We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { a__and(X1, X2) -> and(X1, X2)
  , a__and(true(), X) -> mark(X)
  , a__and(false(), Y) -> false()
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(0()) -> 0()
  , mark(s(X)) -> s(X)
  , mark(add(X1, X2)) -> a__add(mark(X1), X2)
  , mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
  , mark(from(X)) -> a__from(X)
  , mark(and(X1, X2)) -> a__and(mark(X1), X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , a__add(X1, X2) -> add(X1, X2)
  , a__add(0(), X) -> mark(X)
  , a__add(s(X), Y) -> s(add(X, Y))
  , a__first(X1, X2) -> first(X1, X2)
  , a__first(0(), X) -> nil()
  , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
  , a__from(X) -> cons(X, from(s(X)))
  , a__from(X) -> from(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We add the following dependency tuples:

Strict DPs:
  { a__and^#(X1, X2) -> c_1()
  , a__and^#(true(), X) -> c_2(mark^#(X))
  , a__and^#(false(), Y) -> c_3()
  , mark^#(true()) -> c_4()
  , mark^#(false()) -> c_5()
  , mark^#(0()) -> c_6()
  , mark^#(s(X)) -> c_7()
  , mark^#(add(X1, X2)) -> c_8(a__add^#(mark(X1), X2), mark^#(X1))
  , mark^#(nil()) -> c_9()
  , mark^#(cons(X1, X2)) -> c_10()
  , mark^#(first(X1, X2)) ->
    c_11(a__first^#(mark(X1), mark(X2)), mark^#(X1), mark^#(X2))
  , mark^#(from(X)) -> c_12(a__from^#(X))
  , mark^#(and(X1, X2)) -> c_13(a__and^#(mark(X1), X2), mark^#(X1))
  , mark^#(if(X1, X2, X3)) ->
    c_14(a__if^#(mark(X1), X2, X3), mark^#(X1))
  , a__add^#(X1, X2) -> c_18()
  , a__add^#(0(), X) -> c_19(mark^#(X))
  , a__add^#(s(X), Y) -> c_20()
  , a__first^#(X1, X2) -> c_21()
  , a__first^#(0(), X) -> c_22()
  , a__first^#(s(X), cons(Y, Z)) -> c_23()
  , a__from^#(X) -> c_24()
  , a__from^#(X) -> c_25()
  , a__if^#(X1, X2, X3) -> c_15()
  , a__if^#(true(), X, Y) -> c_16(mark^#(X))
  , a__if^#(false(), X, Y) -> c_17(mark^#(Y)) }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { a__and^#(X1, X2) -> c_1()
  , a__and^#(true(), X) -> c_2(mark^#(X))
  , a__and^#(false(), Y) -> c_3()
  , mark^#(true()) -> c_4()
  , mark^#(false()) -> c_5()
  , mark^#(0()) -> c_6()
  , mark^#(s(X)) -> c_7()
  , mark^#(add(X1, X2)) -> c_8(a__add^#(mark(X1), X2), mark^#(X1))
  , mark^#(nil()) -> c_9()
  , mark^#(cons(X1, X2)) -> c_10()
  , mark^#(first(X1, X2)) ->
    c_11(a__first^#(mark(X1), mark(X2)), mark^#(X1), mark^#(X2))
  , mark^#(from(X)) -> c_12(a__from^#(X))
  , mark^#(and(X1, X2)) -> c_13(a__and^#(mark(X1), X2), mark^#(X1))
  , mark^#(if(X1, X2, X3)) ->
    c_14(a__if^#(mark(X1), X2, X3), mark^#(X1))
  , a__add^#(X1, X2) -> c_18()
  , a__add^#(0(), X) -> c_19(mark^#(X))
  , a__add^#(s(X), Y) -> c_20()
  , a__first^#(X1, X2) -> c_21()
  , a__first^#(0(), X) -> c_22()
  , a__first^#(s(X), cons(Y, Z)) -> c_23()
  , a__from^#(X) -> c_24()
  , a__from^#(X) -> c_25()
  , a__if^#(X1, X2, X3) -> c_15()
  , a__if^#(true(), X, Y) -> c_16(mark^#(X))
  , a__if^#(false(), X, Y) -> c_17(mark^#(Y)) }
Weak Trs:
  { a__and(X1, X2) -> and(X1, X2)
  , a__and(true(), X) -> mark(X)
  , a__and(false(), Y) -> false()
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(0()) -> 0()
  , mark(s(X)) -> s(X)
  , mark(add(X1, X2)) -> a__add(mark(X1), X2)
  , mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
  , mark(from(X)) -> a__from(X)
  , mark(and(X1, X2)) -> a__and(mark(X1), X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , a__add(X1, X2) -> add(X1, X2)
  , a__add(0(), X) -> mark(X)
  , a__add(s(X), Y) -> s(add(X, Y))
  , a__first(X1, X2) -> first(X1, X2)
  , a__first(0(), X) -> nil()
  , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
  , a__from(X) -> cons(X, from(s(X)))
  , a__from(X) -> from(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We estimate the number of application of
{1,3,4,5,6,7,9,10,15,17,18,19,20,21,22,23} by applications of
Pre({1,3,4,5,6,7,9,10,15,17,18,19,20,21,22,23}) =
{2,8,11,12,13,14,16,24,25}. Here rules are labeled as follows:

  DPs:
    { 1: a__and^#(X1, X2) -> c_1()
    , 2: a__and^#(true(), X) -> c_2(mark^#(X))
    , 3: a__and^#(false(), Y) -> c_3()
    , 4: mark^#(true()) -> c_4()
    , 5: mark^#(false()) -> c_5()
    , 6: mark^#(0()) -> c_6()
    , 7: mark^#(s(X)) -> c_7()
    , 8: mark^#(add(X1, X2)) -> c_8(a__add^#(mark(X1), X2), mark^#(X1))
    , 9: mark^#(nil()) -> c_9()
    , 10: mark^#(cons(X1, X2)) -> c_10()
    , 11: mark^#(first(X1, X2)) ->
          c_11(a__first^#(mark(X1), mark(X2)), mark^#(X1), mark^#(X2))
    , 12: mark^#(from(X)) -> c_12(a__from^#(X))
    , 13: mark^#(and(X1, X2)) ->
          c_13(a__and^#(mark(X1), X2), mark^#(X1))
    , 14: mark^#(if(X1, X2, X3)) ->
          c_14(a__if^#(mark(X1), X2, X3), mark^#(X1))
    , 15: a__add^#(X1, X2) -> c_18()
    , 16: a__add^#(0(), X) -> c_19(mark^#(X))
    , 17: a__add^#(s(X), Y) -> c_20()
    , 18: a__first^#(X1, X2) -> c_21()
    , 19: a__first^#(0(), X) -> c_22()
    , 20: a__first^#(s(X), cons(Y, Z)) -> c_23()
    , 21: a__from^#(X) -> c_24()
    , 22: a__from^#(X) -> c_25()
    , 23: a__if^#(X1, X2, X3) -> c_15()
    , 24: a__if^#(true(), X, Y) -> c_16(mark^#(X))
    , 25: a__if^#(false(), X, Y) -> c_17(mark^#(Y)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { a__and^#(true(), X) -> c_2(mark^#(X))
  , mark^#(add(X1, X2)) -> c_8(a__add^#(mark(X1), X2), mark^#(X1))
  , mark^#(first(X1, X2)) ->
    c_11(a__first^#(mark(X1), mark(X2)), mark^#(X1), mark^#(X2))
  , mark^#(from(X)) -> c_12(a__from^#(X))
  , mark^#(and(X1, X2)) -> c_13(a__and^#(mark(X1), X2), mark^#(X1))
  , mark^#(if(X1, X2, X3)) ->
    c_14(a__if^#(mark(X1), X2, X3), mark^#(X1))
  , a__add^#(0(), X) -> c_19(mark^#(X))
  , a__if^#(true(), X, Y) -> c_16(mark^#(X))
  , a__if^#(false(), X, Y) -> c_17(mark^#(Y)) }
Weak DPs:
  { a__and^#(X1, X2) -> c_1()
  , a__and^#(false(), Y) -> c_3()
  , mark^#(true()) -> c_4()
  , mark^#(false()) -> c_5()
  , mark^#(0()) -> c_6()
  , mark^#(s(X)) -> c_7()
  , mark^#(nil()) -> c_9()
  , mark^#(cons(X1, X2)) -> c_10()
  , a__add^#(X1, X2) -> c_18()
  , a__add^#(s(X), Y) -> c_20()
  , a__first^#(X1, X2) -> c_21()
  , a__first^#(0(), X) -> c_22()
  , a__first^#(s(X), cons(Y, Z)) -> c_23()
  , a__from^#(X) -> c_24()
  , a__from^#(X) -> c_25()
  , a__if^#(X1, X2, X3) -> c_15() }
Weak Trs:
  { a__and(X1, X2) -> and(X1, X2)
  , a__and(true(), X) -> mark(X)
  , a__and(false(), Y) -> false()
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(0()) -> 0()
  , mark(s(X)) -> s(X)
  , mark(add(X1, X2)) -> a__add(mark(X1), X2)
  , mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
  , mark(from(X)) -> a__from(X)
  , mark(and(X1, X2)) -> a__and(mark(X1), X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , a__add(X1, X2) -> add(X1, X2)
  , a__add(0(), X) -> mark(X)
  , a__add(s(X), Y) -> s(add(X, Y))
  , a__first(X1, X2) -> first(X1, X2)
  , a__first(0(), X) -> nil()
  , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
  , a__from(X) -> cons(X, from(s(X)))
  , a__from(X) -> from(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We estimate the number of application of {4} by applications of
Pre({4}) = {1,2,3,5,6,7,8,9}. Here rules are labeled as follows:

  DPs:
    { 1: a__and^#(true(), X) -> c_2(mark^#(X))
    , 2: mark^#(add(X1, X2)) -> c_8(a__add^#(mark(X1), X2), mark^#(X1))
    , 3: mark^#(first(X1, X2)) ->
         c_11(a__first^#(mark(X1), mark(X2)), mark^#(X1), mark^#(X2))
    , 4: mark^#(from(X)) -> c_12(a__from^#(X))
    , 5: mark^#(and(X1, X2)) ->
         c_13(a__and^#(mark(X1), X2), mark^#(X1))
    , 6: mark^#(if(X1, X2, X3)) ->
         c_14(a__if^#(mark(X1), X2, X3), mark^#(X1))
    , 7: a__add^#(0(), X) -> c_19(mark^#(X))
    , 8: a__if^#(true(), X, Y) -> c_16(mark^#(X))
    , 9: a__if^#(false(), X, Y) -> c_17(mark^#(Y))
    , 10: a__and^#(X1, X2) -> c_1()
    , 11: a__and^#(false(), Y) -> c_3()
    , 12: mark^#(true()) -> c_4()
    , 13: mark^#(false()) -> c_5()
    , 14: mark^#(0()) -> c_6()
    , 15: mark^#(s(X)) -> c_7()
    , 16: mark^#(nil()) -> c_9()
    , 17: mark^#(cons(X1, X2)) -> c_10()
    , 18: a__add^#(X1, X2) -> c_18()
    , 19: a__add^#(s(X), Y) -> c_20()
    , 20: a__first^#(X1, X2) -> c_21()
    , 21: a__first^#(0(), X) -> c_22()
    , 22: a__first^#(s(X), cons(Y, Z)) -> c_23()
    , 23: a__from^#(X) -> c_24()
    , 24: a__from^#(X) -> c_25()
    , 25: a__if^#(X1, X2, X3) -> c_15() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { a__and^#(true(), X) -> c_2(mark^#(X))
  , mark^#(add(X1, X2)) -> c_8(a__add^#(mark(X1), X2), mark^#(X1))
  , mark^#(first(X1, X2)) ->
    c_11(a__first^#(mark(X1), mark(X2)), mark^#(X1), mark^#(X2))
  , mark^#(and(X1, X2)) -> c_13(a__and^#(mark(X1), X2), mark^#(X1))
  , mark^#(if(X1, X2, X3)) ->
    c_14(a__if^#(mark(X1), X2, X3), mark^#(X1))
  , a__add^#(0(), X) -> c_19(mark^#(X))
  , a__if^#(true(), X, Y) -> c_16(mark^#(X))
  , a__if^#(false(), X, Y) -> c_17(mark^#(Y)) }
Weak DPs:
  { a__and^#(X1, X2) -> c_1()
  , a__and^#(false(), Y) -> c_3()
  , mark^#(true()) -> c_4()
  , mark^#(false()) -> c_5()
  , mark^#(0()) -> c_6()
  , mark^#(s(X)) -> c_7()
  , mark^#(nil()) -> c_9()
  , mark^#(cons(X1, X2)) -> c_10()
  , mark^#(from(X)) -> c_12(a__from^#(X))
  , a__add^#(X1, X2) -> c_18()
  , a__add^#(s(X), Y) -> c_20()
  , a__first^#(X1, X2) -> c_21()
  , a__first^#(0(), X) -> c_22()
  , a__first^#(s(X), cons(Y, Z)) -> c_23()
  , a__from^#(X) -> c_24()
  , a__from^#(X) -> c_25()
  , a__if^#(X1, X2, X3) -> c_15() }
Weak Trs:
  { a__and(X1, X2) -> and(X1, X2)
  , a__and(true(), X) -> mark(X)
  , a__and(false(), Y) -> false()
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(0()) -> 0()
  , mark(s(X)) -> s(X)
  , mark(add(X1, X2)) -> a__add(mark(X1), X2)
  , mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
  , mark(from(X)) -> a__from(X)
  , mark(and(X1, X2)) -> a__and(mark(X1), X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , a__add(X1, X2) -> add(X1, X2)
  , a__add(0(), X) -> mark(X)
  , a__add(s(X), Y) -> s(add(X, Y))
  , a__first(X1, X2) -> first(X1, X2)
  , a__first(0(), X) -> nil()
  , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
  , a__from(X) -> cons(X, from(s(X)))
  , a__from(X) -> from(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ a__and^#(X1, X2) -> c_1()
, a__and^#(false(), Y) -> c_3()
, mark^#(true()) -> c_4()
, mark^#(false()) -> c_5()
, mark^#(0()) -> c_6()
, mark^#(s(X)) -> c_7()
, mark^#(nil()) -> c_9()
, mark^#(cons(X1, X2)) -> c_10()
, mark^#(from(X)) -> c_12(a__from^#(X))
, a__add^#(X1, X2) -> c_18()
, a__add^#(s(X), Y) -> c_20()
, a__first^#(X1, X2) -> c_21()
, a__first^#(0(), X) -> c_22()
, a__first^#(s(X), cons(Y, Z)) -> c_23()
, a__from^#(X) -> c_24()
, a__from^#(X) -> c_25()
, a__if^#(X1, X2, X3) -> c_15() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { a__and^#(true(), X) -> c_2(mark^#(X))
  , mark^#(add(X1, X2)) -> c_8(a__add^#(mark(X1), X2), mark^#(X1))
  , mark^#(first(X1, X2)) ->
    c_11(a__first^#(mark(X1), mark(X2)), mark^#(X1), mark^#(X2))
  , mark^#(and(X1, X2)) -> c_13(a__and^#(mark(X1), X2), mark^#(X1))
  , mark^#(if(X1, X2, X3)) ->
    c_14(a__if^#(mark(X1), X2, X3), mark^#(X1))
  , a__add^#(0(), X) -> c_19(mark^#(X))
  , a__if^#(true(), X, Y) -> c_16(mark^#(X))
  , a__if^#(false(), X, Y) -> c_17(mark^#(Y)) }
Weak Trs:
  { a__and(X1, X2) -> and(X1, X2)
  , a__and(true(), X) -> mark(X)
  , a__and(false(), Y) -> false()
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(0()) -> 0()
  , mark(s(X)) -> s(X)
  , mark(add(X1, X2)) -> a__add(mark(X1), X2)
  , mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
  , mark(from(X)) -> a__from(X)
  , mark(and(X1, X2)) -> a__and(mark(X1), X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , a__add(X1, X2) -> add(X1, X2)
  , a__add(0(), X) -> mark(X)
  , a__add(s(X), Y) -> s(add(X, Y))
  , a__first(X1, X2) -> first(X1, X2)
  , a__first(0(), X) -> nil()
  , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
  , a__from(X) -> cons(X, from(s(X)))
  , a__from(X) -> from(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

