*** 1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: choice(cons(x,xs)) -> x choice(cons(x,xs)) -> choice(xs) eq(0(x),1(y)) -> false() eq(1(x),0(y)) -> false() eq(1(x),1(y)) -> eq(x,y) eq(O(x),0(y)) -> eq(x,y) eq(nil(),nil()) -> true() guess(cons(clause,cnf)) -> cons(choice(clause),guess(cnf)) guess(nil()) -> nil() if(false(),t,e) -> e if(true(),t,e) -> t member(x,cons(y,ys)) -> if(eq(x,y),true(),member(x,ys)) member(x,nil()) -> false() negate(0(x)) -> 1(x) negate(1(x)) -> 0(x) sat(cnf) -> satck(cnf,guess(cnf)) satck(cnf,assign) -> if(verify(assign),assign,unsat()) verify(cons(l,ls)) -> if(member(negate(l),ls),false(),verify(ls)) verify(nil()) -> true() Weak DP Rules: Weak TRS Rules: Signature: {choice/1,eq/2,guess/1,if/3,member/2,negate/1,sat/1,satck/2,verify/1} / {0/1,1/1,O/1,cons/2,false/0,nil/0,true/0,unsat/0} Obligation: Innermost basic terms: {choice,eq,guess,if,member,negate,sat,satck,verify}/{0,1,O,cons,false,nil,true,unsat} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {1,2}, uargs(if) = {1,3}, uargs(member) = {1}, uargs(satck) = {2} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(1) = [0] p(O) = [0] p(choice) = [2] x1 + [0] p(cons) = [1] x1 + [1] x2 + [0] p(eq) = [3] p(false) = [1] p(guess) = [3] x1 + [5] p(if) = [1] x1 + [1] x2 + [1] x3 + [6] p(member) = [1] x1 + [2] p(negate) = [4] p(nil) = [1] p(sat) = [7] x1 + [0] p(satck) = [4] x1 + [1] x2 + [0] p(true) = [0] p(unsat) = [0] p(verify) = [0] Following rules are strictly oriented: eq(0(x),1(y)) = [3] > [1] = false() eq(1(x),0(y)) = [3] > [1] = false() eq(nil(),nil()) = [3] > [0] = true() guess(nil()) = [8] > [1] = nil() if(false(),t,e) = [1] e + [1] t + [7] > [1] e + [0] = e if(true(),t,e) = [1] e + [1] t + [6] > [1] t + [0] = t member(x,nil()) = [1] x + [2] > [1] = false() negate(0(x)) = [4] > [0] = 1(x) negate(1(x)) = [4] > [0] = 0(x) Following rules are (at-least) weakly oriented: choice(cons(x,xs)) = [2] x + [2] xs + [0] >= [1] x + [0] = x choice(cons(x,xs)) = [2] x + [2] xs + [0] >= [2] xs + [0] = choice(xs) eq(1(x),1(y)) = [3] >= [3] = eq(x,y) eq(O(x),0(y)) = [3] >= [3] = eq(x,y) guess(cons(clause,cnf)) = [3] clause + [3] cnf + [5] >= [2] clause + [3] cnf + [5] = cons(choice(clause),guess(cnf)) member(x,cons(y,ys)) = [1] x + [2] >= [1] x + [11] = if(eq(x,y),true(),member(x,ys)) sat(cnf) = [7] cnf + [0] >= [7] cnf + [5] = satck(cnf,guess(cnf)) satck(cnf,assign) = [1] assign + [4] cnf + [0] >= [1] assign + [6] = if(verify(assign) ,assign ,unsat()) verify(cons(l,ls)) = [0] >= [13] = if(member(negate(l),ls) ,false() ,verify(ls)) verify(nil()) = [0] >= [0] = true() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: choice(cons(x,xs)) -> x choice(cons(x,xs)) -> choice(xs) eq(1(x),1(y)) -> eq(x,y) eq(O(x),0(y)) -> eq(x,y) guess(cons(clause,cnf)) -> cons(choice(clause),guess(cnf)) member(x,cons(y,ys)) -> if(eq(x,y),true(),member(x,ys)) sat(cnf) -> satck(cnf,guess(cnf)) satck(cnf,assign) -> if(verify(assign),assign,unsat()) verify(cons(l,ls)) -> if(member(negate(l),ls),false(),verify(ls)) verify(nil()) -> true() Weak DP