*** 1 Progress [(?,O(n^5))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f_0(x) -> a() f_1(x) -> g_1(x,x) f_2(x) -> g_2(x,x) f_3(x) -> g_3(x,x) f_4(x) -> g_4(x,x) f_5(x) -> g_5(x,x) g_1(s(x),y) -> b(f_0(y),g_1(x,y)) g_2(s(x),y) -> b(f_1(y),g_2(x,y)) g_3(s(x),y) -> b(f_2(y),g_3(x,y)) g_4(s(x),y) -> b(f_3(y),g_4(x,y)) g_5(s(x),y) -> b(f_4(y),g_5(x,y)) Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2} / {a/0,b/2,s/1} Obligation: Innermost basic terms: {f_0,f_1,f_2,f_3,f_4,f_5,g_1,g_2,g_3,g_4,g_5}/{a,b,s} Applied Processor: DependencyPairs {dpKind_ = WIDP} Proof: We add the following weak innermost dependency pairs: Strict DPs f_0#(x) -> c_1() f_1#(x) -> c_2(g_1#(x,x)) f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) f_5#(x) -> c_6(g_5#(x,x)) g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^5))] *** Considered Problem: Strict DP Rules: f_0#(x) -> c_1() f_1#(x) -> c_2(g_1#(x,x)) f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) f_5#(x) -> c_6(g_5#(x,x)) g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: f_0(x) -> a() f_1(x) -> g_1(x,x) f_2(x) -> g_2(x,x) f_3(x) -> g_3(x,x) f_4(x) -> g_4(x,x) f_5(x) -> g_5(x,x) g_1(s(x),y) -> b(f_0(y),g_1(x,y)) g_2(s(x),y) -> b(f_1(y),g_2(x,y)) g_3(s(x),y) -> b(f_2(y),g_3(x,y)) g_4(s(x),y) -> b(f_3(y),g_4(x,y)) g_5(s(x),y) -> b(f_4(y),g_5(x,y)) Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/2,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: f_0#(x) -> c_1() f_1#(x) -> c_2(g_1#(x,x)) f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) f_5#(x) -> c_6(g_5#(x,x)) g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) *** 1.1.1 Progress [(?,O(n^5))] *** Considered Problem: Strict DP Rules: f_0#(x) -> c_1() f_1#(x) -> c_2(g_1#(x,x)) f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) f_5#(x) -> c_6(g_5#(x,x)) g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/2,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: Succeeding Proof: () *** 1.1.1.1 Progress [(?,O(n^5))] *** Considered Problem: Strict DP Rules: f_0#(x) -> c_1() f_1#(x) -> c_2(g_1#(x,x)) f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) f_5#(x) -> c_6(g_5#(x,x)) g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/2,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1} by application of Pre({1}) = {7}. Here rules are labelled as follows: 1: f_0#(x) -> c_1() 2: f_1#(x) -> c_2(g_1#(x,x)) 3: f_2#(x) -> c_3(g_2#(x,x)) 4: f_3#(x) -> c_4(g_3#(x,x)) 5: f_4#(x) -> c_5(g_4#(x,x)) 6: f_5#(x) -> c_6(g_5#(x,x)) 7: g_1#(s(x),y) -> c_7(f_0#(y) ,g_1#(x,y)) 8: g_2#(s(x),y) -> c_8(f_1#(y) ,g_2#(x,y)) 9: g_3#(s(x),y) -> c_9(f_2#(y) ,g_3#(x,y)) 10: g_4#(s(x),y) -> c_10(f_3#(y) ,g_4#(x,y)) 11: g_5#(s(x),y) -> c_11(f_4#(y) ,g_5#(x,y)) *** 1.1.1.1.1 Progress [(?,O(n^5))] *** Considered Problem: Strict DP Rules: f_1#(x) -> c_2(g_1#(x,x)) f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) f_5#(x) -> c_6(g_5#(x,x)) g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: f_0#(x) -> c_1() Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/2,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:f_1#(x) -> c_2(g_1#(x,x)) -->_1 g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)):6 2:S:f_2#(x) -> c_3(g_2#(x,x)) -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):7 3:S:f_3#(x) -> c_4(g_3#(x,x)) -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):8 4:S:f_4#(x) -> c_5(g_4#(x,x)) -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):9 5:S:f_5#(x) -> c_6(g_5#(x,x)) -->_1 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):10 6:S:g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)) -->_1 f_0#(x) -> c_1():11 -->_2 g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)):6 7:S:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):7 -->_1 f_1#(x) -> c_2(g_1#(x,x)):1 8:S:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):8 -->_1 f_2#(x) -> c_3(g_2#(x,x)):2 9:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):9 -->_1 f_3#(x) -> c_4(g_3#(x,x)):3 10:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):10 -->_1 f_4#(x) -> c_5(g_4#(x,x)):4 11:W:f_0#(x) -> c_1() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 11: f_0#(x) -> c_1() *** 1.1.1.1.1.1 Progress [(?,O(n^5))] *** Considered Problem: Strict DP Rules: f_1#(x) -> c_2(g_1#(x,x)) f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) f_5#(x) -> c_6(g_5#(x,x)) g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/2,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:f_1#(x) -> c_2(g_1#(x,x)) -->_1 g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)):6 2:S:f_2#(x) -> c_3(g_2#(x,x)) -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):7 3:S:f_3#(x) -> c_4(g_3#(x,x)) -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):8 4:S:f_4#(x) -> c_5(g_4#(x,x)) -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):9 5:S:f_5#(x) -> c_6(g_5#(x,x)) -->_1 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):10 6:S:g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)) -->_2 g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)):6 