*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__and(X1,X2) -> and(X1,X2)
        a__and(false(),Y) -> false()
        a__and(true(),X) -> mark(X)
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
        a__from(X) -> cons(X,from(s(X)))
        a__from(X) -> from(X)
        a__if(X1,X2,X3) -> if(X1,X2,X3)
        a__if(false(),X,Y) -> mark(Y)
        a__if(true(),X,Y) -> mark(X)
        mark(0()) -> 0()
        mark(add(X1,X2)) -> a__add(mark(X1),X2)
        mark(and(X1,X2)) -> a__and(mark(X1),X2)
        mark(cons(X1,X2)) -> cons(X1,X2)
        mark(false()) -> false()
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(from(X)) -> a__from(X)
        mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
        mark(nil()) -> nil()
        mark(s(X)) -> s(X)
        mark(true()) -> true()
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {a__add/2,a__and/2,a__first/2,a__from/1,a__if/3,mark/1} / {0/0,add/2,and/2,cons/2,false/0,first/2,from/1,if/3,nil/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {a__add,a__and,a__first,a__from,a__if,mark}/{0,add,and,cons,false,first,from,if,nil,s,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__add) = {1},
          uargs(a__and) = {1},
          uargs(a__first) = {1,2},
          uargs(a__if) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [4]                  
            p(a__add) = [1] x1 + [0]         
            p(a__and) = [1] x1 + [3]         
          p(a__first) = [1] x1 + [1] x2 + [0]
           p(a__from) = [0]                  
             p(a__if) = [1] x1 + [0]         
               p(add) = [0]                  
               p(and) = [0]                  
              p(cons) = [0]                  
             p(false) = [0]                  
             p(first) = [0]                  
              p(from) = [0]                  
                p(if) = [0]                  
              p(mark) = [4]                  
               p(nil) = [0]                  
                 p(s) = [2]                  
              p(true) = [5]                  
        
        Following rules are strictly oriented:
                   a__and(X1,X2) = [1] X1 + [3]      
                                 > [0]               
                                 = and(X1,X2)        
        
               a__and(false(),Y) = [3]               
                                 > [0]               
                                 = false()           
        
                a__and(true(),X) = [8]               
                                 > [4]               
                                 = mark(X)           
        
                 a__first(0(),X) = [1] X + [4]       
                                 > [0]               
                                 = nil()             
        
        a__first(s(X),cons(Y,Z)) = [2]               
                                 > [0]               
                                 = cons(Y,first(X,Z))
        
               a__if(true(),X,Y) = [5]               
                                 > [4]               
                                 = mark(X)           
        
               mark(cons(X1,X2)) = [4]               
                                 > [0]               
                                 = cons(X1,X2)       
        
                   mark(false()) = [4]               
                                 > [0]               
                                 = false()           
        
                   mark(from(X)) = [4]               
                                 > [0]               
                                 = a__from(X)        
        
                     mark(nil()) = [4]               
                                 > [0]               
                                 = nil()             
        
                      mark(s(X)) = [4]               
                                 > [2]               
                                 = s(X)              
        
        
        Following rules are (at-least) weakly oriented:
             a__add(X1,X2) =  [1] X1 + [0]               
                           >= [0]                        
                           =  add(X1,X2)                 
        
             a__add(0(),X) =  [4]                        
                           >= [4]                        
                           =  mark(X)                    
        
            a__add(s(X),Y) =  [2]                        
                           >= [2]                        
                           =  s(add(X,Y))                
        
           a__first(X1,X2) =  [1] X1 + [1] X2 + [0]      
                           >= [0]                        
                           =  first(X1,X2)               
        
                a__from(X) =  [0]                        
                           >= [0]                        
                           =  cons(X,from(s(X)))         
        
                a__from(X) =  [0]                        
                           >= [0]                        
                           =  from(X)                    
        
           a__if(X1,X2,X3) =  [1] X1 + [0]               
                           >= [0]                        
                           =  if(X1,X2,X3)               
        
        a__if(false(),X,Y) =  [0]                        
                           >= [4]                        
                           =  mark(Y)                    
        
                 mark(0()) =  [4]                        
                           >= [4]                        
                           =  0()                        
        
          mark(add(X1,X2)) =  [4]                        
                           >= [4]                        
                           =  a__add(mark(X1),X2)        
        
          mark(and(X1,X2)) =  [4]                        
                           >= [7]                        
                           =  a__and(mark(X1),X2)        
        
        mark(first(X1,X2)) =  [4]                        
                           >= [8]                        
                           =  a__first(mark(X1),mark(X2))
        
        mark(if(X1,X2,X3)) =  [4]                        
                           >= [4]                        
                           =  a__if(mark(X1),X2,X3)      
        
              mark(true()) =  [4]                        
                           >= [5]                        
                           =  true()                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__first(X1,X2) -> first(X1,X2)
        a__from(X) -> cons(X,from(s(X)))
        a__from(X) -> from(X)
        a__if(X1,X2,X3) -> if(X1,X2,X3)
        a__if(false(),X,Y) -> mark(Y)
        mark(0()) -> 0()
        mark(add(X1,X2)) -> a__add(mark(X1),X2)
        mark(and(X1,X2)) -> a__and(mark(X1),X2)
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
        mark(true()) -> true()
      Weak DP Rules:
        