Rules: Weak TRS Rules: eq(0(x),1(y)) -> false() eq(1(x),0(y)) -> false() eq(nil(),nil()) -> true() guess(nil()) -> nil() if(false(),t,e) -> e if(true(),t,e) -> t member(x,nil()) -> false() negate(0(x)) -> 1(x) negate(1(x)) -> 0(x) Signature: {choice/1,eq/2,guess/1,if/3,member/2,negate/1,sat/1,satck/2,verify/1} / {0/1,1/1,O/1,cons/2,false/0,nil/0,true/0,unsat/0} Obligation: Innermost basic terms: {choice,eq,guess,if,member,negate,sat,satck,verify}/{0,1,O,cons,false,nil,true,unsat} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {1,2}, uargs(if) = {1,3}, uargs(member) = {1}, uargs(satck) = {2} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(1) = [0] p(O) = [1] x1 + [0] p(choice) = [4] x1 + [0] p(cons) = [1] x1 + [1] x2 + [0] p(eq) = [0] p(false) = [0] p(guess) = [4] x1 + [0] p(if) = [1] x1 + [1] x2 + [1] x3 + [0] p(member) = [1] x1 + [0] p(negate) = [0] p(nil) = [0] p(sat) = [4] x1 + [0] p(satck) = [1] x2 + [4] p(true) = [0] p(unsat) = [0] p(verify) = [3] Following rules are strictly oriented: satck(cnf,assign) = [1] assign + [4] > [1] assign + [3] = if(verify(assign) ,assign ,unsat()) verify(nil()) = [3] > [0] = true() Following rules are (at-least) weakly oriented: choice(cons(x,xs)) = [4] x + [4] xs + [0] >= [1] x + [0] = x choice(cons(x,xs)) = [4] x + [4] xs + [0] >= [4] xs + [0] = choice(xs) eq(0(x),1(y)) = [0] >= [0] = false() eq(1(x),0(y)) = [0] >= [0] = false() eq(1(x),1(y)) = [0] >= [0] = eq(x,y) eq(O(x),0(y)) = [0] >= [0] = eq(x,y) eq(nil(),nil()) = [0] >= [0] = true() guess(cons(clause,cnf)) = [4] clause + [4] cnf + [0] >= [4] clause + [4] cnf + [0] = cons(choice(clause),guess(cnf)) guess(nil()) = [0] >= [0] = nil() if(false(),t,e) = [1] e + [1] t + [0] >= [1] e + [0] = e if(true(),t,e) = [1] e + [1] t + [0] >= [1] t + [0] = t member(x,cons(y,ys)) = [1] x + [0] >= [1] x + [0] = if(eq(x,y),true(),member(x,ys)) member(x,nil()) = [1] x + [0] >= [0] = false() negate(0(x)) = [0] >= [0] = 1(x) negate(1(x)) = [0] >= [0] = 0(x) sat(cnf) = [4] cnf + [0] >= [4] cnf + [4] = satck(cnf,guess(cnf)) verify(cons(l,ls)) = [3] >= [3] = if(member(negate(l),ls) ,false() ,verify(ls)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: choice(cons(x,xs)) -> x choice(cons(x,xs)) -> choice(xs) eq(1(x),1(y)) -> eq(x,y) eq(O(x),0(y)) -> eq(x,y) guess(cons(clause,cnf)) -> cons(choice(clause),guess(cnf)) member(x,cons(y,ys)) -> if(eq(x,y),true(),member(x,ys)) sat(cnf) -> satck(cnf,guess(cnf)) verify(cons(l,ls)) -> if(member(negate(l),ls),false(),verify(ls)) Weak DP Rules: Weak TRS Rules: eq(0(x),1(y)) -> false() eq(1(x),0(y)) -> false() eq(nil(),nil()) -> true() guess(nil()) -> nil() if(false(),t,e) -> e if(true(),t,e) -> t member(x,nil()) -> false() negate(0(x)) -> 1(x) negate(1(x)) -> 0(x) satck(cnf,assign) -> if(verify(assign),assign,unsat()) verify(nil()) -> true() Signature: {choice/1,eq/2,guess/1,if/3,member/2,negate/1,sat/1,satck/2,verify/1} / {0/1,1/1,O/1,cons/2,false/0,nil/0,true/0,unsat/0} Obligation: Innermost basic terms: {choice,eq,guess,if,member,negate,sat,satck,verify}/{0,1,O,cons,false,nil,true,unsat} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {1,2}, uargs(if) = {1,3}, uargs(member) = {1}, uargs(satck) = {2} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(1) = [0] p(O) = [0] p(choice) = [1] x1 + [6] p(cons) = [1] x1 + [1] x2 + [2] p(eq) = [5] p(false) = [0] p(guess) = [1] x1 + [0] p(if) = [1] x1 + [1] x2 + [1] x3 + [0] p(member) = [1] x1 + [3] p(negate) = [0] p(nil) = [1] p(sat) = [2] x1 + [1] p(satck) = [1] x1 + [1] x2 + [6] p(true) = [5] p(unsat) = [1] p(verify) = [5] Following rules are strictly oriented: choice(cons(x,xs)) = [1] x + [1] xs + [8] > [1] x + [0] = x choice(cons(x,xs)) = [1] x + [1] xs + [8] > [1] xs + [6] = choice(xs) Following rules are (at-least) weakly oriented: eq(0(x),1(y)) = [5] >= [0] = false() eq(1(x),0(y)) = [5] >= [0] = false() eq(1(x),1(y)) = [5] >= [5] = eq(x,y) eq(O(x),0(y)) = [5] >= [5] = eq(x,y) eq(nil(),nil()) = [5] >= [5] = true() guess(cons(clause,cnf)) = [1] clause + [1] cnf + [2] >= [1] clause + [1] cnf + [8] = cons(choice(clause),guess(cnf)) guess(nil()) = [1] >= [1] = nil() if(false(),t,e) = [1] e + [1] t + [0] >= [1] e + [0] = e if(true(),t,e) = [1] e + [1] t + [5] >= [1] t + [0] = t member(x,cons(y,ys)) = [1] x + [3] >= [1] x + [13] = if(eq(x,y),true(),member(x,ys)) member(x,nil()) = [1] x + [3] >= [0] = false() negate(0(x)) = [0] >= [0] = 1(x) negate(1(x)) = [0] >= [0] = 0(x) sat(cnf) = [2] cnf + [1] >= [2] cnf + [6] = satck(cnf,guess(cnf)) satck(cnf,assign) = [1] assign + [1] cnf + [6] >= [1] assign + [6] = if(verify(assign) ,assign ,unsat()) verify(cons(l,ls)) = [5] >= [8] = if(member(negate(l),ls) ,false() ,verify(ls)) verify(nil()) = [5] >= [5] = true() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: eq(1(x),1(y)) -> eq(x,y) eq(O(x),0(y)) -> eq(x,y) guess(cons(clause,cnf)) -> cons(choice(clause),guess(cnf)) member(x,cons(y,ys)) -> if(eq(x,y),true(),member(x,ys)) sat(cnf) -> satck(cnf,guess(cnf)) verify(cons(l,ls)) -> if(member(negate(l),ls),false(),verify(ls)) Weak DP Rules: Weak TRS Rules: choice(cons(x,xs)) -> x choice(cons(x,xs)) -> choice(xs) eq(0(x),1(y)) -> false() eq(1(x),0(y)) -> false() eq(nil(),nil()) -> true() guess(nil()) -> nil() if(false(),t,e) -> e if(true(),t,e) -> t member(x,nil()) -> false() negate(0(x)) -> 1(x) negate(1(x)) -> 0(x) satck(cnf,assign) -> if(verify(assign),assign,unsat()) verify(nil()) -> true() Signature: {choice/1,eq/2,guess/1,if/3,member/2,negate/1,sat/1,satck/2,verify/1} / {0/1,1/1,O/1,cons/2,false/0,nil/0,true/0,unsat/0} Obligation: Innermost basic terms: {choice,eq,guess,if,member,negate,sat,satck,verify}/{0,1,O,cons,false,nil,true,unsat} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {1,2}, uargs(if) = {1,3}, uargs(member) = {1}, uargs(satck) = {2} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(1) = [0] p(O) = [0] p(choice) = [4] x1 + [1] p(cons) = [1] x1 + [1] x2 + [2] p(eq) = [0] p(false) = [0] p(guess) = [4] x1 + [3] p(if) = [1] x1 + [1] x2 + [1] x3 + [1] p(member) = [1] x1 + [0] p(negate) = [0] p(nil) = [2] p(sat) = [4] x1 + [1] p(satck) = [1] x2 + [1] p(true) = [0] p(unsat) = [0] p(verify) = [0] Following rules are strictly oriented: guess(cons(clause,cnf)) = [4] clause + [4] cnf + [11] > [4] clause + [4] cnf + [6] = cons(choice(clause),guess(cnf)) Following rules are (at-least) weakly oriented: choice(cons(x,xs)) = [4] x + [4] xs + [9] >= [1] x + [0] = x choice(cons(x,xs)) = [4] x + [4] xs + [9] >= [4] xs + [1] = choice(xs) eq(0(x),1(y)) = [0] >= [0] = false() eq(1(x),0(y)) = [0] >= [0] = false() eq(1(x),1(y)) = [0] >= [0] = eq(x,y) eq(O(x),0(y)) = [0] >= [0] = eq(x,y) eq(nil(),nil()) = [0] >= [0] = true() guess(nil()) = [11] >= [2] = nil() if(false(),t,e) = [1] e + [1] t + [1] >= [1] e + [0] = e if(true(),t,e) = [1] e + [1] t + [1] >= [1] t + [0] = t member(x,cons(y,ys)) = [1] x + [0] >= [1] x + [1] = if(eq(x,y),true(),member(x,ys)) member(x,nil()) = [1] x + [0] >= [0] = false() negate(0(x)) = [0] >= [0] = 1(x) negate(1(x)) = [0] >= [0] = 0(x) sat(cnf) = [4] cnf + [1] >= [4] cnf + [4] = satck(cnf,guess(cnf)) satck(cnf,assign) = [1] assign + [1] >= [1] assign + [1] = if(verify(assign) ,assign ,unsat()) verify(cons(l,ls)) = [0] >= [1] = if(member(negate(l),ls) ,false() ,verify(ls)) verify(nil()) = [0] >= [0] = true() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: eq(1(x),1(y)) -> eq(x,y) eq(O(x),0(y)) -> eq(x,y) member(x,cons(y,ys)) -> if(eq(x,y),true(),member(x,ys)) sat(cnf) -> satck(cnf,guess(cnf)) verify(cons(l,ls)) -> if(member(negate(l),ls),false(),verify(ls)) Weak DP Rules: Weak TRS Rules: choice(cons(x,xs)) -> x choice(cons(x,xs)) -> choice(xs) eq(0(x),1(y)) -> false() eq(1(x),0(y)) -> false() eq(nil(),nil()) -> true() guess(cons(clause,cnf)) -> cons(choice(clause),guess(cnf)) guess(nil()) -> nil() if(false(),t,e) -> e if(true(),t,e) -> t member(x,nil()) -> false() negate(0(x)) -> 1(x) negate(1(x)) -> 0(x) satck(cnf,assign) -> if(verify(assign),assign,unsat()) verify(nil()) -> true() Signature: {choice/1,eq/2,guess/1,if/3,member/2,negate/1,sat/1,satck/2,verify/1} / {0/1,1/1,O/1,cons/2,false/0,nil/0,true/0,unsat/0} Obligation: Innermost basic terms: {choice,eq,guess,if,member,negate,sat,satck,verify}/{0,1,O,cons,false,nil,true,unsat} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {1,2}, uargs(if) = {1,3}, uargs(member) = {1}, uargs(satck) = {2} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(1) = [0] p(O) = [1] x1 + [0] p(choice) = [1] x1 + [0] p(cons) = [1] x1 + [1] x2 + [2] p(eq) = [0] p(false) = [0] p(guess) = [1] x1 + [0] p(if) = [1] x1 + [1] x2 + [1] x3 + [2] p(member) = [1] x1 + [0] p(negate) = [7] p(nil) = [0] p(sat) = [2] x1 + [5] p(satck) = [1] x1 + [1] x2 + [4] p(true) = [0] p(unsat) = [0] p(verify) = [0] Following rules are strictly oriented: sat(cnf) = [2] cnf + [5] > [2] cnf + [4] = satck(cnf,guess(cnf)) Following rules are (at-least) weakly oriented: choice(cons(x,xs)) = [1] x + [1] xs + [2] >= [1] x + [0] = x choice(cons(x,xs)) = [1] x + [1] xs + [2] >= [1] xs + [0] = choice(xs) eq(0(x),1(y)) = [0] >= [0] = false() eq(1(x),0(y)) = [0] >= [0] = false() eq(1(x),1(y)) = [0] >= [0] = eq(x,y) eq(O(x),0(y)) = [0] >= [0] = eq(x,y) eq(nil(),nil()) = [0] >= [0] = true() guess(cons(clause,cnf)) = [1] clause + [1] cnf + [2] >= [1] clause + [1] cnf + [2] = cons(choice(clause),guess(cnf)) guess(nil()) = [0] >= [0] = nil() if(false(),t,e) = [1] e + [1] t + [2] >= [1] e + [0] = e if(true(),t,e) = [1] e + [1] t + [2] >= [1] t + [0] = t member(x,cons(y,ys)) = [1] x + [0] >= [1] x + [2] = if(eq(x,y),true(),member(x,ys)) member(x,nil()) = [1] x + [0] >= [0] = false() negate(0(x)) = [7] >= [0] = 1(x) negate(1(x)) = [7] >= [0] = 0(x) satck(cnf,assign) = [1] assign + [1] cnf + [4] >= [1] assign + [2] = if(verify(assign) ,assign ,unsat()) verify(cons(l,ls)) = [0] >= [9] = if(member(negate(l),ls) ,false() ,verify(ls)) verify(nil()) = [0] >= [0] = true() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: eq(1(x),1(y)) -> eq(x,y) eq(O(x),0(y)) -> eq(x,y) member(x,cons(y,ys)) -> if(eq(x,y),true(),member(x,ys)) verify(cons(l,ls)) -> if(member(negate(l),ls),false(),verify(ls)) Weak DP Rules: Weak TRS Rules: choice(cons(x,xs)) -> x choice(cons(x,xs)) -> choice(xs) eq(0(x),1(y)) -> false() eq(1(x),0(y)) -> false() eq(nil(),nil()) -> true() guess(cons(clause,cnf)) -> cons(choice(clause),guess(cnf)) guess(nil()) -> nil() if(false(),t,e) -> e if(true(),t,e) -> t member(x,nil()) -> false() negate(0(x)) -> 1(x) negate(1(x)) -> 0(x) sat(cnf) -> satck(cnf,guess(cnf)) satck(cnf,assign) -> if(verify(assign),assign,unsat()) verify(nil()) -> true() Signature: {choice/1,eq/2,guess/1,if/3,member/2,negate/1,sat/1,satck/2,verify/1} / {0/1,1/1,O/1,cons/2,false/0,nil/0,true/0,unsat/0} Obligation: Innermost basic terms: {choice,eq,guess,if,member,negate,sat,satck,verify}/{0,1,O,cons,false,nil,true,unsat} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {1,2}, uargs(if) = {1,3}, uargs(member) = {1}, uargs(satck) = {2} Following symbols are considered usable: {choice,eq,guess,if,member,negate,sat,satck,verify} TcT has computed the following interpretation: p(0) = [1] p(1) = [0] p(O) = [0] p(choice) = [1] x1 + [0] p(cons) = [1] x1 + [1] x2 + [8] p(eq) = [0] p(false) = [0] p(guess) = [1] x1 + [0] p(if) = [4] x1 + [1] x2 + [1] x3 + [0] p(member) = [1] x1 + [0] p(negate) = [1] p(nil) = [4] p(sat) = [8] x1 + [4] p(satck) = [3] x1 + [5] x2 + [4] p(true) = [0] p(unsat) = [4] p(verify) = [1] x1 + [0] Following rules are strictly oriented: verify(cons(l,ls)) = [1] l + [1] ls + [8] > [1] ls + [4] = if(member(negate(l),ls) ,false() ,verify(ls)) Following rules are (at-least) weakly oriented: choice(cons(x,xs)) = [1] x + [1] xs + [8] >= [1] x + [0] = x choice(cons(x,xs)) = [1] x + [1] xs + [8] >= [1] xs + [0] = choice(xs) eq(0(x),1(y)) = [0] >= [0] = false() eq(1(x),0(y)) = [0] >= [0] = false() eq(1(x),1(y)) = [0] >= [0] = eq(x,y) eq(O(x),0(y)) = [0] >= [0] = eq(x,y) eq(nil(),nil()) = [0] >= [0] = true() guess(cons(clause,cnf)) = [1] clause + [1] cnf + [8] >= [1] clause + [1] cnf + [8] = cons(choice(clause),guess(cnf)) guess(nil()) = [4] >= [4] = nil() if(false(),t,e) = [1] e + [1] t + [0] >= [1] e + [0] = e if(true(),t,e) = [1] e + [1] t + [0] >= [1] t + [0] = t