7:S:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):7 -->_1 f_1#(x) -> c_2(g_1#(x,x)):1 8:S:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):8 -->_1 f_2#(x) -> c_3(g_2#(x,x)):2 9:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):9 -->_1 f_3#(x) -> c_4(g_3#(x,x)):3 10:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):10 -->_1 f_4#(x) -> c_5(g_4#(x,x)):4 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: g_1#(s(x),y) -> c_7(g_1#(x,y)) *** 1.1.1.1.1.1.1 Progress [(?,O(n^5))] *** Considered Problem: Strict DP Rules: f_1#(x) -> c_2(g_1#(x,x)) f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) f_5#(x) -> c_6(g_5#(x,x)) g_1#(s(x),y) -> c_7(g_1#(x,y)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: RemoveHeads Proof: Consider the dependency graph 1:S:f_1#(x) -> c_2(g_1#(x,x)) -->_1 g_1#(s(x),y) -> c_7(g_1#(x,y)):6 2:S:f_2#(x) -> c_3(g_2#(x,x)) -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):7 3:S:f_3#(x) -> c_4(g_3#(x,x)) -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):8 4:S:f_4#(x) -> c_5(g_4#(x,x)) -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):9 5:S:f_5#(x) -> c_6(g_5#(x,x)) -->_1 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):10 6:S:g_1#(s(x),y) -> c_7(g_1#(x,y)) -->_1 g_1#(s(x),y) -> c_7(g_1#(x,y)):6 7:S:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):7 -->_1 f_1#(x) -> c_2(g_1#(x,x)):1 8:S:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):8 -->_1 f_2#(x) -> c_3(g_2#(x,x)):2 9:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):9 -->_1 f_3#(x) -> c_4(g_3#(x,x)):3 10:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):10 -->_1 f_4#(x) -> c_5(g_4#(x,x)):4 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(5,f_5#(x) -> c_6(g_5#(x,x)))] *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^5))] *** Considered Problem: Strict DP Rules: f_1#(x) -> c_2(g_1#(x,x)) f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_1#(s(x),y) -> c_7(g_1#(x,y)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: f_1#(x) -> c_2(g_1#(x,x)) g_1#(s(x),y) -> c_7(g_1#(x,y)) Strict TRS Rules: Weak DP Rules: f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Problem (S) Strict DP Rules: f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: f_1#(x) -> c_2(g_1#(x,x)) g_1#(s(x),y) -> c_7(g_1#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^5))] *** Considered Problem: Strict DP Rules: f_1#(x) -> c_2(g_1#(x,x)) g_1#(s(x),y) -> c_7(g_1#(x,y)) Strict TRS Rules: Weak DP Rules: f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) and a lower component f_1#(x) -> c_2(g_1#(x,x)) f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_1#(s(x),y) -> c_7(g_1#(x,y)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) Further, following extension rules are added to the lower component. g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: g_5#(s(x),y) -> c_11(f_4#(y) ,g_5#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_11) = {2} Following symbols are considered usable: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#} TcT has computed the following interpretation: p(a) = [0] p(b) = [1] x1 + [1] x2 + [0] p(f_0) = [0] p(f_1) = [0] p(f_2) = [0] p(f_3) = [1] x1 + [2] p(f_4) = [1] x1 + [0] p(f_5) = [1] x1 + [1] p(g_1) = [2] x2 + [0] p(g_2) = [8] x1 + [1] x2 + [0] p(g_3) = [4] x1 + [8] p(g_4) = [8] x2 + [1] p(g_5) = [1] x1 + [1] x2 + [1] p(s) = [1] x1 + [2] p(f_0#) = [4] x1 + [8] p(f_1#) = [1] x1 + [2] p(f_2#) = [1] x1 + [1] p(f_3#) = [1] p(f_4#) = [1] p(f_5#) = [1] p(g_1#) = [1] x2 + [8] p(g_2#) = [1] x2 + [2] p(g_3#) = [8] x2 + [1] p(g_4#) = [2] x1 + [2] p(g_5#) = [8] x1 + [12] x2 + [0] p(c_1) = [1] p(c_2) = [8] x1 + [1] p(c_3) = [2] x1 + [1] p(c_4) = [2] p(c_5) = [1] x1 + [1] p(c_6) = [1] x1 + [1] p(c_7) = [1] p(c_8) = [1] x2 + [1] p(c_9) = [2] x2 + [1] p(c_10) = [1] x1 + [2] p(c_11) = [1] x1 + [1] x2 + [11] Following rules are strictly oriented: g_5#(s(x),y) = [8] x + [12] y + [16] > [8] x + [12] y + [12] = c_11(f_4#(y),g_5#(x,y)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: g_5#(s(x),y) -> c_11(f_4#(y) ,g_5#(x,y)) *** 1.1.1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.1.1.2 Progress [(?,O(n^4))] *** Considered Problem: Strict DP Rules: f_1#(x) -> c_2(g_1#(x,x)) g_1#(s(x),y) -> c_7(g_1#(x,y)) Strict TRS Rules: Weak DP Rules: f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) and a lower component f_1#(x) -> c_2(g_1#(x,x)) f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) g_1#(s(x),y) -> c_7(g_1#(x,y)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) Further, following extension rules are added to the lower component. f_4#(x) -> g_4#(x,x) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) *** 1.1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) Strict TRS Rules: Weak DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: g_4#(s(x),y) -> c_10(f_3#(y) ,g_4#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) Strict TRS Rules: Weak DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1}, uargs(c_10) = {2} Following symbols are considered