Due to missing edges in the dependency-graph, the right-hand sides
of following rules could be simplified:

  { mark^#(first(X1, X2)) ->
    c_11(a__first^#(mark(X1), mark(X2)), mark^#(X1), mark^#(X2)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { a__and^#(true(), X) -> c_1(mark^#(X))
  , mark^#(add(X1, X2)) -> c_2(a__add^#(mark(X1), X2), mark^#(X1))
  , mark^#(first(X1, X2)) -> c_3(mark^#(X1), mark^#(X2))
  , mark^#(and(X1, X2)) -> c_4(a__and^#(mark(X1), X2), mark^#(X1))
  , mark^#(if(X1, X2, X3)) ->
    c_5(a__if^#(mark(X1), X2, X3), mark^#(X1))
  , a__add^#(0(), X) -> c_6(mark^#(X))
  , a__if^#(true(), X, Y) -> c_7(mark^#(X))
  , a__if^#(false(), X, Y) -> c_8(mark^#(Y)) }
Weak Trs:
  { a__and(X1, X2) -> and(X1, X2)
  , a__and(true(), X) -> mark(X)
  , a__and(false(), Y) -> false()
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(0()) -> 0()
  , mark(s(X)) -> s(X)
  , mark(add(X1, X2)) -> a__add(mark(X1), X2)
  , mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
  , mark(from(X)) -> a__from(X)
  , mark(and(X1, X2)) -> a__and(mark(X1), X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , a__add(X1, X2) -> add(X1, X2)
  , a__add(0(), X) -> mark(X)
  , a__add(s(X), Y) -> s(add(X, Y))
  , a__first(X1, X2) -> first(X1, X2)
  , a__first(0(), X) -> nil()
  , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
  , a__from(X) -> cons(X, from(s(X)))
  , a__from(X) -> from(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 2: mark^#(add(X1, X2)) ->
       c_2(a__add^#(mark(X1), X2), mark^#(X1)) }
Trs:
  { mark(false()) -> false()
  , mark(0()) -> 0()
  , mark(s(X)) -> s(X)
  , mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1, 2},
    Uargs(c_4) = {1, 2}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1},
    Uargs(c_7) = {1}, Uargs(c_8) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
         [a__and](x1, x2) = [1] x2 + [0]                  
                                                          
                   [true] = [3]                           
                                                          
               [mark](x1) = [2]                           
                                                          
                  [false] = [0]                           
                                                          
      [a__if](x1, x2, x3) = [6] x2 + [6] x3 + [0]         
                                                          
         [a__add](x1, x2) = [6] x2 + [0]                  
                                                          
                      [0] = [0]                           
                                                          
                  [s](x1) = [0]                           
                                                          
            [add](x1, x2) = [1] x1 + [1] x2 + [1]         
                                                          
       [a__first](x1, x2) = [0]                           
                                                          
                    [nil] = [0]                           
                                                          
           [cons](x1, x2) = [0]                           
                                                          
          [first](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                          
            [a__from](x1) = [5] x1 + [0]                  
                                                          
               [from](x1) = [0]                           
                                                          
            [and](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                          
         [if](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                                                          
       [a__and^#](x1, x2) = [2] x2 + [0]                  
                                                          
             [mark^#](x1) = [2] x1 + [0]                  
                                                          
       [a__add^#](x1, x2) = [2] x2 + [0]                  
                                                          
    [a__if^#](x1, x2, x3) = [2] x2 + [2] x3 + [0]         
                                                          
                [c_1](x1) = [1] x1 + [0]                  
                                                          