      Weak TRS Rules:
        a__and(X1,X2) -> and(X1,X2)
        a__and(false(),Y) -> false()
        a__and(true(),X) -> mark(X)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
        a__if(true(),X,Y) -> mark(X)
        mark(cons(X1,X2)) -> cons(X1,X2)
        mark(false()) -> false()
        mark(from(X)) -> a__from(X)
        mark(nil()) -> nil()
        mark(s(X)) -> s(X)
      Signature:
        {a__add/2,a__and/2,a__first/2,a__from/1,a__if/3,mark/1} / {0/0,add/2,and/2,cons/2,false/0,first/2,from/1,if/3,nil/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {a__add,a__and,a__first,a__from,a__if,mark}/{0,add,and,cons,false,first,from,if,nil,s,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__add) = {1},
          uargs(a__and) = {1},
          uargs(a__first) = {1,2},
          uargs(a__if) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [5]                           
            p(a__add) = [1] x1 + [1] x2 + [0]         
            p(a__and) = [1] x1 + [1] x2 + [4]         
          p(a__first) = [1] x1 + [1] x2 + [0]         
           p(a__from) = [0]                           
             p(a__if) = [1] x1 + [1] x2 + [1] x3 + [5]
               p(add) = [1] x1 + [1] x2 + [0]         
               p(and) = [1] x1 + [1] x2 + [0]         
              p(cons) = [1]                           
             p(false) = [2]                           
             p(first) = [1] x1 + [1] x2 + [2]         
              p(from) = [0]                           
                p(if) = [1] x1 + [1] x2 + [1] x3 + [3]
              p(mark) = [1] x1 + [1]                  
               p(nil) = [4]                           
                 p(s) = [1] x1 + [0]                  
              p(true) = [2]                           
        
        Following rules are strictly oriented:
             a__add(0(),X) = [1] X + [5]                   
                           > [1] X + [1]                   
                           = mark(X)                       
        
           a__if(X1,X2,X3) = [1] X1 + [1] X2 + [1] X3 + [5]
                           > [1] X1 + [1] X2 + [1] X3 + [3]
                           = if(X1,X2,X3)                  
        
        a__if(false(),X,Y) = [1] X + [1] Y + [7]           
                           > [1] Y + [1]                   
                           = mark(Y)                       
        
                 mark(0()) = [6]                           
                           > [5]                           
                           = 0()                           
        
        mark(first(X1,X2)) = [1] X1 + [1] X2 + [3]         
                           > [1] X1 + [1] X2 + [2]         
                           = a__first(mark(X1),mark(X2))   
        
              mark(true()) = [3]                           
                           > [2]                           
                           = true()                        
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                 >= [1] X1 + [1] X2 + [0]         
                                 =  add(X1,X2)                    
        
                  a__add(s(X),Y) =  [1] X + [1] Y + [0]           
                                 >= [1] X + [1] Y + [0]           
                                 =  s(add(X,Y))                   
        
                   a__and(X1,X2) =  [1] X1 + [1] X2 + [4]         
                                 >= [1] X1 + [1] X2 + [0]         
                                 =  and(X1,X2)                    
        
               a__and(false(),Y) =  [1] Y + [6]                   
                                 >= [2]                           
                                 =  false()                       
        
                a__and(true(),X) =  [1] X + [6]                   
                                 >= [1] X + [1]                   
                                 =  mark(X)                       
        
                 a__first(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                 >= [1] X1 + [1] X2 + [2]         
                                 =  first(X1,X2)                  
        
                 a__first(0(),X) =  [1] X + [5]                   
                                 >= [4]                           
                                 =  nil()                         
        
        a__first(s(X),cons(Y,Z)) =  [1] X + [1]                   
                                 >= [1]                           
                                 =  cons(Y,first(X,Z))            
        
                      a__from(X) =  [0]                           
                                 >= [1]                           
                                 =  cons(X,from(s(X)))            
        
                      a__from(X) =  [0]                           
                                 >= [0]                           
                                 =  from(X)                       
        
               a__if(true(),X,Y) =  [1] X + [1] Y + [7]           
                                 >= [1] X + [1]                   
                                 =  mark(X)                       
        
                mark(add(X1,X2)) =  [1] X1 + [1] X2 + [1]         
                                 >= [1] X1 + [1] X2 + [1]         
                                 =  a__add(mark(X1),X2)           
        
                mark(and(X1,X2)) =  [1] X1 + [1] X2 + [1]         
                                 >= [1] X1 + [1] X2 + [5]         
                                 =  a__and(mark(X1),X2)           
        
               mark(cons(X1,X2)) =  [2]                           
                                 >= [1]                           
                                 =  cons(X1,X2)                   
        
                   mark(false()) =  [3]                           
                                 >= [2]                           
                                 =  false()                       
        
                   mark(from(X)) =  [1]                           
                                 >= [0]                           
                                 =  a__from(X)                    
        
              mark(if(X1,X2,X3)) =  [1] X1 + [1] X2 + [1] X3 + [4]
                                 >= [1] X1 + [1] X2 + [1] X3 + [6]
                                 =  a__if(mark(X1),X2,X3)         
        
                     mark(nil()) =  [5]                           
                                 >= [4]                           
                                 =  nil()                         
        
                      mark(s(X)) =  [1] X + [1]                   
                                 >= [1] X + [0]                   
                                 =  s(X)                          
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(s(X),Y) -> s(add(X,Y))
        a__first(X1,X2) -> first(X1,X2)
        a__from(X) -> cons(X,from(s(X)))
        a__from(X) -> from(X)
        mark(add(X1,X2)) -> a__add(mark(X1),X2)
        mark(and(X1,X2)) -> a__and(mark(X1),X2)
        mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(0(),X) -> mark(X)
        a__and(X1,X2) -> and(X1,X2)
        a__and(false(),Y) -> false()
        a__and(true(),X) -> mark(X)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
        a__if(X1,X2,X3) -> if(X1,X2,X3)
        a__if(false(),X,Y) -> mark(Y)
        a__if(true(),X,Y) -> mark(X)
        mark(0()) -> 0()
        mark(cons(X1,X2)) -> cons(X1,X2)
        mark(false()) -> false()
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(from(X)) -> a__from(X)
        mark(nil()) -> nil()
        mark(s(X)) -> s(X)
        mark(true()) -> true()
      Signature:
        {a__add/2,a__and/2,a__first/2,a__from/1,a__if/3,mark/1} / {0/0,add/2,and/2,cons/2,false/0,first/2,from/1,if/3,nil/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {a__add,a__and,a__first,a__from,a__if,mark}/{0,add,and,cons,false,first,from,if,nil,s,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__add) = {1},
          uargs(a__and) = {1},
          uargs(a__first) = {1,2},
          uargs(a__if) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                  
            p(a__add) = [1] x1 + [1]         
            p(a__and) = [1] x1 + [6]         
          p(a__first) = [1] x1 + [1] x2 + [0]
           p(a__from) = [0]                  
             p(a__if) = [1] x1 + [4]         
               p(add) = [0]                  
               p(and) = [0]                  
              p(cons) = [0]                  
             p(false) = [0]                  
             p(first) = [1] x1 + [0]         
              p(from) = [0]                  
                p(if) = [1] x1 + [0]         
              p(mark) = [0]                  
               p(nil) = [0]                  
                 p(s) = [0]                  
              p(true) = [0]                  
        