usable: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#} TcT has computed the following interpretation: p(a) = [0] p(b) = [1] x1 + [1] x2 + [0] p(f_0) = [0] p(f_1) = [0] p(f_2) = [0] p(f_3) = [2] p(f_4) = [0] p(f_5) = [2] x1 + [2] p(g_1) = [2] p(g_2) = [1] x1 + [0] p(g_3) = [1] x2 + [1] p(g_4) = [1] x1 + [1] p(g_5) = [1] x2 + [0] p(s) = [1] x1 + [1] p(f_0#) = [1] x1 + [0] p(f_1#) = [1] x1 + [2] p(f_2#) = [1] x1 + [1] p(f_3#) = [1] p(f_4#) = [12] x1 + [14] p(f_5#) = [2] x1 + [1] p(g_1#) = [1] p(g_2#) = [2] x1 + [1] x2 + [1] p(g_3#) = [1] x2 + [0] p(g_4#) = [2] x1 + [4] x2 + [0] p(g_5#) = [14] x1 + [14] x2 + [0] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [2] p(c_4) = [2] x1 + [4] p(c_5) = [2] x1 + [14] p(c_6) = [1] p(c_7) = [2] x1 + [8] p(c_8) = [2] x1 + [1] x2 + [1] p(c_9) = [2] x2 + [1] p(c_10) = [1] x2 + [0] p(c_11) = [2] Following rules are strictly oriented: g_4#(s(x),y) = [2] x + [4] y + [2] > [2] x + [4] y + [0] = c_10(f_3#(y),g_4#(x,y)) Following rules are (at-least) weakly oriented: f_4#(x) = [12] x + [14] >= [12] x + [14] = c_5(g_4#(x,x)) g_5#(s(x),y) = [14] x + [14] y + [14] >= [12] y + [14] = f_4#(y) g_5#(s(x),y) = [14] x + [14] y + [14] >= [14] x + [14] y + [0] = g_5#(x,y) *** 1.1.1.1.1.1.1.1.1.2.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.2.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:f_4#(x) -> c_5(g_4#(x,x)) -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):2 2:W:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):2 3:W:g_5#(s(x),y) -> f_4#(y) -->_1 f_4#(x) -> c_5(g_4#(x,x)):1 4:W:g_5#(s(x),y) -> g_5#(x,y) -->_1 g_5#(s(x),y) -> g_5#(x,y):4 -->_1 g_5#(s(x),y) -> f_4#(y):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: g_5#(s(x),y) -> g_5#(x,y) 3: g_5#(s(x),y) -> f_4#(y) 1: f_4#(x) -> c_5(g_4#(x,x)) 2: g_4#(s(x),y) -> c_10(f_3#(y) ,g_4#(x,y)) *** 1.1.1.1.1.1.1.1.1.2.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.1.1.2.2 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: f_1#(x) -> c_2(g_1#(x,x)) g_1#(s(x),y) -> c_7(g_1#(x,y)) Strict TRS Rules: Weak DP Rules: f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> g_4#(x,x) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> g_4#(x,x) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) and a lower component f_1#(x) -> c_2(g_1#(x,x)) f_2#(x) -> c_3(g_2#(x,x)) g_1#(s(x),y) -> c_7(g_1#(x,y)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) Further, following extension rules are added to the lower component. f_3#(x) -> g_3#(x,x) f_4#(x) -> g_4#(x,x) g_3#(s(x),y) -> f_2#(y) g_3#(s(x),y) -> g_3#(x,y) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) *** 1.1.1.1.1.1.1.1.1.2.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) Strict TRS Rules: Weak DP Rules: f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> g_4#(x,x) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: g_3#(s(x),y) -> c_9(f_2#(y) ,g_3#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.1.2.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) Strict TRS Rules: Weak DP Rules: f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> g_4#(x,x) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1}, uargs(c_9) = {2} Following symbols are considered usable: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#} TcT has computed the following interpretation: p(a) = [1] p(b) = [1] x1 + [1] x2 + [1] p(f_0) = [0] p(f_1) = [1] x1 + [1] p(f_2) = [0] p(f_3) = [4] x1 + [2] p(f_4) = [1] p(f_5) = [1] x1 + [8] p(g_1) = [1] x1 + [2] p(g_2) = [1] x2 + [1] p(g_3) = [2] x2 + [1] p(g_4) = [0] p(g_5) = [0] p(s) = [1] x1 + [2] p(f_0#) = [0] p(f_1#) = [0] p(f_2#) = [1] p(f_3#) = [12] x1 + [5] p(f_4#) = [12] x1 + [8] p(f_5#) = [0] p(g_1#) = [1] x2 + [4] p(g_2#) = [1] p(g_3#) = [12] x1 + [4] p(g_4#) = [12] x2 + [5] p(g_5#) = [2] x1 + [12] x2 + [9] p(c_1) = [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [1] x1 + [0] p(c_5) = [0] p(c_6) = [2] x1 + [1] p(c_7) = [2] p(c_8) = [2] x1 + [1] x2 + [0] p(c_9) = [8] x1 + [1] x2 + [14] p(c_10) = [1] x1 + [1] x2 + [2] p(c_11) = [2] x1 + [4] x2 + [8] Following rules are strictly oriented: g_3#(s(x),y) = [12] x + [28] > [12] x + [26] = c_9(f_2#(y),g_3#(x,y)) Following rules are (at-least) weakly oriented: f_3#(x) = [12] x + [5] >= [12] x + [4] = c_4(g_3#(x,x)) f_4#(x) = [12] x + [8] >= [12] x + [5] = g_4#(x,x) g_4#(s(x),y) = [12] y + [5] >= [12] y + [5] = f_3#(y) g_4#(s(x),y) = [12] y + [5] >= [12] y + [5] = g_4#(x,y) g_5#(s(x),y) = [2] x + [12] y + [13] >= [12] y + [8] = f_4#(y) g_5#(s(x),y) = [2] x + [12] y + [13] >= [2] x + [12] y + [9] = g_5#(x,y) *** 1.1.1.1.1.1.1.1.1.2.2.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> g_4#(x,x) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.2.2.