            [c_2](x1, x2) = [1] x1 + [1] x2 + [1]         
                                                          
            [c_3](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                          
            [c_4](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                          
            [c_5](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                          
                [c_6](x1) = [1] x1 + [0]                  
                                                          
                [c_7](x1) = [1] x1 + [0]                  
                                                          
                [c_8](x1) = [1] x1 + [0]                  
  
  The order satisfies the following ordering constraints:
  
                [a__and(X1, X2)] =  [1] X2 + [0]                                
                                 ?  [1] X1 + [1] X2 + [0]                       
                                 =  [and(X1, X2)]                               
                                                                                
             [a__and(true(), X)] =  [1] X + [0]                                 
                                 ?  [2]                                         
                                 =  [mark(X)]                                   
                                                                                
            [a__and(false(), Y)] =  [1] Y + [0]                                 
                                 >= [0]                                         
                                 =  [false()]                                   
                                                                                
                  [mark(true())] =  [2]                                         
                                 ?  [3]                                         
                                 =  [true()]                                    
                                                                                
                 [mark(false())] =  [2]                                         
                                 >  [0]                                         
                                 =  [false()]                                   
                                                                                
                     [mark(0())] =  [2]                                         
                                 >  [0]                                         
                                 =  [0()]                                       
                                                                                
                    [mark(s(X))] =  [2]                                         
                                 >  [0]                                         
                                 =  [s(X)]                                      
                                                                                
             [mark(add(X1, X2))] =  [2]                                         
                                 ?  [6] X2 + [0]                                
                                 =  [a__add(mark(X1), X2)]                      
                                                                                
                   [mark(nil())] =  [2]                                         
                                 >  [0]                                         
                                 =  [nil()]                                     
                                                                                
            [mark(cons(X1, X2))] =  [2]                                         
                                 >  [0]                                         
                                 =  [cons(X1, X2)]                              
                                                                                
           [mark(first(X1, X2))] =  [2]                                         
                                 >  [0]                                         
                                 =  [a__first(mark(X1), mark(X2))]              
                                                                                
                 [mark(from(X))] =  [2]                                         
                                 ?  [5] X + [0]                                 
                                 =  [a__from(X)]                                
                                                                                
             [mark(and(X1, X2))] =  [2]                                         
                                 ?  [1] X2 + [0]                                
                                 =  [a__and(mark(X1), X2)]                      
                                                                                
          [mark(if(X1, X2, X3))] =  [2]                                         
                                 ?  [6] X2 + [6] X3 + [0]                       
                                 =  [a__if(mark(X1), X2, X3)]                   
                                                                                
             [a__if(X1, X2, X3)] =  [6] X2 + [6] X3 + [0]                       
                                 ?  [1] X1 + [1] X2 + [1] X3 + [0]              
                                 =  [if(X1, X2, X3)]                            
                                                                                
           [a__if(true(), X, Y)] =  [6] X + [6] Y + [0]                         
                                 ?  [2]                                         
                                 =  [mark(X)]                                   
                                                                                
          [a__if(false(), X, Y)] =  [6] X + [6] Y + [0]                         
                                 ?  [2]                                         
                                 =  [mark(Y)]                                   
                                                                                
                [a__add(X1, X2)] =  [6] X2 + [0]                                
                                 ?  [1] X1 + [1] X2 + [1]                       
                                 =  [add(X1, X2)]                               
                                                                                
                [a__add(0(), X)] =  [6] X + [0]                                 
                                 ?  [2]                                         
                                 =  [mark(X)]                                   
                                                                                
               [a__add(s(X), Y)] =  [6] Y + [0]                                 
                                 >= [0]                                         
                                 =  [s(add(X, Y))]                              
                                                                                
              [a__first(X1, X2)] =  [0]                                         
                                 ?  [1] X1 + [1] X2 + [0]                       
                                 =  [first(X1, X2)]                             
                                                                                
              [a__first(0(), X)] =  [0]                                         
                                 >= [0]                                         
                                 =  [nil()]                                     
                                                                                
    [a__first(s(X), cons(Y, Z))] =  [0]                                         
                                 >= [0]                                         
                                 =  [cons(Y, first(X, Z))]                      
                                                                                
                    [a__from(X)] =  [5] X + [0]                                 
                                 >= [0]                                         
                                 =  [cons(X, from(s(X)))]                       
                                                                                
                    [a__from(X)] =  [5] X + [0]                                 
                                 >= [0]                                         
                                 =  [from(X)]                                   
                                                                                
           [a__and^#(true(), X)] =  [2] X + [0]                                 
                                 >= [2] X + [0]                                 
                                 =  [c_1(mark^#(X))]                            
                                                                                
           [mark^#(add(X1, X2))] =  [2] X1 + [2] X2 + [2]                       
                                 >  [2] X1 + [2] X2 + [1]                       
                                 =  [c_2(a__add^#(mark(X1), X2), mark^#(X1))]   
                                                                                
         [mark^#(first(X1, X2))] =  [2] X1 + [2] X2 + [0]                       
                                 >= [2] X1 + [2] X2 + [0]                       
                                 =  [c_3(mark^#(X1), mark^#(X2))]               
                                                                                
           [mark^#(and(X1, X2))] =  [2] X1 + [2] X2 + [0]                       
                                 >= [2] X1 + [2] X2 + [0]                       
                                 =  [c_4(a__and^#(mark(X1), X2), mark^#(X1))]   
                                                                                
        [mark^#(if(X1, X2, X3))] =  [2] X1 + [2] X2 + [2] X3 + [0]              
                                 >= [2] X1 + [2] X2 + [2] X3 + [0]              
                                 =  [c_5(a__if^#(mark(X1), X2, X3), mark^#(X1))]
                                                                                
              [a__add^#(0(), X)] =  [2] X + [0]                                 
                                 >= [2] X + [0]                                 
                                 =  [c_6(mark^#(X))]                            
                                                                                
         [a__if^#(true(), X, Y)] =  [2] X + [2] Y + [0]                         
                                 >= [2] X + [0]                                 
                                 =  [c_7(mark^#(X))]                            
                                                                                
        [a__if^#(false(), X, Y)] =  [2] X + [2] Y + [0]                         
                                 >= [2] Y + [0]                                 
                                 =  [c_8(mark^#(Y))]                            
                                                                                