        Following rules are strictly oriented:
         a__add(X1,X2) = [1] X1 + [1]
                       > [0]         
                       = add(X1,X2)  
        
        a__add(s(X),Y) = [1]         
                       > [0]         
                       = s(add(X,Y)) 
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(0(),X) =  [1]                        
                                 >= [0]                        
                                 =  mark(X)                    
        
                   a__and(X1,X2) =  [1] X1 + [6]               
                                 >= [0]                        
                                 =  and(X1,X2)                 
        
               a__and(false(),Y) =  [6]                        
                                 >= [0]                        
                                 =  false()                    
        
                a__and(true(),X) =  [6]                        
                                 >= [0]                        
                                 =  mark(X)                    
        
                 a__first(X1,X2) =  [1] X1 + [1] X2 + [0]      
                                 >= [1] X1 + [0]               
                                 =  first(X1,X2)               
        
                 a__first(0(),X) =  [1] X + [0]                
                                 >= [0]                        
                                 =  nil()                      
        
        a__first(s(X),cons(Y,Z)) =  [0]                        
                                 >= [0]                        
                                 =  cons(Y,first(X,Z))         
        
                      a__from(X) =  [0]                        
                                 >= [0]                        
                                 =  cons(X,from(s(X)))         
        
                      a__from(X) =  [0]                        
                                 >= [0]                        
                                 =  from(X)                    
        
                 a__if(X1,X2,X3) =  [1] X1 + [4]               
                                 >= [1] X1 + [0]               
                                 =  if(X1,X2,X3)               
        
              a__if(false(),X,Y) =  [4]                        
                                 >= [0]                        
                                 =  mark(Y)                    
        
               a__if(true(),X,Y) =  [4]                        
                                 >= [0]                        
                                 =  mark(X)                    
        
                       mark(0()) =  [0]                        
                                 >= [0]                        
                                 =  0()                        
        
                mark(add(X1,X2)) =  [0]                        
                                 >= [1]                        
                                 =  a__add(mark(X1),X2)        
        
                mark(and(X1,X2)) =  [0]                        
                                 >= [6]                        
                                 =  a__and(mark(X1),X2)        
        
               mark(cons(X1,X2)) =  [0]                        
                                 >= [0]                        
                                 =  cons(X1,X2)                
        
                   mark(false()) =  [0]                        
                                 >= [0]                        
                                 =  false()                    
        
              mark(first(X1,X2)) =  [0]                        
                                 >= [0]                        
                                 =  a__first(mark(X1),mark(X2))
        
                   mark(from(X)) =  [0]                        
                                 >= [0]                        
                                 =  a__from(X)                 
        
              mark(if(X1,X2,X3)) =  [0]                        
                                 >= [4]                        
                                 =  a__if(mark(X1),X2,X3)      
        
                     mark(nil()) =  [0]                        
                                 >= [0]                        
                                 =  nil()                      
        
                      mark(s(X)) =  [0]                        
                                 >= [0]                        
                                 =  s(X)                       
        
                    mark(true()) =  [0]                        
                                 >= [0]                        
                                 =  true()                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__first(X1,X2) -> first(X1,X2)
        a__from(X) -> cons(X,from(s(X)))
        a__from(X) -> from(X)
        mark(add(X1,X2)) -> a__add(mark(X1),X2)
        mark(and(X1,X2)) -> a__and(mark(X1),X2)
        mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__and(X1,X2) -> and(X1,X2)
        a__and(false(),Y) -> false()
        a__and(true(),X) -> mark(X)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
        a__if(X1,X2,X3) -> if(X1,X2,X3)
        a__if(false(),X,Y) -> mark(Y)
        a__if(true(),X,Y) -> mark(X)
        mark(0()) -> 0()
        mark(cons(X1,X2)) -> cons(X1,X2)
        mark(false()) -> false()
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(from(X)) -> a__from(X)
        mark(nil()) -> nil()
        mark(s(X)) -> s(X)
        mark(true()) -> true()
      Signature:
        {a__add/2,a__and/2,a__first/2,a__from/1,a__if/3,mark/1} / {0/0,add/2,and/2,cons/2,false/0,first/2,from/1,if/3,nil/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {a__add,a__and,a__first,a__from,a__if,mark}/{0,add,and,cons,false,first,from,if,nil,s,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__add) = {1},
          uargs(a__and) = {1},
          uargs(a__first) = {1,2},
          uargs(a__if) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [1]                           
            p(a__add) = [1] x1 + [2] x2 + [4]         
            p(a__and) = [1] x1 + [2] x2 + [0]         
          p(a__first) = [1] x1 + [1] x2 + [0]         
           p(a__from) = [2]                           
             p(a__if) = [1] x1 + [2] x2 + [2] x3 + [4]
               p(add) = [1] x1 + [1] x2 + [0]         
               p(and) = [1] x1 + [1] x2 + [0]         
              p(cons) = [0]                           
             p(false) = [4]                           
             p(first) = [1] x1 + [1] x2 + [0]         
              p(from) = [6]                           
                p(if) = [1] x1 + [1] x2 + [1] x3 + [1]
              p(mark) = [2] x1 + [0]                  
               p(nil) = [0]                           
                 p(s) = [4]                           
              p(true) = [4]                           
        