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> g_4#(x,x) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:f_3#(x) -> c_4(g_3#(x,x)) -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):3 2:W:f_4#(x) -> g_4#(x,x) -->_1 g_4#(s(x),y) -> g_4#(x,y):5 -->_1 g_4#(s(x),y) -> f_3#(y):4 3:W:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):3 4:W:g_4#(s(x),y) -> f_3#(y) -->_1 f_3#(x) -> c_4(g_3#(x,x)):1 5:W:g_4#(s(x),y) -> g_4#(x,y) -->_1 g_4#(s(x),y) -> g_4#(x,y):5 -->_1 g_4#(s(x),y) -> f_3#(y):4 6:W:g_5#(s(x),y) -> f_4#(y) -->_1 f_4#(x) -> g_4#(x,x):2 7:W:g_5#(s(x),y) -> g_5#(x,y) -->_1 g_5#(s(x),y) -> g_5#(x,y):7 -->_1 g_5#(s(x),y) -> f_4#(y):6 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: g_5#(s(x),y) -> g_5#(x,y) 6: g_5#(s(x),y) -> f_4#(y) 2: f_4#(x) -> g_4#(x,x) 5: g_4#(s(x),y) -> g_4#(x,y) 4: g_4#(s(x),y) -> f_3#(y) 1: f_3#(x) -> c_4(g_3#(x,x)) 3: g_3#(s(x),y) -> c_9(f_2#(y) ,g_3#(x,y)) *** 1.1.1.1.1.1.1.1.1.2.2.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.1.1.2.2.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f_1#(x) -> c_2(g_1#(x,x)) g_1#(s(x),y) -> c_7(g_1#(x,y)) Strict TRS Rules: Weak DP Rules: f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> g_3#(x,x) f_4#(x) -> g_4#(x,x) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> f_2#(y) g_3#(s(x),y) -> g_3#(x,y) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 2: g_1#(s(x),y) -> c_7(g_1#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.1.2.2.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f_1#(x) -> c_2(g_1#(x,x)) g_1#(s(x),y) -> c_7(g_1#(x,y)) Strict TRS Rules: Weak DP Rules: f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> g_3#(x,x) f_4#(x) -> g_4#(x,x) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> f_2#(y) g_3#(s(x),y) -> g_3#(x,y) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_7) = {1}, uargs(c_8) = {1,2} Following symbols are considered usable: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#} TcT has computed the following interpretation: p(a) = 0 p(b) = 0 p(f_0) = 1 + x1 + x1^2 p(f_1) = 1 + 2*x1 + 2*x1^2 p(f_2) = 2 + x1^2 p(f_3) = 2*x1 + 4*x1^2 p(f_4) = 4 p(f_5) = x1 + 2*x1^2 p(g_1) = 1 + 2*x1 + 4*x2^2 p(g_2) = 4 + x1^2 + x2 p(g_3) = x1 + x1^2 + 2*x2^2 p(g_4) = x1 + x1^2 p(g_5) = 4 + 4*x1 + 2*x1^2 + x2 p(s) = 1 + x1 p(f_0#) = 1 + x1 + 2*x1^2 p(f_1#) = x1 p(f_2#) = 1 + 2*x1 + 3*x1^2 p(f_3#) = 6*x1 + 3*x1^2 p(f_4#) = 2 + 3*x1 + 7*x1^2 p(f_5#) = 1 + x1^2 p(g_1#) = x1 p(g_2#) = x1 + 2*x1*x2 + x2^2 p(g_3#) = x1 + 2*x2 + 3*x2^2 p(g_4#) = 1 + 3*x1*x2 + x1^2 + 3*x2 + 3*x2^2 p(g_5#) = 2 + 4*x1*x2 + 7*x2^2 p(c_1) = 1 p(c_2) = x1 p(c_3) = x1 p(c_4) = 1 + x1 p(c_5) = 1 p(c_6) = x1 p(c_7) = x1 p(c_8) = x1 + x2 p(c_9) = x2 p(c_10) = 1 p(c_11) = 0 Following rules are strictly oriented: g_1#(s(x),y) = 1 + x > x = c_7(g_1#(x,y)) Following rules are (at-least) weakly oriented: f_1#(x) = x >= x = c_2(g_1#(x,x)) f_2#(x) = 1 + 2*x + 3*x^2 >= x + 3*x^2 = c_3(g_2#(x,x)) f_3#(x) = 6*x + 3*x^2 >= 3*x + 3*x^2 = g_3#(x,x) f_4#(x) = 2 + 3*x + 7*x^2 >= 1 + 3*x + 7*x^2 = g_4#(x,x) g_2#(s(x),y) = 1 + x + 2*x*y + 2*y + y^2 >= x + 2*x*y + y + y^2 = c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) = 1 + x + 2*y + 3*y^2 >= 1 + 2*y + 3*y^2 = f_2#(y) g_3#(s(x),y) = 1 + x + 2*y + 3*y^2 >= x + 2*y + 3*y^2 = g_3#(x,y) g_4#(s(x),y) = 2 + 2*x + 3*x*y + x^2 + 6*y + 3*y^2 >= 6*y + 3*y^2 = f_3#(y) g_4#(s(x),y) = 2 + 2*x + 3*x*y + x^2 + 6*y + 3*y^2 >= 1 + 3*x*y + x^2 + 3*y + 3*y^2 = g_4#(x,y) g_5#(s(x),y) = 2 + 4*x*y + 4*y + 7*y^2 >= 2 + 3*y + 7*y^2 = f_4#(y) g_5#(s(x),y) = 2 + 4*x*y + 4*y + 7*y^2 >= 2 + 4*x*y + 7*y^2 = g_5#(x,y) *** 1.1.1.1.1.1.1.1.1.2.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: f_1#(x) -> c_2(g_1#(x,x)) Strict TRS Rules: Weak DP Rules: f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> g_3#(x,x) f_4#(x) -> g_4#(x,x) g_1#(s(x),y) -> c_7(g_1#(x,y)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> f_2#(y) g_3#(s(x),y) -> g_3#(x,y) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.2.2.2.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f_1#(x) -> c_2(g_1#(x,x)) Strict TRS Rules: Weak DP Rules: f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> g_3#(x,x) f_4#(x) -> g_4#(x,x) g_1#(s(x),y) -> c_7(g_1#(x,y)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> f_2#(y) g_3#(s(x),y) -> g_3#(x,y) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:f_1#(x) -> c_2(g_1#(x,x)) -->_1 g_1#(s(x),y) -> c_7(g_1#(x,y)):5 2:W:f_2#(x) -> c_3(g_2#(x,x)) -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):6 3:W:f_3#(x) -> g_3#(x,x) -->_1 g_3#(s(x),y) -> g_3#(x,y):8 -->_1 g_3#(s(x),y) -> f_2#(y):7 4:W:f_4#(x) -> g_4#(x,x) -->_1 g_4#(s(x),y) -> g_4#(x,y):10 -->_1 g_4#(s(x),y) -> f_3#(y):9 5:W:g_1#(s(x),y) -> c_7(g_1#(x,y)) -->_1 g_1#(s(x),y) -> c_7(g_1#(x,y)):5 6:W:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):6 -->_1 f_1#(x) -> c_2(g_1#(x,x)):1 7:W:g_3#(s(x),y) -> f_2#(y) -->_1 f_2#(x) -> c_3(g_2#(x,x)):2 8:W:g_3#(s(x),y) -> g_3#(x,y) -->_1 g_3#(s(x),y) -> g_3#(x,y):8 -->_1 g_3#(s(x),y) -> f_2#(y):7 9:W:g_4#(s(x),y) -> f_3#(y) -->_1 f_3#(x) -> g_3#(x,x):3 10:W:g_4#(s(x),y) -> g_4#(x,y) -->_1 g_4#(s(x),y) -> g_4#(x,y):10 -->_1 g_4#(s(x),y) -> f_3#(y):9 11:W:g_5#(s(x),y) -> f_4#(y) -->_1 f_4#(x) -> g_4#(x,x):4 12:W:g_5#(s(x),y) -> g_5#(x,y) -->_1 g_5#(s(x),y) -> g_5#(x,y):12 -->_1 g_5#(s(x),y) -> f_4#(y):11 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: g_1#(s(x),y) -> c_7(g_1#(x,y)) *** 1.1.1.1.1.1.1.1.1.2.2.2.