We return to the main proof. Consider the set of all dependency
pairs

:
  { 1: a__and^#(true(), X) -> c_1(mark^#(X))
  , 2: mark^#(add(X1, X2)) -> c_2(a__add^#(mark(X1), X2), mark^#(X1))
  , 3: mark^#(first(X1, X2)) -> c_3(mark^#(X1), mark^#(X2))
  , 4: mark^#(and(X1, X2)) -> c_4(a__and^#(mark(X1), X2), mark^#(X1))
  , 5: mark^#(if(X1, X2, X3)) ->
       c_5(a__if^#(mark(X1), X2, X3), mark^#(X1))
  , 6: a__add^#(0(), X) -> c_6(mark^#(X))
  , 7: a__if^#(true(), X, Y) -> c_7(mark^#(X))
  , 8: a__if^#(false(), X, Y) -> c_8(mark^#(Y)) }

Processor 'matrix interpretation of dimension 1' induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {2}. These cover all (indirect) predecessors of dependency
pairs {2,6}, their number of application is equally bounded. The
dependency pairs are shifted into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { a__and^#(true(), X) -> c_1(mark^#(X))
  , mark^#(first(X1, X2)) -> c_3(mark^#(X1), mark^#(X2))
  , mark^#(and(X1, X2)) -> c_4(a__and^#(mark(X1), X2), mark^#(X1))
  , mark^#(if(X1, X2, X3)) ->
    c_5(a__if^#(mark(X1), X2, X3), mark^#(X1))
  , a__if^#(true(), X, Y) -> c_7(mark^#(X))
  , a__if^#(false(), X, Y) -> c_8(mark^#(Y)) }
Weak DPs:
  { mark^#(add(X1, X2)) -> c_2(a__add^#(mark(X1), X2), mark^#(X1))
  , a__add^#(0(), X) -> c_6(mark^#(X)) }
Weak Trs:
  { a__and(X1, X2) -> and(X1, X2)
  , a__and(true(), X) -> mark(X)
  , a__and(false(), Y) -> false()
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(0()) -> 0()
  , mark(s(X)) -> s(X)
  , mark(add(X1, X2)) -> a__add(mark(X1), X2)
  , mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
  , mark(from(X)) -> a__from(X)
  , mark(and(X1, X2)) -> a__and(mark(X1), X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , a__add(X1, X2) -> add(X1, X2)
  , a__add(0(), X) -> mark(X)
  , a__add(s(X), Y) -> s(add(X, Y))
  , a__first(X1, X2) -> first(X1, X2)
  , a__first(0(), X) -> nil()
  , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
  , a__from(X) -> cons(X, from(s(X)))
  , a__from(X) -> from(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 2: mark^#(first(X1, X2)) -> c_3(mark^#(X1), mark^#(X2))
  , 4: mark^#(if(X1, X2, X3)) ->
       c_5(a__if^#(mark(X1), X2, X3), mark^#(X1))
  , 7: mark^#(add(X1, X2)) ->
       c_2(a__add^#(mark(X1), X2), mark^#(X1)) }
Trs:
  { a__and(true(), X) -> mark(X)
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(0()) -> 0()
  , mark(s(X)) -> s(X)
  , mark(add(X1, X2)) -> a__add(mark(X1), X2)
  , mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
  , mark(from(X)) -> a__from(X)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , a__add(X1, X2) -> add(X1, X2)
  , a__add(0(), X) -> mark(X)
  , a__add(s(X), Y) -> s(add(X, Y))
  , a__first(X1, X2) -> first(X1, X2)
  , a__first(0(), X) -> nil()
  , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1, 2},
    Uargs(c_4) = {1, 2}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1},
    Uargs(c_7) = {1}, Uargs(c_8) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
         [a__and](x1, x2) = [1] x1 + [5] x2 + [0]         
                                                          
                   [true] = [2]                           
                                                          
               [mark](x1) = [5] x1 + [1]                  
                                                          
                  [false] = [0]                           
                                                          
      [a__if](x1, x2, x3) = [1] x1 + [5] x2 + [5] x3 + [3]
                                                          
         [a__add](x1, x2) = [1] x1 + [5] x2 + [4]         
                                                          
                      [0] = [0]                           
                                                          
                  [s](x1) = [0]                           
                                                          
            [add](x1, x2) = [1] x1 + [1] x2 + [1]         
                                                          
       [a__first](x1, x2) = [1] x1 + [1] x2 + [7]         
                                                          
                    [nil] = [0]                           
                                                          
           [cons](x1, x2) = [0]                           
                                                          
          [first](x1, x2) = [1] x1 + [1] x2 + [2]         
                                                          
            [a__from](x1) = [0]                           
                                                          
               [from](x1) = [0]                           
                                                          
            [and](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                          
         [if](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2]
                                                          
       [a__and^#](x1, x2) = [1] x2 + [0]                  
                                                          
             [mark^#](x1) = [1] x1 + [0]                  
                                                          
       [a__add^#](x1, x2) = [1] x2 + [0]                  
                                                          
    [a__if^#](x1, x2, x3) = [1] x2 + [1] x3 + [0]         
                                                          
                [c_1](x1) = [1] x1 + [0]                  
                                                          
            [c_2](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                          
            [c_3](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                          
            [c_4](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                          
            [c_5](x1, x2) = [1] x1 + [1] x2 + [1]         
                                                          
                [c_6](x1) = [1] x1 + [0]                  
                                                          
                [c_7](x1) = [1] x1 + [0]                  
                                                          
                [c_8](x1) = [1] x1 + [0]                  
  
  The order satisfies the following ordering constraints:
  
                [a__and(X1, X2)] =  [1] X1 + [5] X2 + [0]                       
                                 >= [1] X1 + [1] X2 + [0]                       
                                 =  [and(X1, X2)]                               
                                                                                
             [a__and(true(), X)] =  [5] X + [2]                                 
                                 >  [5] X + [1]                                 
                                 =  [mark(X)]                                   
                                                                                
            [a__and(false(), Y)] =  [5] Y + [0]                                 
                                 >= [0]                                         
                                 =  [false()]                                   
                                                                                
                  [mark(true())] =  [11]                                        
                                 >  [2]                                         
                                 =  [true()]                                    
                                                                                
                 [mark(false())] =  [1]                                         
                                 >  [0]                                         
                                 =  [false()]                                   
                                                                                
                     [mark(0())] =  [1]                                         
                                 >  [0]                                         
                                 =  [0()]                                       
                                                                                
                    [mark(s(X))] =  [1]                                         
                                 >  [0]                                         
                                 =  [s(X)]                                      
                                                                                
             [mark(add(X1, X2))] =  [5] X1 + [5] X2 + [6]                       
                                 >  [5] X1 + [5] X2 + [5]                       
                                 =  [a__add(mark(X1), X2)]                      
                                                                                
                   [mark(nil())] =  [1]                                         
                                 >  [0]                                         
                                 =  [nil()]                                     
                                                                                
            [mark(cons(X1, X2))] =  [1]                                         
                                 >  [0]                                         
                                 =  [cons(X1, X2)]                              
                                                                                