        Following rules are strictly oriented:
        a__from(X) = [2]               
                   > [0]               
                   = cons(X,from(s(X)))
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(X1,X2) =  [1] X1 + [2] X2 + [4]         
                                 >= [1] X1 + [1] X2 + [0]         
                                 =  add(X1,X2)                    
        
                   a__add(0(),X) =  [2] X + [5]                   
                                 >= [2] X + [0]                   
                                 =  mark(X)                       
        
                  a__add(s(X),Y) =  [2] Y + [8]                   
                                 >= [4]                           
                                 =  s(add(X,Y))                   
        
                   a__and(X1,X2) =  [1] X1 + [2] X2 + [0]         
                                 >= [1] X1 + [1] X2 + [0]         
                                 =  and(X1,X2)                    
        
               a__and(false(),Y) =  [2] Y + [4]                   
                                 >= [4]                           
                                 =  false()                       
        
                a__and(true(),X) =  [2] X + [4]                   
                                 >= [2] X + [0]                   
                                 =  mark(X)                       
        
                 a__first(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                 >= [1] X1 + [1] X2 + [0]         
                                 =  first(X1,X2)                  
        
                 a__first(0(),X) =  [1] X + [1]                   
                                 >= [0]                           
                                 =  nil()                         
        
        a__first(s(X),cons(Y,Z)) =  [4]                           
                                 >= [0]                           
                                 =  cons(Y,first(X,Z))            
        
                      a__from(X) =  [2]                           
                                 >= [6]                           
                                 =  from(X)                       
        
                 a__if(X1,X2,X3) =  [1] X1 + [2] X2 + [2] X3 + [4]
                                 >= [1] X1 + [1] X2 + [1] X3 + [1]
                                 =  if(X1,X2,X3)                  
        
              a__if(false(),X,Y) =  [2] X + [2] Y + [8]           
                                 >= [2] Y + [0]                   
                                 =  mark(Y)                       
        
               a__if(true(),X,Y) =  [2] X + [2] Y + [8]           
                                 >= [2] X + [0]                   
                                 =  mark(X)                       
        
                       mark(0()) =  [2]                           
                                 >= [1]                           
                                 =  0()                           
        
                mark(add(X1,X2)) =  [2] X1 + [2] X2 + [0]         
                                 >= [2] X1 + [2] X2 + [4]         
                                 =  a__add(mark(X1),X2)           
        
                mark(and(X1,X2)) =  [2] X1 + [2] X2 + [0]         
                                 >= [2] X1 + [2] X2 + [0]         
                                 =  a__and(mark(X1),X2)           
        
               mark(cons(X1,X2)) =  [0]                           
                                 >= [0]                           
                                 =  cons(X1,X2)                   
        
                   mark(false()) =  [8]                           
                                 >= [4]                           
                                 =  false()                       
        
              mark(first(X1,X2)) =  [2] X1 + [2] X2 + [0]         
                                 >= [2] X1 + [2] X2 + [0]         
                                 =  a__first(mark(X1),mark(X2))   
        
                   mark(from(X)) =  [12]                          
                                 >= [2]                           
                                 =  a__from(X)                    
        
              mark(if(X1,X2,X3)) =  [2] X1 + [2] X2 + [2] X3 + [2]
                                 >= [2] X1 + [2] X2 + [2] X3 + [4]
                                 =  a__if(mark(X1),X2,X3)         
        
                     mark(nil()) =  [0]                           
                                 >= [0]                           
                                 =  nil()                         
        
                      mark(s(X)) =  [8]                           
                                 >= [4]                           
                                 =  s(X)                          
        
                    mark(true()) =  [8]                           
                                 >= [4]                           
                                 =  true()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__first(X1,X2) -> first(X1,X2)
        a__from(X) -> from(X)
        mark(add(X1,X2)) -> a__add(mark(X1),X2)
        mark(and(X1,X2)) -> a__and(mark(X1),X2)
        mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__and(X1,X2) -> and(X1,X2)
        a__and(false(),Y) -> false()
        a__and(true(),X) -> mark(X)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
        a__from(X) -> cons(X,from(s(X)))
        a__if(X1,X2,X3) -> if(X1,X2,X3)
        a__if(false(),X,Y) -> mark(Y)
        a__if(true(),X,Y) -> mark(X)
        mark(0()) -> 0()
        mark(cons(X1,X2)) -> cons(X1,X2)
        mark(false()) -> false()
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(from(X)) -> a__from(X)
        mark(nil()) -> nil()
        mark(s(X)) -> s(X)
        mark(true()) -> true()
      Signature:
        {a__add/2,a__and/2,a__first/2,a__from/1,a__if/3,mark/1} / {0/0,add/2,and/2,cons/2,false/0,first/2,from/1,if/3,nil/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {a__add,a__and,a__first,a__from,a__if,mark}/{0,add,and,cons,false,first,from,if,nil,s,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__add) = {1},
          uargs(a__and) = {1},
          uargs(a__first) = {1,2},
          uargs(a__if) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
            p(a__add) = [1] x1 + [2] x2 + [1]         
            p(a__and) = [1] x1 + [2] x2 + [1]         
          p(a__first) = [1] x1 + [1] x2 + [0]         
           p(a__from) = [0]                           
             p(a__if) = [1] x1 + [2] x2 + [2] x3 + [1]
               p(add) = [1] x1 + [1] x2 + [0]         
               p(and) = [1] x1 + [1] x2 + [1]         
              p(cons) = [0]                           
             p(false) = [5]                           
             p(first) = [1] x1 + [1] x2 + [0]         
              p(from) = [0]                           
                p(if) = [1] x1 + [1] x2 + [1] x3 + [0]
              p(mark) = [2] x1 + [0]                  
               p(nil) = [0]                           
                 p(s) = [0]                           
              p(true) = [4]                           
        