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f_1#(x) -> c_2(g_1#(x,x)) Strict TRS Rules: Weak DP Rules: f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> g_3#(x,x) f_4#(x) -> g_4#(x,x) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> f_2#(y) g_3#(s(x),y) -> g_3#(x,y) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:f_1#(x) -> c_2(g_1#(x,x)) 2:W:f_2#(x) -> c_3(g_2#(x,x)) -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):6 3:W:f_3#(x) -> g_3#(x,x) -->_1 g_3#(s(x),y) -> g_3#(x,y):8 -->_1 g_3#(s(x),y) -> f_2#(y):7 4:W:f_4#(x) -> g_4#(x,x) -->_1 g_4#(s(x),y) -> g_4#(x,y):10 -->_1 g_4#(s(x),y) -> f_3#(y):9 6:W:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):6 -->_1 f_1#(x) -> c_2(g_1#(x,x)):1 7:W:g_3#(s(x),y) -> f_2#(y) -->_1 f_2#(x) -> c_3(g_2#(x,x)):2 8:W:g_3#(s(x),y) -> g_3#(x,y) -->_1 g_3#(s(x),y) -> g_3#(x,y):8 -->_1 g_3#(s(x),y) -> f_2#(y):7 9:W:g_4#(s(x),y) -> f_3#(y) -->_1 f_3#(x) -> g_3#(x,x):3 10:W:g_4#(s(x),y) -> g_4#(x,y) -->_1 g_4#(s(x),y) -> g_4#(x,y):10 -->_1 g_4#(s(x),y) -> f_3#(y):9 11:W:g_5#(s(x),y) -> f_4#(y) -->_1 f_4#(x) -> g_4#(x,x):4 12:W:g_5#(s(x),y) -> g_5#(x,y) -->_1 g_5#(s(x),y) -> g_5#(x,y):12 -->_1 g_5#(s(x),y) -> f_4#(y):11 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: f_1#(x) -> c_2() *** 1.1.1.1.1.1.1.1.1.2.2.2.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f_1#(x) -> c_2() Strict TRS Rules: Weak DP Rules: f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> g_3#(x,x) f_4#(x) -> g_4#(x,x) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> f_2#(y) g_3#(s(x),y) -> g_3#(x,y) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: f_1#(x) -> c_2() The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.1.2.2.2.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f_1#(x) -> c_2() Strict TRS Rules: Weak DP Rules: f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> g_3#(x,x) f_4#(x) -> g_4#(x,x) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> f_2#(y) g_3#(s(x),y) -> g_3#(x,y) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_8) = {1,2} Following symbols are considered usable: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#} TcT has computed the following interpretation: p(a) = [0] p(b) = [1] x1 + [1] x2 + [0] p(f_0) = [0] p(f_1) = [0] p(f_2) = [0] p(f_3) = [0] p(f_4) = [0] p(f_5) = [0] p(g_1) = [0] p(g_2) = [0] p(g_3) = [0] p(g_4) = [0] p(g_5) = [1] x2 + [0] p(s) = [1] x1 + [9] p(f_0#) = [0] p(f_1#) = [1] p(f_2#) = [6] x1 + [1] p(f_3#) = [6] x1 + [2] p(f_4#) = [7] x1 + [9] p(f_5#) = [0] p(g_1#) = [1] x1 + [1] x2 + [1] p(g_2#) = [2] x1 + [4] x2 + [0] p(g_3#) = [6] x2 + [2] p(g_4#) = [7] x2 + [2] p(g_5#) = [2] x1 + [7] x2 + [8] p(c_1) = [1] p(c_2) = [0] p(c_3) = [1] x1 + [1] p(c_4) = [0] p(c_5) = [1] p(c_6) = [8] x1 + [0] p(c_7) = [8] x1 + [2] p(c_8) = [1] x1 + [1] x2 + [0] p(c_9) = [0] p(c_10) = [1] p(c_11) = [8] x1 + [1] Following rules are strictly oriented: f_1#(x) = [1] > [0] = c_2() Following rules are (at-least) weakly oriented: f_2#(x) = [6] x + [1] >= [6] x + [1] = c_3(g_2#(x,x)) f_3#(x) = [6] x + [2] >= [6] x + [2] = g_3#(x,x) f_4#(x) = [7] x + [9] >= [7] x + [2] = g_4#(x,x) g_2#(s(x),y) = [2] x + [4] y + [18] >= [2] x + [4] y + [1] = c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) = [6] y + [2] >= [6] y + [1] = f_2#(y) g_3#(s(x),y) = [6] y + [2] >= [6] y + [2] = g_3#(x,y) g_4#(s(x),y) = [7] y + [2] >= [6] y + [2] = f_3#(y) g_4#(s(x),y) = [7] y + [2] >= [7] y + [2] = g_4#(x,y) g_5#(s(x),y) = [2] x + [7] y + [26] >= [7] y + [9] = f_4#(y) g_5#(s(x),y) = [2] x + [7] y + [26] >= [2] x + [7] y + [8] = g_5#(x,y) *** 1.1.1.1.1.1.1.1.1.2.2.2.2.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f_1#(x) -> c_2() f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> g_3#(x,x) f_4#(x) -> g_4#(x,x) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> f_2#(y) g_3#(s(x),y) -> g_3#(x,y) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.1.2.2.2.2.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f_1#(x) -> c_2() f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> g_3#(x,x) f_4#(x) -> g_4#(x,x) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> f_2#(y) g_3#(s(x),y) -> g_3#(x,y) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:f_1#(x) -> c_2() 2:W:f_2#(x) -> c_3(g_2#(x,x)) -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):5 3:W:f_3#(x) -> g_3#(x,x) -->_1 g_3#(s(x),y) -> g_3#(x,y):7 -->_1 g_3#(s(x),y) -> f_2#(y):6 4:W:f_4#(x) -> g_4#(x,x) -->_1 g_4#(s(x),y) -> g_4#(x,y):9 -->_1 g_4#(s(x),y) -> f_3#(y):8 5:W:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):5 -->_1 f_1#(x) -> c_2():1 6:W:g_3#(s(x),y) -> f_2#(y) -->_1 f_2#(x) -> c_3(g_2#(x,x)):2 7:W:g_3#(s(x),y) -> g_3#(x,y) -->_1 g_3#(s(x),y) -> g_3#(x,y):7 -->_1 g_3#(s(x),y) -> f_2#(y):6 8:W:g_4#(s(x),y) -> f_3#(y) -->_1 f_3#(x) -> g_3#(x,x):3 9:W:g_4#(s(x),y) -> g_4#(x,y) -->_1 g_4#(s(x),y) -> g_4#(x,y):9 -->_1 g_4#(s(x),y) -> f_3#(y):8 10:W:g_5#(s(x),y) -> f_4#(y) -->_1 f_4#(x) -> g_4#(x,x):4 11:W:g_5#(s(x),y) -> g_5#(x,y) -->_1 g_5#(s(x),y) -> g_5#(x,y):11 -->_1 g_5#(s(x),y) -> f_4#(y):10 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 11: g_5#(s(x),y) -> g_5#(x,y) 10: g_5#(s(x),y) -> f_4#(y) 4: f_4#(x) -> g_4#(x,x) 9: g_4#(s(x),y) -> g_4#(x,y) 8: g_4#(s(x),y) -> f_3#(y) 3: f_3#(x) -> g_3#(x,x) 7: g_3#(s(x),y) -> g_3#(x,y) 6: g_3#(s(x),y) -> f_2#(y) 2: f_2#(x) -> c_3(g_2#(x,x)) 5: g_2#(s(x),y) -> c_8(f_1#(y) ,g_2#(x,y)) 1: f_1#(x) -> c_2() *** 1.1.1.1.1.1.1.1.1.2.2.2.2.