           [mark(first(X1, X2))] =  [5] X1 + [5] X2 + [11]                      
                                 >  [5] X1 + [5] X2 + [9]                       
                                 =  [a__first(mark(X1), mark(X2))]              
                                                                                
                 [mark(from(X))] =  [1]                                         
                                 >  [0]                                         
                                 =  [a__from(X)]                                
                                                                                
             [mark(and(X1, X2))] =  [5] X1 + [5] X2 + [1]                       
                                 >= [5] X1 + [5] X2 + [1]                       
                                 =  [a__and(mark(X1), X2)]                      
                                                                                
          [mark(if(X1, X2, X3))] =  [5] X1 + [5] X2 + [5] X3 + [11]             
                                 >  [5] X1 + [5] X2 + [5] X3 + [4]              
                                 =  [a__if(mark(X1), X2, X3)]                   
                                                                                
             [a__if(X1, X2, X3)] =  [1] X1 + [5] X2 + [5] X3 + [3]              
                                 >  [1] X1 + [1] X2 + [1] X3 + [2]              
                                 =  [if(X1, X2, X3)]                            
                                                                                
           [a__if(true(), X, Y)] =  [5] X + [5] Y + [5]                         
                                 >  [5] X + [1]                                 
                                 =  [mark(X)]                                   
                                                                                
          [a__if(false(), X, Y)] =  [5] X + [5] Y + [3]                         
                                 >  [5] Y + [1]                                 
                                 =  [mark(Y)]                                   
                                                                                
                [a__add(X1, X2)] =  [1] X1 + [5] X2 + [4]                       
                                 >  [1] X1 + [1] X2 + [1]                       
                                 =  [add(X1, X2)]                               
                                                                                
                [a__add(0(), X)] =  [5] X + [4]                                 
                                 >  [5] X + [1]                                 
                                 =  [mark(X)]                                   
                                                                                
               [a__add(s(X), Y)] =  [5] Y + [4]                                 
                                 >  [0]                                         
                                 =  [s(add(X, Y))]                              
                                                                                
              [a__first(X1, X2)] =  [1] X1 + [1] X2 + [7]                       
                                 >  [1] X1 + [1] X2 + [2]                       
                                 =  [first(X1, X2)]                             
                                                                                
              [a__first(0(), X)] =  [1] X + [7]                                 
                                 >  [0]                                         
                                 =  [nil()]                                     
                                                                                
    [a__first(s(X), cons(Y, Z))] =  [7]                                         
                                 >  [0]                                         
                                 =  [cons(Y, first(X, Z))]                      
                                                                                
                    [a__from(X)] =  [0]                                         
                                 >= [0]                                         
                                 =  [cons(X, from(s(X)))]                       
                                                                                
                    [a__from(X)] =  [0]                                         
                                 >= [0]                                         
                                 =  [from(X)]                                   
                                                                                
           [a__and^#(true(), X)] =  [1] X + [0]                                 
                                 >= [1] X + [0]                                 
                                 =  [c_1(mark^#(X))]                            
                                                                                
           [mark^#(add(X1, X2))] =  [1] X1 + [1] X2 + [1]                       
                                 >  [1] X1 + [1] X2 + [0]                       
                                 =  [c_2(a__add^#(mark(X1), X2), mark^#(X1))]   
                                                                                
         [mark^#(first(X1, X2))] =  [1] X1 + [1] X2 + [2]                       
                                 >  [1] X1 + [1] X2 + [0]                       
                                 =  [c_3(mark^#(X1), mark^#(X2))]               
                                                                                
           [mark^#(and(X1, X2))] =  [1] X1 + [1] X2 + [0]                       
                                 >= [1] X1 + [1] X2 + [0]                       
                                 =  [c_4(a__and^#(mark(X1), X2), mark^#(X1))]   
                                                                                
        [mark^#(if(X1, X2, X3))] =  [1] X1 + [1] X2 + [1] X3 + [2]              
                                 >  [1] X1 + [1] X2 + [1] X3 + [1]              
                                 =  [c_5(a__if^#(mark(X1), X2, X3), mark^#(X1))]
                                                                                
              [a__add^#(0(), X)] =  [1] X + [0]                                 
                                 >= [1] X + [0]                                 
                                 =  [c_6(mark^#(X))]                            
                                                                                
         [a__if^#(true(), X, Y)] =  [1] X + [1] Y + [0]                         
                                 >= [1] X + [0]                                 
                                 =  [c_7(mark^#(X))]                            
                                                                                
        [a__if^#(false(), X, Y)] =  [1] X + [1] Y + [0]                         
                                 >= [1] Y + [0]                                 
                                 =  [c_8(mark^#(Y))]                            
                                                                                

We return to the main proof. Consider the set of all dependency
pairs

:
  { 1: a__and^#(true(), X) -> c_1(mark^#(X))
  , 2: mark^#(first(X1, X2)) -> c_3(mark^#(X1), mark^#(X2))
  , 3: mark^#(and(X1, X2)) -> c_4(a__and^#(mark(X1), X2), mark^#(X1))
  , 4: mark^#(if(X1, X2, X3)) ->
       c_5(a__if^#(mark(X1), X2, X3), mark^#(X1))
  , 5: a__if^#(true(), X, Y) -> c_7(mark^#(X))
  , 6: a__if^#(false(), X, Y) -> c_8(mark^#(Y))
  , 7: mark^#(add(X1, X2)) -> c_2(a__add^#(mark(X1), X2), mark^#(X1))
  , 8: a__add^#(0(), X) -> c_6(mark^#(X)) }