        Following rules are strictly oriented:
        mark(and(X1,X2)) = [2] X1 + [2] X2 + [2]
                         > [2] X1 + [2] X2 + [1]
                         = a__and(mark(X1),X2)  
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(X1,X2) =  [1] X1 + [2] X2 + [1]         
                                 >= [1] X1 + [1] X2 + [0]         
                                 =  add(X1,X2)                    
        
                   a__add(0(),X) =  [2] X + [1]                   
                                 >= [2] X + [0]                   
                                 =  mark(X)                       
        
                  a__add(s(X),Y) =  [2] Y + [1]                   
                                 >= [0]                           
                                 =  s(add(X,Y))                   
        
                   a__and(X1,X2) =  [1] X1 + [2] X2 + [1]         
                                 >= [1] X1 + [1] X2 + [1]         
                                 =  and(X1,X2)                    
        
               a__and(false(),Y) =  [2] Y + [6]                   
                                 >= [5]                           
                                 =  false()                       
        
                a__and(true(),X) =  [2] X + [5]                   
                                 >= [2] X + [0]                   
                                 =  mark(X)                       
        
                 a__first(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                 >= [1] X1 + [1] X2 + [0]         
                                 =  first(X1,X2)                  
        
                 a__first(0(),X) =  [1] X + [0]                   
                                 >= [0]                           
                                 =  nil()                         
        
        a__first(s(X),cons(Y,Z)) =  [0]                           
                                 >= [0]                           
                                 =  cons(Y,first(X,Z))            
        
                      a__from(X) =  [0]                           
                                 >= [0]                           
                                 =  cons(X,from(s(X)))            
        
                      a__from(X) =  [0]                           
                                 >= [0]                           
                                 =  from(X)                       
        
                 a__if(X1,X2,X3) =  [1] X1 + [2] X2 + [2] X3 + [1]
                                 >= [1] X1 + [1] X2 + [1] X3 + [0]
                                 =  if(X1,X2,X3)                  
        
              a__if(false(),X,Y) =  [2] X + [2] Y + [6]           
                                 >= [2] Y + [0]                   
                                 =  mark(Y)                       
        
               a__if(true(),X,Y) =  [2] X + [2] Y + [5]           
                                 >= [2] X + [0]                   
                                 =  mark(X)                       
        
                       mark(0()) =  [0]                           
                                 >= [0]                           
                                 =  0()                           
        
                mark(add(X1,X2)) =  [2] X1 + [2] X2 + [0]         
                                 >= [2] X1 + [2] X2 + [1]         
                                 =  a__add(mark(X1),X2)           
        
               mark(cons(X1,X2)) =  [0]                           
                                 >= [0]                           
                                 =  cons(X1,X2)                   
        
                   mark(false()) =  [10]                          
                                 >= [5]                           
                                 =  false()                       
        
              mark(first(X1,X2)) =  [2] X1 + [2] X2 + [0]         
                                 >= [2] X1 + [2] X2 + [0]         
                                 =  a__first(mark(X1),mark(X2))   
        
                   mark(from(X)) =  [0]                           
                                 >= [0]                           
                                 =  a__from(X)                    
        
              mark(if(X1,X2,X3)) =  [2] X1 + [2] X2 + [2] X3 + [0]
                                 >= [2] X1 + [2] X2 + [2] X3 + [1]
                                 =  a__if(mark(X1),X2,X3)         
        
                     mark(nil()) =  [0]                           
                                 >= [0]                           
                                 =  nil()                         
        
                      mark(s(X)) =  [0]                           
                                 >= [0]                           
                                 =  s(X)                          
        
                    mark(true()) =  [8]                           
                                 >= [4]                           
                                 =  true()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__first(X1,X2) -> first(X1,X2)
        a__from(X) -> from(X)
        mark(add(X1,X2)) -> a__add(mark(X1),X2)
        mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__and(X1,X2) -> and(X1,X2)
        a__and(false(),Y) -> false()
        a__and(true(),X) -> mark(X)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
        a__from(X) -> cons(X,from(s(X)))
        a__if(X1,X2,X3) -> if(X1,X2,X3)
        a__if(false(),X,Y) -> mark(Y)
        a__if(true(),X,Y) -> mark(X)
        mark(0()) -> 0()
        mark(and(X1,X2)) -> a__and(mark(X1),X2)
        mark(cons(X1,X2)) -> cons(X1,X2)
        mark(false()) -> false()
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(from(X)) -> a__from(X)
        mark(nil()) -> nil()
        mark(s(X)) -> s(X)
        mark(true()) -> true()
      Signature:
        {a__add/2,a__and/2,a__first/2,a__from/1,a__if/3,mark/1} / {0/0,add/2,and/2,cons/2,false/0,first/2,from/1,if/3,nil/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {a__add,a__and,a__first,a__from,a__if,mark}/{0,add,and,cons,false,first,from,if,nil,s,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__add) = {1},
          uargs(a__and) = {1},
          uargs(a__first) = {1,2},
          uargs(a__if) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [1]                           
            p(a__add) = [1] x1 + [2] x2 + [0]         
            p(a__and) = [1] x1 + [2] x2 + [1]         
          p(a__first) = [1] x1 + [1] x2 + [0]         
           p(a__from) = [2] x1 + [0]                  
             p(a__if) = [1] x1 + [2] x2 + [2] x3 + [4]
               p(add) = [1] x1 + [1] x2 + [0]         
               p(and) = [1] x1 + [1] x2 + [1]         
              p(cons) = [0]                           
             p(false) = [0]                           
             p(first) = [1] x1 + [1] x2 + [0]         
              p(from) = [1] x1 + [0]                  
                p(if) = [1] x1 + [1] x2 + [1] x3 + [4]
              p(mark) = [2] x1 + [0]                  
               p(nil) = [1]                           
                 p(s) = [0]                           
              p(true) = [5]                           
        