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.1.2 Progress [(?,O(n^4))] *** Considered Problem: Strict DP Rules: f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: f_1#(x) -> c_2(g_1#(x,x)) g_1#(s(x),y) -> c_7(g_1#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:f_2#(x) -> c_3(g_2#(x,x)) -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):4 2:S:f_3#(x) -> c_4(g_3#(x,x)) -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):5 3:S:f_4#(x) -> c_5(g_4#(x,x)) -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):6 4:S:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) -->_1 f_1#(x) -> c_2(g_1#(x,x)):8 -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):4 5:S:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):5 -->_1 f_2#(x) -> c_3(g_2#(x,x)):1 6:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):6 -->_1 f_3#(x) -> c_4(g_3#(x,x)):2 7:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):7 -->_1 f_4#(x) -> c_5(g_4#(x,x)):3 8:W:f_1#(x) -> c_2(g_1#(x,x)) -->_1 g_1#(s(x),y) -> c_7(g_1#(x,y)):9 9:W:g_1#(s(x),y) -> c_7(g_1#(x,y)) -->_1 g_1#(s(x),y) -> c_7(g_1#(x,y)):9 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 8: f_1#(x) -> c_2(g_1#(x,x)) 9: g_1#(s(x),y) -> c_7(g_1#(x,y)) *** 1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^4))] *** Considered Problem: Strict DP Rules: f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:f_2#(x) -> c_3(g_2#(x,x)) -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):4 2:S:f_3#(x) -> c_4(g_3#(x,x)) -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):5 3:S:f_4#(x) -> c_5(g_4#(x,x)) -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):6 4:S:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)) -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):4 5:S:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):5 -->_1 f_2#(x) -> c_3(g_2#(x,x)):1 6:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):6 -->_1 f_3#(x) -> c_4(g_3#(x,x)):2 7:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):7 -->_1 f_4#(x) -> c_5(g_4#(x,x)):3 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: g_2#(s(x),y) -> c_8(g_2#(x,y)) *** 1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(n^4))] *** Considered Problem: Strict DP Rules: f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_2#(s(x),y) -> c_8(g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: f_2#(x) -> c_3(g_2#(x,x)) g_2#(s(x),y) -> c_8(g_2#(x,y)) Strict TRS Rules: Weak DP Rules: f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Problem (S) Strict DP Rules: f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: f_2#(x) -> c_3(g_2#(x,x)) g_2#(s(x),y) -> c_8(g_2#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} *** 1.1.1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^4))] *** Considered Problem: Strict DP Rules: f_2#(x) -> c_3(g_2#(x,x)) g_2#(s(x),y) -> c_8(g_2#(x,y)) Strict TRS Rules: Weak DP Rules: f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) and a lower component f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_2#(s(x),y) -> c_8(g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) Further, following extension rules are added to the lower component. g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) *** 1.1.1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: g_5#(s(x),y) -> c_11(f_4#(y) ,g_5#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_11) = {2} Following symbols are considered usable: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#} TcT has computed the following interpretation: p(a) = [0] p(b) = [1] x1 + [1] x2 + [0] p(f_0) = [0] p(f_1) = [0] p(f_2) = [0] p(f_3) = [0] p(f_4) = [0] p(f_5) = [0] p(g_1) = [8] x1 + [1] x2 + [0] p(g_2) = [8] x2 + [2] p(g_3) = [8] x1 + [2] p(g_4) = [8] x1 + [4] p(g_5) = [1] p(s) = [1] x1 + [4] p(f_0#) = [4] p(f_1#) = [1] x1 + [1] p(f_2#) = [1] p(f_3#) = [2] x1 + [1] p(f_4#) = [1] p(f_5#) = [1] p(g_1#) = [2] x2 + [2] p(g_2#) = [2] x1 + [0] p(g_3#) = [2] x1 + [4] x2 + [0] p(g_4#) = [2] x1 + [1] p(g_5#) = [1] x1 + [0] p(c_1) = [1] p(c_2) = [1] x1 + [1] p(c_3) = [0] p(c_4) = [1] x1 + [0] p(c_5) = [2] x1 + [1] p(c_6) = [1] x1 + [1] p(c_7) = [1] p(c_8) = [1] x1 + [0] p(c_9) = [8] x1 + [1] p(c_10) = [0] p(c_11) = [1] x1 + [1] x2 + [2] Following rules are strictly oriented: g_5#(s(x),y) = [1] x + [4] > [1] x + [3] = c_11(f_4#(y),g_5#(x,y)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: g_5#(s(x),y) -> c_11(f_4#(y) ,g_5#(x,y)) *** 1.1.1.1.1.1.1.1.2.