 *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(activate(X)) f(X) -> n__f(X) Signature: {a/0,activate/1,f/1} / {g/1,n__a/0,n__f/1} Obligation: Innermost basic terms: {a,activate,f}/{g,n__a,n__f} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).