        Following rules are strictly oriented:
        mark(if(X1,X2,X3)) = [2] X1 + [2] X2 + [2] X3 + [8]
                           > [2] X1 + [2] X2 + [2] X3 + [4]
                           = a__if(mark(X1),X2,X3)         
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(X1,X2) =  [1] X1 + [2] X2 + [0]         
                                 >= [1] X1 + [1] X2 + [0]         
                                 =  add(X1,X2)                    
        
                   a__add(0(),X) =  [2] X + [1]                   
                                 >= [2] X + [0]                   
                                 =  mark(X)                       
        
                  a__add(s(X),Y) =  [2] Y + [0]                   
                                 >= [0]                           
                                 =  s(add(X,Y))                   
        
                   a__and(X1,X2) =  [1] X1 + [2] X2 + [1]         
                                 >= [1] X1 + [1] X2 + [1]         
                                 =  and(X1,X2)                    
        
               a__and(false(),Y) =  [2] Y + [1]                   
                                 >= [0]                           
                                 =  false()                       
        
                a__and(true(),X) =  [2] X + [6]                   
                                 >= [2] X + [0]                   
                                 =  mark(X)                       
        
                 a__first(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                 >= [1] X1 + [1] X2 + [0]         
                                 =  first(X1,X2)                  
        
                 a__first(0(),X) =  [1] X + [1]                   
                                 >= [1]                           
                                 =  nil()                         
        
        a__first(s(X),cons(Y,Z)) =  [0]                           
                                 >= [0]                           
                                 =  cons(Y,first(X,Z))            
        
                      a__from(X) =  [2] X + [0]                   
                                 >= [0]                           
                                 =  cons(X,from(s(X)))            
        
                      a__from(X) =  [2] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  from(X)                       
        
                 a__if(X1,X2,X3) =  [1] X1 + [2] X2 + [2] X3 + [4]
                                 >= [1] X1 + [1] X2 + [1] X3 + [4]
                                 =  if(X1,X2,X3)                  
        
              a__if(false(),X,Y) =  [2] X + [2] Y + [4]           
                                 >= [2] Y + [0]                   
                                 =  mark(Y)                       
        
               a__if(true(),X,Y) =  [2] X + [2] Y + [9]           
                                 >= [2] X + [0]                   
                                 =  mark(X)                       
        
                       mark(0()) =  [2]                           
                                 >= [1]                           
                                 =  0()                           
        
                mark(add(X1,X2)) =  [2] X1 + [2] X2 + [0]         
                                 >= [2] X1 + [2] X2 + [0]         
                                 =  a__add(mark(X1),X2)           
        
                mark(and(X1,X2)) =  [2] X1 + [2] X2 + [2]         
                                 >= [2] X1 + [2] X2 + [1]         
                                 =  a__and(mark(X1),X2)           
        
               mark(cons(X1,X2)) =  [0]                           
                                 >= [0]                           
                                 =  cons(X1,X2)                   
        
                   mark(false()) =  [0]                           
                                 >= [0]                           
                                 =  false()                       
        
              mark(first(X1,X2)) =  [2] X1 + [2] X2 + [0]         
                                 >= [2] X1 + [2] X2 + [0]         
                                 =  a__first(mark(X1),mark(X2))   
        
                   mark(from(X)) =  [2] X + [0]                   
                                 >= [2] X + [0]                   
                                 =  a__from(X)                    
        
                     mark(nil()) =  [2]                           
                                 >= [1]                           
                                 =  nil()                         
        
                      mark(s(X)) =  [0]                           
                                 >= [0]                           
                                 =  s(X)                          
        
                    mark(true()) =  [10]                          
                                 >= [5]                           
                                 =  true()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__first(X1,X2) -> first(X1,X2)
        a__from(X) -> from(X)
        mark(add(X1,X2)) -> a__add(mark(X1),X2)
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__and(X1,X2) -> and(X1,X2)
        a__and(false(),Y) -> false()
        a__and(true(),X) -> mark(X)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
        a__from(X) -> cons(X,from(s(X)))
        a__if(X1,X2,X3) -> if(X1,X2,X3)
        a__if(false(),X,Y) -> mark(Y)
        a__if(true(),X,Y) -> mark(X)
        mark(0()) -> 0()
        mark(and(X1,X2)) -> a__and(mark(X1),X2)
        mark(cons(X1,X2)) -> cons(X1,X2)
        mark(false()) -> false()
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(from(X)) -> a__from(X)
        mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
        mark(nil()) -> nil()
        mark(s(X)) -> s(X)
        mark(true()) -> true()
      Signature:
        {a__add/2,a__and/2,a__first/2,a__from/1,a__if/3,mark/1} / {0/0,add/2,and/2,cons/2,false/0,first/2,from/1,if/3,nil/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {a__add,a__and,a__first,a__from,a__if,mark}/{0,add,and,cons,false,first,from,if,nil,s,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__add) = {1},
          uargs(a__and) = {1},
          uargs(a__first) = {1,2},
          uargs(a__if) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [1]                           
            p(a__add) = [1] x1 + [4] x2 + [2]         
            p(a__and) = [1] x1 + [4] x2 + [1]         
          p(a__first) = [1] x1 + [1] x2 + [4]         
           p(a__from) = [1] x1 + [2]                  
             p(a__if) = [1] x1 + [4] x2 + [4] x3 + [0]
               p(add) = [1] x1 + [1] x2 + [0]         
               p(and) = [1] x1 + [1] x2 + [1]         
              p(cons) = [1] x1 + [2]                  
             p(false) = [3]                           
             p(first) = [1] x1 + [1] x2 + [1]         
              p(from) = [1] x1 + [1]                  
                p(if) = [1] x1 + [1] x2 + [1] x3 + [0]
              p(mark) = [4] x1 + [0]                  
               p(nil) = [2]                           
                 p(s) = [1]                           
              p(true) = [0]                           
        