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.1.2.1.1.1.2 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: f_2#(x) -> c_3(g_2#(x,x)) g_2#(s(x),y) -> c_8(g_2#(x,y)) Strict TRS Rules: Weak DP Rules: f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) and a lower component f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) g_2#(s(x),y) -> c_8(g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) Further, following extension rules are added to the lower component. f_4#(x) -> g_4#(x,x) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) *** 1.1.1.1.1.1.1.1.2.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) Strict TRS Rules: Weak DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: g_4#(s(x),y) -> c_10(f_3#(y) ,g_4#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.2.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) Strict TRS Rules: Weak DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1}, uargs(c_10) = {2} Following symbols are considered usable: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#} TcT has computed the following interpretation: p(a) = [0] p(b) = [1] x1 + [1] x2 + [0] p(f_0) = [0] p(f_1) = [1] p(f_2) = [8] x1 + [0] p(f_3) = [1] x1 + [0] p(f_4) = [0] p(f_5) = [8] x1 + [1] p(g_1) = [8] x2 + [1] p(g_2) = [1] p(g_3) = [8] p(g_4) = [1] p(g_5) = [0] p(s) = [1] x1 + [8] p(f_0#) = [1] p(f_1#) = [2] x1 + [0] p(f_2#) = [2] p(f_3#) = [3] p(f_4#) = [8] x1 + [0] p(f_5#) = [1] p(g_1#) = [1] x2 + [2] p(g_2#) = [1] x1 + [0] p(g_3#) = [1] x1 + [1] p(g_4#) = [1] x1 + [7] x2 + [0] p(g_5#) = [1] x1 + [8] x2 + [10] p(c_1) = [0] p(c_2) = [1] x1 + [1] p(c_3) = [0] p(c_4) = [1] x1 + [1] p(c_5) = [1] x1 + [0] p(c_6) = [1] p(c_7) = [4] p(c_8) = [2] p(c_9) = [1] x1 + [2] x2 + [1] p(c_10) = [1] x1 + [1] x2 + [4] p(c_11) = [2] x2 + [1] Following rules are strictly oriented: g_4#(s(x),y) = [1] x + [7] y + [8] > [1] x + [7] y + [7] = c_10(f_3#(y),g_4#(x,y)) Following rules are (at-least) weakly oriented: f_4#(x) = [8] x + [0] >= [8] x + [0] = c_5(g_4#(x,x)) g_5#(s(x),y) = [1] x + [8] y + [18] >= [8] y + [0] = f_4#(y) g_5#(s(x),y) = [1] x + [8] y + [18] >= [1] x + [8] y + [10] = g_5#(x,y) *** 1.1.1.1.1.1.1.1.2.1.1.1.2.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2.1.1.1.2.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:f_4#(x) -> c_5(g_4#(x,x)) -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):2 2:W:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):2 3:W:g_5#(s(x),y) -> f_4#(y) -->_1 f_4#(x) -> c_5(g_4#(x,x)):1 4:W:g_5#(s(x),y) -> g_5#(x,y) -->_1 g_5#(s(x),y) -> g_5#(x,y):4 -->_1 g_5#(s(x),y) -> f_4#(y):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: g_5#(s(x),y) -> g_5#(x,y) 3: g_5#(s(x),y) -> f_4#(y) 1: f_4#(x) -> c_5(g_4#(x,x)) 2: g_4#(s(x),y) -> c_10(f_3#(y) ,g_4#(x,y)) *** 1.1.1.1.1.1.1.1.2.1.1.1.2.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.1.2.1.1.1.2.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f_2#(x) -> c_3(g_2#(x,x)) g_2#(s(x),y) -> c_8(g_2#(x,y)) Strict TRS Rules: Weak DP Rules: f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> g_4#(x,x) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: f_2#(x) -> c_3(g_2#(x,x)) 2: g_2#(s(x),y) -> c_8(g_2#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.2.1.1.1.2.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f_2#(x) -> c_3(g_2#(x,x)) g_2#(s(x),y) -> c_8(g_2#(x,y)) Strict TRS Rules: Weak DP Rules: f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> g_4#(x,x) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_8) = {1}, uargs(c_9) = {1,2} Following symbols are considered usable: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#} TcT has computed the following interpretation: p(a) = 0 p(b) = 0 p(f_0) = x1 + x1^2 p(f_1) = 1 + x1^2 p(f_2) = 0 p(f_3) = 1 + x1^2 p(f_4) = 2 + x1^2 p(f_5) = 2*x1^2 p(g_1) = x1 + 4*x1^2 + x2 + x2^2 p(g_2) = x1 + x2^2 p(g_3) = 4*x1 + x1*x2 + x1^2 + x2 p(g_4) = x1 + x1*x2 + 4*x1^2 + x2 + x2^2 p(g_5) = 4*x1*x2 + x1^2 + x2 p(s) = 1 + x1 p(f_0#) = x1 + 4*x1^2 p(f_1#) = x1^2 p(f_2#) = 4 + 4*x1 p(f_3#) = 7 + 7*x1 + 7*x1^2 p(f_4#) = 7 + 7*x1 + 7*x1^2 p(f_5#) = 1 + x1^2 p(g_1#) = 1 + x2^2 p(g_2#) = 2*x1 + 2*x2 p(g_3#) = 6 + 2*x1 + 4*x1*x2 + 2*x1^2 + 5*x2 + x2^2 p(g_4#) = 7 + 7*x2 + 7*x2^2 p(g_5#) = 6 + 2*x1 + 6*x1*x2 + 4*x2 + 7*x2^2 p(c_1) = 0 p(c_2) = 0 p(c_3) = 1 + x1 p(c_4) = 1 + x1 p(c_5) = 1 + x1 p(c_6) = 1 + x1 p(c_7) = 0 p(c_8) = x1 p(c_9) = x1 + x2 p(c_10) = x1 p(c_11) = 0 Following rules are strictly oriented: f_2#(x) = 4 + 4*x > 1 + 4*x = c_3(g_2#(x,x)) g_2#(s(x),y) = 2 + 2*x + 2*y > 2*x + 2*y = c_8(g_2#(x,y)) Following rules are (at-least) weakly oriented: f_3#(x) = 7 + 7*x + 7*x^2 >= 7 + 7*x + 7*x^2 = c_4(g_3#(x,x)) f_4#(x) = 7 + 7*x + 7*x^2 >= 7 + 7*x + 7*x^2 = g_4#(x,x) g_3#(s(x),y) = 10 + 6*x + 4*x*y + 2*x^2 + 9*y + y^2 >= 10 + 2*x + 4*x*y + 2*x^2 + 9*y + y^2 = c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) = 7 + 7*y + 7*y^2 >= 7 + 7*y + 7*y^2 = f_3#(y) g_4#(s(x),y) = 7 + 7*y + 7*y^2 >= 7 + 7*y + 7*y^2 = g_4#(x,y) g_5#(s(x),y) = 8 + 2*x + 6*x*y + 10*y + 7*y^2 >= 7 + 7*y + 7*y^2 = f_4#(y) g_5#(s(x),y) = 8 + 2*x + 6*x*y + 10*y + 7*y^2 >= 6 + 2*x + 6*x*y + 4*y + 7*y^2 = g_5#(x,y) *** 1.1.1.1.1.1.1.1.2.1.1.1.