Processor 'matrix interpretation of dimension 1' induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {2,4,7}. These cover all (indirect) predecessors of
dependency pairs {2,4,5,6,7,8}, their number of application is
equally bounded. The dependency pairs are shifted into the weak
component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { a__and^#(true(), X) -> c_1(mark^#(X))
  , mark^#(and(X1, X2)) -> c_4(a__and^#(mark(X1), X2), mark^#(X1)) }
Weak DPs:
  { mark^#(add(X1, X2)) -> c_2(a__add^#(mark(X1), X2), mark^#(X1))
  , mark^#(first(X1, X2)) -> c_3(mark^#(X1), mark^#(X2))
  , mark^#(if(X1, X2, X3)) ->
    c_5(a__if^#(mark(X1), X2, X3), mark^#(X1))
  , a__add^#(0(), X) -> c_6(mark^#(X))
  , a__if^#(true(), X, Y) -> c_7(mark^#(X))
  , a__if^#(false(), X, Y) -> c_8(mark^#(Y)) }
Weak Trs:
  { a__and(X1, X2) -> and(X1, X2)
  , a__and(true(), X) -> mark(X)
  , a__and(false(), Y) -> false()
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(0()) -> 0()
  , mark(s(X)) -> s(X)
  , mark(add(X1, X2)) -> a__add(mark(X1), X2)
  , mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
  , mark(from(X)) -> a__from(X)
  , mark(and(X1, X2)) -> a__and(mark(X1), X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , a__add(X1, X2) -> add(X1, X2)
  , a__add(0(), X) -> mark(X)
  , a__add(s(X), Y) -> s(add(X, Y))
  , a__first(X1, X2) -> first(X1, X2)
  , a__first(0(), X) -> nil()
  , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
  , a__from(X) -> cons(X, from(s(X)))
  , a__from(X) -> from(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 1: a__and^#(true(), X) -> c_1(mark^#(X))
  , 2: mark^#(and(X1, X2)) -> c_4(a__and^#(mark(X1), X2), mark^#(X1))
  , 3: mark^#(add(X1, X2)) -> c_2(a__add^#(mark(X1), X2), mark^#(X1))
  , 4: mark^#(first(X1, X2)) -> c_3(mark^#(X1), mark^#(X2))
  , 5: mark^#(if(X1, X2, X3)) ->
       c_5(a__if^#(mark(X1), X2, X3), mark^#(X1)) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1, 2},
    Uargs(c_4) = {1, 2}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1},
    Uargs(c_7) = {1}, Uargs(c_8) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
         [a__and](x1, x2) = [6] x2 + [0]                  
                                                          
                   [true] = [4]                           
                                                          
               [mark](x1) = [0]                           
                                                          
                  [false] = [1]                           
                                                          
      [a__if](x1, x2, x3) = [1] x2 + [1] x3 + [0]         
                                                          
         [a__add](x1, x2) = [1] x2 + [0]                  
                                                          
                      [0] = [0]                           
                                                          
                  [s](x1) = [0]                           
                                                          
            [add](x1, x2) = [1] x1 + [1] x2 + [4]         
                                                          
       [a__first](x1, x2) = [0]                           
                                                          
                    [nil] = [0]                           
                                                          
           [cons](x1, x2) = [0]                           
                                                          
          [first](x1, x2) = [1] x1 + [1] x2 + [4]         
                                                          
            [a__from](x1) = [0]                           
                                                          
               [from](x1) = [0]                           
                                                          
            [and](x1, x2) = [1] x1 + [1] x2 + [5]         
                                                          
         [if](x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [4]
                                                          
       [a__and^#](x1, x2) = [2] x2 + [5]                  
                                                          
             [mark^#](x1) = [2] x1 + [4]                  
                                                          
       [a__add^#](x1, x2) = [2] x2 + [4]                  
                                                          
    [a__if^#](x1, x2, x3) = [2] x2 + [2] x3 + [4]         
                                                          
                [c_1](x1) = [1] x1 + [0]                  
                                                          
            [c_2](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                          
            [c_3](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                          
            [c_4](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                          
            [c_5](x1, x2) = [1] x1 + [1] x2 + [0]         
                                                          
                [c_6](x1) = [1] x1 + [0]                  
                                                          
                [c_7](x1) = [1] x1 + [0]                  
                                                          
                [c_8](x1) = [1] x1 + [0]                  
  
  The order satisfies the following ordering constraints:
  
                [a__and(X1, X2)] =  [6] X2 + [0]                                
                                 ?  [1] X1 + [1] X2 + [5]                       
                                 =  [and(X1, X2)]                               
                                                                                
             [a__and(true(), X)] =  [6] X + [0]                                 
                                 >= [0]                                         
                                 =  [mark(X)]                                   
                                                                                
            [a__and(false(), Y)] =  [6] Y + [0]                                 
                                 ?  [1]                                         
                                 =  [false()]                                   
                                                                                
                  [mark(true())] =  [0]                                         
                                 ?  [4]                                         
                                 =  [true()]                                    
                                                                                
                 [mark(false())] =  [0]                                         
                                 ?  [1]                                         
                                 =  [false()]                                   
                                                                                
                     [mark(0())] =  [0]                                         
                                 >= [0]                                         
                                 =  [0()]                                       
                                                                                
                    [mark(s(X))] =  [0]                                         
                                 >= [0]                                         
                                 =  [s(X)]                                      
                                                                                
             [mark(add(X1, X2))] =  [0]                                         
                                 ?  [1] X2 + [0]                                
                                 =  [a__add(mark(X1), X2)]                      
                                                                                
                   [mark(nil())] =  [0]                                         
                                 >= [0]                                         
                                 =  [nil()]                                     
                                                                                
            [mark(cons(X1, X2))] =  [0]                                         
                                 >= [0]                                         
                                 =  [cons(X1, X2)]                              
                                                                                
           [mark(first(X1, X2))] =  [0]                                         
                                 >= [0]                                         
                                 =  [a__first(mark(X1), mark(X2))]              
                                                                                
                 [mark(from(X))] =  [0]                                         
                                 >= [0]                                         
                                 =  [a__from(X)]                                
                                                                                
             [mark(and(X1, X2))] =  [0]                                         
                                 ?  [6] X2 + [0]                                
                                 =  [a__and(mark(X1), X2)]                      
                                                                                
          [mark(if(X1, X2, X3))] =  [0]                                         
                                 ?  [1] X2 + [1] X3 + [0]                       
                                 =  [a__if(mark(X1), X2, X3)]                   
                                                                                
             [a__if(X1, X2, X3)] =  [1] X2 + [1] X3 + [0]                       
                                 ?  [1] X1 + [1] X2 + [1] X3 + [4]              
                                 =  [if(X1, X2, X3)]                            
                                                                                
           [a__if(true(), X, Y)] =  [1] X + [1] Y + [0]                         
                                 >= [0]                                         
                                 =  [mark(X)]                                   
                                                                                
          [a__if(false(), X, Y)] =  [1] X + [1] Y + [0]                         
                                 >= [0]                                         
                                 =  [mark(Y)]                                   
                                                                                
                [a__add(X1, X2)] =  [1] X2 + [0]                                
                                 ?  [1] X1 + [1] X2 + [4]                       
                                 =  [add(X1, X2)]                               
                                                                                
                [a__add(0(), X)] =  [1] X + [0]                                 
                                 >= [0]                                         
                                 =  [mark(X)]                                   
                                                                                
               [a__add(s(X), Y)] =  [1] Y + [0]                                 
                                 >= [0]                                         
                                 =  [s(add(X, Y))]                              
                                                                                
              [a__first(X1, X2)] =  [0]                                         
                                 ?  [1] X1 + [1] X2 + [4]                       
                                 =  [first(X1, X2)]                             
                                                                                
              [a__first(0(), X)] =  [0]                                         
                                 >= [0]                                         
                                 =  [nil()]                                     
                                                                                