        Following rules are strictly oriented:
        a__first(X1,X2) = [1] X1 + [1] X2 + [4]
                        > [1] X1 + [1] X2 + [1]
                        = first(X1,X2)         
        
             a__from(X) = [1] X + [2]          
                        > [1] X + [1]          
                        = from(X)              
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(X1,X2) =  [1] X1 + [4] X2 + [2]         
                                 >= [1] X1 + [1] X2 + [0]         
                                 =  add(X1,X2)                    
        
                   a__add(0(),X) =  [4] X + [3]                   
                                 >= [4] X + [0]                   
                                 =  mark(X)                       
        
                  a__add(s(X),Y) =  [4] Y + [3]                   
                                 >= [1]                           
                                 =  s(add(X,Y))                   
        
                   a__and(X1,X2) =  [1] X1 + [4] X2 + [1]         
                                 >= [1] X1 + [1] X2 + [1]         
                                 =  and(X1,X2)                    
        
               a__and(false(),Y) =  [4] Y + [4]                   
                                 >= [3]                           
                                 =  false()                       
        
                a__and(true(),X) =  [4] X + [1]                   
                                 >= [4] X + [0]                   
                                 =  mark(X)                       
        
                 a__first(0(),X) =  [1] X + [5]                   
                                 >= [2]                           
                                 =  nil()                         
        
        a__first(s(X),cons(Y,Z)) =  [1] Y + [7]                   
                                 >= [1] Y + [2]                   
                                 =  cons(Y,first(X,Z))            
        
                      a__from(X) =  [1] X + [2]                   
                                 >= [1] X + [2]                   
                                 =  cons(X,from(s(X)))            
        
                 a__if(X1,X2,X3) =  [1] X1 + [4] X2 + [4] X3 + [0]
                                 >= [1] X1 + [1] X2 + [1] X3 + [0]
                                 =  if(X1,X2,X3)                  
        
              a__if(false(),X,Y) =  [4] X + [4] Y + [3]           
                                 >= [4] Y + [0]                   
                                 =  mark(Y)                       
        
               a__if(true(),X,Y) =  [4] X + [4] Y + [0]           
                                 >= [4] X + [0]                   
                                 =  mark(X)                       
        
                       mark(0()) =  [4]                           
                                 >= [1]                           
                                 =  0()                           
        
                mark(add(X1,X2)) =  [4] X1 + [4] X2 + [0]         
                                 >= [4] X1 + [4] X2 + [2]         
                                 =  a__add(mark(X1),X2)           
        
                mark(and(X1,X2)) =  [4] X1 + [4] X2 + [4]         
                                 >= [4] X1 + [4] X2 + [1]         
                                 =  a__and(mark(X1),X2)           
        
               mark(cons(X1,X2)) =  [4] X1 + [8]                  
                                 >= [1] X1 + [2]                  
                                 =  cons(X1,X2)                   
        
                   mark(false()) =  [12]                          
                                 >= [3]                           
                                 =  false()                       
        
              mark(first(X1,X2)) =  [4] X1 + [4] X2 + [4]         
                                 >= [4] X1 + [4] X2 + [4]         
                                 =  a__first(mark(X1),mark(X2))   
        
                   mark(from(X)) =  [4] X + [4]                   
                                 >= [1] X + [2]                   
                                 =  a__from(X)                    
        
              mark(if(X1,X2,X3)) =  [4] X1 + [4] X2 + [4] X3 + [0]
                                 >= [4] X1 + [4] X2 + [4] X3 + [0]
                                 =  a__if(mark(X1),X2,X3)         
        
                     mark(nil()) =  [8]                           
                                 >= [2]                           
                                 =  nil()                         
        
                      mark(s(X)) =  [4]                           
                                 >= [1]                           
                                 =  s(X)                          
        
                    mark(true()) =  [0]                           
                                 >= [0]                           
                                 =  true()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        mark(add(X1,X2)) -> a__add(mark(X1),X2)
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__and(X1,X2) -> and(X1,X2)
        a__and(false(),Y) -> false()
        a__and(true(),X) -> mark(X)
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
        a__from(X) -> cons(X,from(s(X)))
        a__from(X) -> from(X)
        a__if(X1,X2,X3) -> if(X1,X2,X3)
        a__if(false(),X,Y) -> mark(Y)
        a__if(true(),X,Y) -> mark(X)
        mark(0()) -> 0()
        mark(and(X1,X2)) -> a__and(mark(X1),X2)
        mark(cons(X1,X2)) -> cons(X1,X2)
        mark(false()) -> false()
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(from(X)) -> a__from(X)
        mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
        mark(nil()) -> nil()
        mark(s(X)) -> s(X)
        mark(true()) -> true()
      Signature:
        {a__add/2,a__and/2,a__first/2,a__from/1,a__if/3,mark/1} / {0/0,add/2,and/2,cons/2,false/0,first/2,from/1,if/3,nil/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {a__add,a__and,a__first,a__from,a__if,mark}/{0,add,and,cons,false,first,from,if,nil,s,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(a__add) = {1},
          uargs(a__and) = {1},
          uargs(a__first) = {1,2},
          uargs(a__if) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                 p(0) = [0]                           
            p(a__add) = [1] x1 + [5] x2 + [4]         
            p(a__and) = [1] x1 + [5] x2 + [4]         
          p(a__first) = [1] x1 + [1] x2 + [0]         
           p(a__from) = [4]                           
             p(a__if) = [1] x1 + [5] x2 + [5] x3 + [0]
               p(add) = [1] x1 + [1] x2 + [1]         
               p(and) = [1] x1 + [1] x2 + [1]         
              p(cons) = [0]                           
             p(false) = [2]                           
             p(first) = [1] x1 + [1] x2 + [0]         
              p(from) = [2]                           
                p(if) = [1] x1 + [1] x2 + [1] x3 + [0]
              p(mark) = [5] x1 + [0]                  
               p(nil) = [0]                           
                 p(s) = [0]                           
              p(true) = [0]                           
        