member(x,cons(y,ys)) = [1] x + [0] >= [1] x + [0] = if(eq(x,y),true(),member(x,ys)) member(x,nil()) = [1] x + [0] >= [0] = false() negate(0(x)) = [1] >= [0] = 1(x) negate(1(x)) = [1] >= [1] = 0(x) sat(cnf) = [8] cnf + [4] >= [8] cnf + [4] = satck(cnf,guess(cnf)) satck(cnf,assign) = [5] assign + [3] cnf + [4] >= [5] assign + [4] = if(verify(assign) ,assign ,unsat()) verify(nil()) = [4] >= [0] = true() *** 1.1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: eq(1(x),1(y)) -> eq(x,y) eq(O(x),0(y)) -> eq(x,y) member(x,cons(y,ys)) -> if(eq(x,y),true(),member(x,ys)) Weak DP Rules: Weak TRS Rules: choice(cons(x,xs)) -> x choice(cons(x,xs)) -> choice(xs) eq(0(x),1(y)) -> false() eq(1(x),0(y)) -> false() eq(nil(),nil()) -> true() guess(cons(clause,cnf)) -> cons(choice(clause),guess(cnf)) guess(nil()) -> nil() if(false(),t,e) -> e if(true(),t,e) -> t member(x,nil()) -> false() negate(0(x)) -> 1(x) negate(1(x)) -> 0(x) sat(cnf) -> satck(cnf,guess(cnf)) satck(cnf,assign) -> if(verify(assign),assign,unsat()) verify(cons(l,ls)) -> if(member(negate(l),ls),false(),verify(ls)) verify(nil()) -> true() Signature: {choice/1,eq/2,guess/1,if/3,member/2,negate/1,sat/1,satck/2,verify/1} / {0/1,1/1,O/1,cons/2,false/0,nil/0,true/0,unsat/0} Obligation: Innermost basic terms: {choice,eq,guess,if,member,negate,sat,satck,verify}/{0,1,O,cons,false,nil,true,unsat} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(cons) = {1,2}, uargs(if) = {1,3}, uargs(member) = {1}, uargs(satck) = {2} Following symbols are considered usable: {choice,eq,guess,if,member,negate,sat,satck,verify} TcT has computed the following interpretation: p(0) = x1 p(1) = x1 p(O) = 1 + x1 p(choice) = x1 p(cons) = 1 + x1 + x2 p(eq) = x1 p(false) = 0 p(guess) = x1 p(if) = x1 + x2 + x2*x3 + x3 p(member) = x1 + 2*x1*x2 p(negate) = x1 p(nil) = 1 p(sat) = 3 + 2*x1 + 2*x1^2 p(satck) = 2 + x1^2 + 2*x2 + x2^2 p(true) = 0 p(unsat) = 0 p(verify) = 2 + x1 + x1^2 Following rules are strictly oriented: eq(O(x),0(y)) = 1 + x > x = eq(x,y) Following rules are (at-least) weakly oriented: choice(cons(x,xs)) = 1 + x + xs >= x = x choice(cons(x,xs)) = 1 + x + xs >= xs = choice(xs) eq(0(x),1(y)) = x >= 0 = false() eq(1(x),0(y)) = x >= 0 = false() eq(1(x),1(y)) = x >= x = eq(x,y) eq(nil(),nil()) = 1 >= 0 = true() guess(cons(clause,cnf)) = 1 + clause + cnf >= 1 + clause + cnf = cons(choice(clause),guess(cnf)) guess(nil()) = 1 >= 1 = nil() if(false(),t,e) = e + e*t + t >= e = e if(true(),t,e) = e + e*t + t >= t = t member(x,cons(y,ys)) = 3*x + 2*x*y + 2*x*ys >= 2*x + 2*x*ys = if(eq(x,y),true(),member(x,ys)) member(x,nil()) = 3*x >= 0 = false() negate(0(x)) = x >= x = 1(x) negate(1(x)) = x >= x = 0(x) sat(cnf) = 3 + 2*cnf + 2*cnf^2 >= 2 + 2*cnf + 2*cnf^2 = satck(cnf,guess(cnf)) satck(cnf,assign) = 2 + 2*assign + assign^2 + cnf^2 >= 2 + 2*assign + assign^2 = if(verify(assign) ,assign ,unsat()) verify(cons(l,ls)) = 4 + 3*l + 2*l*ls + l^2 + 3*ls + ls^2 >= 2 + l + 2*l*ls + ls + ls^2 = if(member(negate(l),ls) ,false() ,verify(ls)) verify(nil()) = 4 >= 0 = true() *** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: eq(1(x),1(y)) -> eq(x,y) member(x,cons(y,ys)) -> if(eq(x,y),true(),member(x,ys)) Weak DP Rules: Weak TRS Rules: choice(cons(x,xs)) -> x choice(cons(x,xs)) -> choice(xs) eq(0(x),1(y)) -> false() eq(1(x),0(y)) -> false() eq(O(x),0(y)) -> eq(x,y) eq(nil(),nil()) -> true() guess(cons(clause,cnf)) -> cons(choice(clause),guess(cnf)) guess(nil()) -> nil() if(false(),t,e) -> e if(true(),t,e) -> t member(x,nil()) -> false() negate(0(x)) -> 1(x) negate(1(x)) -> 0(x) sat(cnf) -> satck(cnf,guess(cnf)) satck(cnf,assign) -> if(verify(assign),assign,unsat()) verify(cons(l,ls)) -> if(member(negate(l),ls),false(),verify(ls)) verify(nil()) -> true() Signature: {choice/1,eq/2,guess/1,if/3,member/2,negate/1,sat/1,satck/2,verify/1} / {0/1,1/1,O/1,cons/2,false/0,nil/0,true/0,unsat/0} Obligation: Innermost basic terms: {choice,eq,guess,if,member,negate,sat,satck,verify}/{0,1,O,cons,false,nil,true,unsat} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(cons) = {1,2}, uargs(if) = {1,3}, uargs(member) = {1}, uargs(satck) = {2} Following symbols are considered usable: {choice,eq,guess,if,member,negate,sat,satck,verify} TcT has computed the following interpretation: p(0) = 0 p(1) = 0 p(O) = 1 + x1 p(choice) = x1 p(cons) = 1 + x1 + x2 p(eq) = 0 p(false) = 0 p(guess) = x1 p(if) = 2*x1 + 2*x2 + x3 p(member) = 2*x1 + x2 p(negate) = 0 p(nil) = 0 p(sat) = 2 + 2*x1 + 2*x1^2 p(satck) = 1 + 2*x2 + 2*x2^2 p(true) = 0 p(unsat) = 0 p(verify) = x1^2 Following rules are strictly oriented: member(x,cons(y,ys)) = 1 + 2*x + y + ys > 2*x + ys = if(eq(x,y),true(),member(x,ys)) Following rules are (at-least) weakly oriented: choice(cons(x,xs)) = 1 + x + xs >= x = x choice(cons(x,xs)) = 1 + x + xs >= xs = choice(xs) eq(0(x),1(y)) = 0 >= 0 = false() eq(1(x),0(y)) = 0 >= 0 = false() eq(1(x),1(y)) = 0 >= 0 = eq(x,y) eq(O(x),0(y)) = 0 >= 0 = eq(x,y) eq(nil(),nil()) = 0 >= 0 = true() guess(cons(clause,cnf)) = 1 + clause + cnf >= 1 + clause + cnf = cons(choice(clause),guess(cnf)) guess(nil()) = 0 >= 0 = nil() if(false(),t,e) = e + 2*t >= e = e if(true(),t,e) = e + 2*t >= t = t member(x,nil()) = 2*x >= 0 = false() negate(0(x)) = 0 >= 0 = 1(x) negate(1(x)) = 0 >= 0 = 0(x) sat(cnf) = 2 + 2*cnf + 2*cnf^2 >= 1 + 2*cnf + 2*cnf^2 = satck(cnf,guess(cnf)) satck(cnf,assign) = 1 + 2*assign + 2*assign^2 >= 2*assign + 2*assign^2 = if(verify(assign) ,assign ,unsat()) verify(cons(l,ls)) = 1 + 2*l + 2*l*ls + l^2 + 2*ls + ls^2 >= 2*ls + ls^2 = if(member(negate(l),ls) ,false() ,verify(ls)) verify(nil()) = 0 >= 0 = true() *** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: eq(1(x),1(y)) -> eq(x,y) Weak DP Rules: Weak TRS Rules: choice(cons(x,xs)) -> x choice(cons(x,xs)) -> choice(xs) eq(0(x),1(y)) -> false() eq(1(x),0(y)) -> false() eq(O(x),0(y)) -> eq(x,y) eq(nil(),nil()) -> true() guess(cons(clause,cnf)) -> cons(choice(clause),guess(cnf)) guess(nil()) -> nil() if(false(),t,e) -> e if(true(),t,e) -> t member(x,cons(y,ys)) -> if(eq(x,y),true(),member(x,ys)) member(x,nil()) -> false() negate(0(x)) -> 1(x) negate(1(x)) -> 