    [a__first(s(X), cons(Y, Z))] =  [0]                                         
                                 >= [0]                                         
                                 =  [cons(Y, first(X, Z))]                      
                                                                                
                    [a__from(X)] =  [0]                                         
                                 >= [0]                                         
                                 =  [cons(X, from(s(X)))]                       
                                                                                
                    [a__from(X)] =  [0]                                         
                                 >= [0]                                         
                                 =  [from(X)]                                   
                                                                                
           [a__and^#(true(), X)] =  [2] X + [5]                                 
                                 >  [2] X + [4]                                 
                                 =  [c_1(mark^#(X))]                            
                                                                                
           [mark^#(add(X1, X2))] =  [2] X1 + [2] X2 + [12]                      
                                 >  [2] X1 + [2] X2 + [8]                       
                                 =  [c_2(a__add^#(mark(X1), X2), mark^#(X1))]   
                                                                                
         [mark^#(first(X1, X2))] =  [2] X1 + [2] X2 + [12]                      
                                 >  [2] X1 + [2] X2 + [8]                       
                                 =  [c_3(mark^#(X1), mark^#(X2))]               
                                                                                
           [mark^#(and(X1, X2))] =  [2] X1 + [2] X2 + [14]                      
                                 >  [2] X1 + [2] X2 + [9]                       
                                 =  [c_4(a__and^#(mark(X1), X2), mark^#(X1))]   
                                                                                
        [mark^#(if(X1, X2, X3))] =  [2] X1 + [2] X2 + [2] X3 + [12]             
                                 >  [2] X1 + [2] X2 + [2] X3 + [8]              
                                 =  [c_5(a__if^#(mark(X1), X2, X3), mark^#(X1))]
                                                                                
              [a__add^#(0(), X)] =  [2] X + [4]                                 
                                 >= [2] X + [4]                                 
                                 =  [c_6(mark^#(X))]                            
                                                                                
         [a__if^#(true(), X, Y)] =  [2] X + [2] Y + [4]                         
                                 >= [2] X + [4]                                 
                                 =  [c_7(mark^#(X))]                            
                                                                                
        [a__if^#(false(), X, Y)] =  [2] X + [2] Y + [4]                         
                                 >= [2] Y + [4]                                 
                                 =  [c_8(mark^#(Y))]                            
                                                                                

We return to the main proof. Consider the set of all dependency
pairs

:
  { 1: a__and^#(true(), X) -> c_1(mark^#(X))
  , 2: mark^#(and(X1, X2)) -> c_4(a__and^#(mark(X1), X2), mark^#(X1))
  , 3: mark^#(add(X1, X2)) -> c_2(a__add^#(mark(X1), X2), mark^#(X1))
  , 4: mark^#(first(X1, X2)) -> c_3(mark^#(X1), mark^#(X2))
  , 5: mark^#(if(X1, X2, X3)) ->
       c_5(a__if^#(mark(X1), X2, X3), mark^#(X1))
  , 6: a__add^#(0(), X) -> c_6(mark^#(X))
  , 7: a__if^#(true(), X, Y) -> c_7(mark^#(X))
  , 8: a__if^#(false(), X, Y) -> c_8(mark^#(Y)) }

Processor 'matrix interpretation of dimension 1' induces the
complexity certificate YES(?,O(n^1)) on application of dependency
pairs {1,2,3,4,5}. These cover all (indirect) predecessors of
dependency pairs {1,2,3,4,5,6,7,8}, their number of application is
equally bounded. The dependency pairs are shifted into the weak
component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak DPs:
  { a__and^#(true(), X) -> c_1(mark^#(X))
  , mark^#(add(X1, X2)) -> c_2(a__add^#(mark(X1), X2), mark^#(X1))
  , mark^#(first(X1, X2)) -> c_3(mark^#(X1), mark^#(X2))
  , mark^#(and(X1, X2)) -> c_4(a__and^#(mark(X1), X2), mark^#(X1))
  , mark^#(if(X1, X2, X3)) ->
    c_5(a__if^#(mark(X1), X2, X3), mark^#(X1))
  , a__add^#(0(), X) -> c_6(mark^#(X))
  , a__if^#(true(), X, Y) -> c_7(mark^#(X))
  , a__if^#(false(), X, Y) -> c_8(mark^#(Y)) }
Weak Trs:
  { a__and(X1, X2) -> and(X1, X2)
  , a__and(true(), X) -> mark(X)
  , a__and(false(), Y) -> false()
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(0()) -> 0()
  , mark(s(X)) -> s(X)
  , mark(add(X1, X2)) -> a__add(mark(X1), X2)
  , mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
  , mark(from(X)) -> a__from(X)
  , mark(and(X1, X2)) -> a__and(mark(X1), X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , a__add(X1, X2) -> add(X1, X2)
  , a__add(0(), X) -> mark(X)
  , a__add(s(X), Y) -> s(add(X, Y))
  , a__first(X1, X2) -> first(X1, X2)
  , a__first(0(), X) -> nil()
  , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
  , a__from(X) -> cons(X, from(s(X)))
  , a__from(X) -> from(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ a__and^#(true(), X) -> c_1(mark^#(X))
, mark^#(add(X1, X2)) -> c_2(a__add^#(mark(X1), X2), mark^#(X1))
, mark^#(first(X1, X2)) -> c_3(mark^#(X1), mark^#(X2))
, mark^#(and(X1, X2)) -> c_4(a__and^#(mark(X1), X2), mark^#(X1))
, mark^#(if(X1, X2, X3)) ->
  c_5(a__if^#(mark(X1), X2, X3), mark^#(X1))
, a__add^#(0(), X) -> c_6(mark^#(X))
, a__if^#(true(), X, Y) -> c_7(mark^#(X))
, a__if^#(false(), X, Y) -> c_8(mark^#(Y)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak Trs:
  { a__and(X1, X2) -> and(X1, X2)
  , a__and(true(), X) -> mark(X)
  , a__and(false(), Y) -> false()
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(0()) -> 0()
  , mark(s(X)) -> s(X)
  , mark(add(X1, X2)) -> a__add(mark(X1), X2)
  , mark(nil()) -> nil()
  , mark(cons(X1, X2)) -> cons(X1, X2)
  , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
  , mark(from(X)) -> a__from(X)
  , mark(and(X1, X2)) -> a__and(mark(X1), X2)
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , a__add(X1, X2) -> add(X1, X2)
  , a__add(0(), X) -> mark(X)
  , a__add(s(X), Y) -> s(add(X, Y))
  , a__first(X1, X2) -> first(X1, X2)
  , a__first(0(), X) -> nil()
  , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
  , a__from(X) -> cons(X, from(s(X)))
  , a__from(X) -> from(X) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

No rule is usable, rules are removed from the input problem.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Rules: Empty
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^1))