        Following rules are strictly oriented:
        mark(add(X1,X2)) = [5] X1 + [5] X2 + [5]
                         > [5] X1 + [5] X2 + [4]
                         = a__add(mark(X1),X2)  
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(X1,X2) =  [1] X1 + [5] X2 + [4]         
                                 >= [1] X1 + [1] X2 + [1]         
                                 =  add(X1,X2)                    
        
                   a__add(0(),X) =  [5] X + [4]                   
                                 >= [5] X + [0]                   
                                 =  mark(X)                       
        
                  a__add(s(X),Y) =  [5] Y + [4]                   
                                 >= [0]                           
                                 =  s(add(X,Y))                   
        
                   a__and(X1,X2) =  [1] X1 + [5] X2 + [4]         
                                 >= [1] X1 + [1] X2 + [1]         
                                 =  and(X1,X2)                    
        
               a__and(false(),Y) =  [5] Y + [6]                   
                                 >= [2]                           
                                 =  false()                       
        
                a__and(true(),X) =  [5] X + [4]                   
                                 >= [5] X + [0]                   
                                 =  mark(X)                       
        
                 a__first(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                 >= [1] X1 + [1] X2 + [0]         
                                 =  first(X1,X2)                  
        
                 a__first(0(),X) =  [1] X + [0]                   
                                 >= [0]                           
                                 =  nil()                         
        
        a__first(s(X),cons(Y,Z)) =  [0]                           
                                 >= [0]                           
                                 =  cons(Y,first(X,Z))            
        
                      a__from(X) =  [4]                           
                                 >= [0]                           
                                 =  cons(X,from(s(X)))            
        
                      a__from(X) =  [4]                           
                                 >= [2]                           
                                 =  from(X)                       
        
                 a__if(X1,X2,X3) =  [1] X1 + [5] X2 + [5] X3 + [0]
                                 >= [1] X1 + [1] X2 + [1] X3 + [0]
                                 =  if(X1,X2,X3)                  
        
              a__if(false(),X,Y) =  [5] X + [5] Y + [2]           
                                 >= [5] Y + [0]                   
                                 =  mark(Y)                       
        
               a__if(true(),X,Y) =  [5] X + [5] Y + [0]           
                                 >= [5] X + [0]                   
                                 =  mark(X)                       
        
                       mark(0()) =  [0]                           
                                 >= [0]                           
                                 =  0()                           
        
                mark(and(X1,X2)) =  [5] X1 + [5] X2 + [5]         
                                 >= [5] X1 + [5] X2 + [4]         
                                 =  a__and(mark(X1),X2)           
        
               mark(cons(X1,X2)) =  [0]                           
                                 >= [0]                           
                                 =  cons(X1,X2)                   
        
                   mark(false()) =  [10]                          
                                 >= [2]                           
                                 =  false()                       
        
              mark(first(X1,X2)) =  [5] X1 + [5] X2 + [0]         
                                 >= [5] X1 + [5] X2 + [0]         
                                 =  a__first(mark(X1),mark(X2))   
        
                   mark(from(X)) =  [10]                          
                                 >= [4]                           
                                 =  a__from(X)                    
        
              mark(if(X1,X2,X3)) =  [5] X1 + [5] X2 + [5] X3 + [0]
                                 >= [5] X1 + [5] X2 + [5] X3 + [0]
                                 =  a__if(mark(X1),X2,X3)         
        
                     mark(nil()) =  [0]                           
                                 >= [0]                           
                                 =  nil()                         
        
                      mark(s(X)) =  [0]                           
                                 >= [0]                           
                                 =  s(X)                          
        
                    mark(true()) =  [0]                           
                                 >= [0]                           
                                 =  true()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        a__add(X1,X2) -> add(X1,X2)
        a__add(0(),X) -> mark(X)
        a__add(s(X),Y) -> s(add(X,Y))
        a__and(X1,X2) -> and(X1,X2)
        a__and(false(),Y) -> false()
        a__and(true(),X) -> mark(X)
        a__first(X1,X2) -> first(X1,X2)
        a__first(0(),X) -> nil()
        a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
        a__from(X) -> cons(X,from(s(X)))
        a__from(X) -> from(X)
        a__if(X1,X2,X3) -> if(X1,X2,X3)
        a__if(false(),X,Y) -> mark(Y)
        a__if(true(),X,Y) -> mark(X)
        mark(0()) -> 0()
        mark(add(X1,X2)) -> a__add(mark(X1),X2)
        mark(and(X1,X2)) -> a__and(mark(X1),X2)
        mark(cons(X1,X2)) -> cons(X1,X2)
        mark(false()) -> false()
        mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
        mark(from(X)) -> a__from(X)
        mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
        mark(nil()) -> nil()
        mark(s(X)) -> s(X)
        mark(true()) -> true()
      Signature:
        {a__add/2,a__and/2,a__first/2,a__from/1,a__if/3,mark/1} / {0/0,add/2,and/2,cons/2,false/0,first/2,from/1,if/3,nil/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {a__add,a__and,a__first,a__from,a__if,mark}/{0,add,and,cons,false,first,from,if,nil,s,true}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).