0(x) sat(cnf) -> satck(cnf,guess(cnf)) satck(cnf,assign) -> if(verify(assign),assign,unsat()) verify(cons(l,ls)) -> if(member(negate(l),ls),false(),verify(ls)) verify(nil()) -> true() Signature: {choice/1,eq/2,guess/1,if/3,member/2,negate/1,sat/1,satck/2,verify/1} / {0/1,1/1,O/1,cons/2,false/0,nil/0,true/0,unsat/0} Obligation: Innermost basic terms: {choice,eq,guess,if,member,negate,sat,satck,verify}/{0,1,O,cons,false,nil,true,unsat} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(cons) = {1,2}, uargs(if) = {1,3}, uargs(member) = {1}, uargs(satck) = {2} Following symbols are considered usable: {choice,eq,guess,if,member,negate,sat,satck,verify} TcT has computed the following interpretation: p(0) = x1 p(1) = 1 + x1 p(O) = 0 p(choice) = x1 p(cons) = 1 + x1 + x2 p(eq) = x2 p(false) = 0 p(guess) = x1 p(if) = x1 + x2 + x3 p(member) = x1 + x2 p(negate) = 1 + 2*x1 p(nil) = 0 p(sat) = 1 + 3*x1 + 3*x1^2 p(satck) = 1 + 2*x1*x2 + 3*x2 + x2^2 p(true) = 0 p(unsat) = 0 p(verify) = 2*x1 + x1^2 Following rules are strictly oriented: eq(1(x),1(y)) = 1 + y > y = eq(x,y) Following rules are (at-least) weakly oriented: choice(cons(x,xs)) = 1 + x + xs >= x = x choice(cons(x,xs)) = 1 + x + xs >= xs = choice(xs) eq(0(x),1(y)) = 1 + y >= 0 = false() eq(1(x),0(y)) = y >= 0 = false() eq(O(x),0(y)) = y >= y = eq(x,y) eq(nil(),nil()) = 0 >= 0 = true() guess(cons(clause,cnf)) = 1 + clause + cnf >= 1 + clause + cnf = cons(choice(clause),guess(cnf)) guess(nil()) = 0 >= 0 = nil() if(false(),t,e) = e + t >= e = e if(true(),t,e) = e + t >= t = t member(x,cons(y,ys)) = 1 + x + y + ys >= x + y + ys = if(eq(x,y),true(),member(x,ys)) member(x,nil()) = x >= 0 = false() negate(0(x)) = 1 + 2*x >= 1 + x = 1(x) negate(1(x)) = 3 + 2*x >= x = 0(x) sat(cnf) = 1 + 3*cnf + 3*cnf^2 >= 1 + 3*cnf + 3*cnf^2 = satck(cnf,guess(cnf)) satck(cnf,assign) = 1 + 3*assign + 2*assign*cnf + assign^2 >= 3*assign + assign^2 = if(verify(assign) ,assign ,unsat()) verify(cons(l,ls)) = 3 + 4*l + 2*l*ls + l^2 + 4*ls + ls^2 >= 1 + 2*l + 3*ls + ls^2 = if(member(negate(l),ls) ,false() ,verify(ls)) verify(nil()) = 0 >= 0 = true() *** 1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: choice(cons(x,xs)) -> x choice(cons(x,xs)) -> choice(xs) eq(0(x),1(y)) -> false() eq(1(x),0(y)) -> false() eq(1(x),1(y)) -> eq(x,y) eq(O(x),0(y)) -> eq(x,y) eq(nil(),nil()) -> true() guess(cons(clause,cnf)) -> cons(choice(clause),guess(cnf)) guess(nil()) -> nil() if(false(),t,e) -> e if(true(),t,e) -> t member(x,cons(y,ys)) -> if(eq(x,y),true(),member(x,ys)) member(x,nil()) -> false() negate(0(x)) -> 1(x) negate(1(x)) -> 0(x) sat(cnf) -> satck(cnf,guess(cnf)) satck(cnf,assign) -> if(verify(assign),assign,unsat()) verify(cons(l,ls)) -> if(member(negate(l),ls),false(),verify(ls)) verify(nil()) -> true() Signature: {choice/1,eq/2,guess/1,if/3,member/2,negate/1,sat/1,satck/2,verify/1} / {0/1,1/1,O/1,cons/2,false/0,nil/0,true/0,unsat/0} Obligation: Innermost basic terms: {choice,eq,guess,if,member,negate,sat,satck,verify}/{0,1,O,cons,false,nil,true,unsat} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).