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> g_4#(x,x) g_2#(s(x),y) -> c_8(g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2.1.1.1.2.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f_2#(x) -> c_3(g_2#(x,x)) f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> g_4#(x,x) g_2#(s(x),y) -> c_8(g_2#(x,y)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> f_3#(y) g_4#(s(x),y) -> g_4#(x,y) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:f_2#(x) -> c_3(g_2#(x,x)) -->_1 g_2#(s(x),y) -> c_8(g_2#(x,y)):4 2:W:f_3#(x) -> c_4(g_3#(x,x)) -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):5 3:W:f_4#(x) -> g_4#(x,x) -->_1 g_4#(s(x),y) -> g_4#(x,y):7 -->_1 g_4#(s(x),y) -> f_3#(y):6 4:W:g_2#(s(x),y) -> c_8(g_2#(x,y)) -->_1 g_2#(s(x),y) -> c_8(g_2#(x,y)):4 5:W:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):5 -->_1 f_2#(x) -> c_3(g_2#(x,x)):1 6:W:g_4#(s(x),y) -> f_3#(y) -->_1 f_3#(x) -> c_4(g_3#(x,x)):2 7:W:g_4#(s(x),y) -> g_4#(x,y) -->_1 g_4#(s(x),y) -> g_4#(x,y):7 -->_1 g_4#(s(x),y) -> f_3#(y):6 8:W:g_5#(s(x),y) -> f_4#(y) -->_1 f_4#(x) -> g_4#(x,x):3 9:W:g_5#(s(x),y) -> g_5#(x,y) -->_1 g_5#(s(x),y) -> g_5#(x,y):9 -->_1 g_5#(s(x),y) -> f_4#(y):8 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 9: g_5#(s(x),y) -> g_5#(x,y) 8: g_5#(s(x),y) -> f_4#(y) 3: f_4#(x) -> g_4#(x,x) 7: g_4#(s(x),y) -> g_4#(x,y) 6: g_4#(s(x),y) -> f_3#(y) 2: f_3#(x) -> c_4(g_3#(x,x)) 5: g_3#(s(x),y) -> c_9(f_2#(y) ,g_3#(x,y)) 1: f_2#(x) -> c_3(g_2#(x,x)) 4: g_2#(s(x),y) -> c_8(g_2#(x,y)) *** 1.1.1.1.1.1.1.1.2.1.1.1.2.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.1.2.1.1.2 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: f_2#(x) -> c_3(g_2#(x,x)) g_2#(s(x),y) -> c_8(g_2#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:f_3#(x) -> c_4(g_3#(x,x)) -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):3 2:S:f_4#(x) -> c_5(g_4#(x,x)) -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):4 3:S:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) -->_1 f_2#(x) -> c_3(g_2#(x,x)):6 -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):3 4:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):4 -->_1 f_3#(x) -> c_4(g_3#(x,x)):1 5:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):5 -->_1 f_4#(x) -> c_5(g_4#(x,x)):2 6:W:f_2#(x) -> c_3(g_2#(x,x)) -->_1 g_2#(s(x),y) -> c_8(g_2#(x,y)):7 7:W:g_2#(s(x),y) -> c_8(g_2#(x,y)) -->_1 g_2#(s(x),y) -> c_8(g_2#(x,y)):7 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: f_2#(x) -> c_3(g_2#(x,x)) 7: g_2#(s(x),y) -> c_8(g_2#(x,y)) *** 1.1.1.1.1.1.1.1.2.1.1.2.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:f_3#(x) -> c_4(g_3#(x,x)) -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):3 2:S:f_4#(x) -> c_5(g_4#(x,x)) -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):4 3:S:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)) -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):3 4:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):4 -->_1 f_3#(x) -> c_4(g_3#(x,x)):1 5:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):5 -->_1 f_4#(x) -> c_5(g_4#(x,x)):2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: g_3#(s(x),y) -> c_9(g_3#(x,y)) *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_3#(s(x),y) -> c_9(g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: f_3#(x) -> c_4(g_3#(x,x)) g_3#(s(x),y) -> c_9(g_3#(x,y)) Strict TRS Rules: Weak DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Problem (S) Strict DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: f_3#(x) -> c_4(g_3#(x,x)) g_3#(s(x),y) -> c_9(g_3#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: f_3#(x) -> c_4(g_3#(x,x)) g_3#(s(x),y) -> c_9(g_3#(x,y)) Strict TRS Rules: Weak DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) and a lower component f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_3#(s(x),y) -> c_9(g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) Further, following extension rules are added to the lower component. g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: g_5#(s(x),y) -> c_11(f_4#(y) ,g_5#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_11) = {2} Following symbols are considered usable: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#} TcT has computed the following interpretation: p(a) = [0] p(b) = [1] x1 + [1] x2 + [0] p(f_0) = [0] p(f_1) = [0] p(f_2) = [0] p(f_3) = [0] p(f_4) = [0] p(f_5) = [0] p(g_1) = [0] p(g_2) = [0] p(g_3) = [0] p(g_4) = [1] x2 + [0] p(g_5) = [2] x1 + [2] x2 + [2] p(s) = [1] x1 + [4] p(f_0#) = [1] p(f_1#) = [1] p(f_2#) = [4] x1 + [8] p(f_3#) = [1] x1 + [4] p(f_4#) = [1] p(f_5#) = [1] x1 + [0] p(g_1#) = [1] x1 + [1] x2 + [1] p(g_2#) = [1] x1 + [1] x2 + [0] p(g_3#) = [1] x1 + [1] p(g_4#) = [1] x1 + [1] x2 + [0] p(g_5#) = [1] x1 + [2] x2 + [0] p(c_1) = [1] p(c_2) = [1] p(c_3) = [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] p(c_6) = [1] x1 + [1] p(c_7) = [2] p(c_8) = [2] x1 + [0] p(c_9) = [1] x1 + [2] p(c_10) = [2] x2 + [2] p(c_11) = [1] x1 + [1] x2 + [1] Following rules are strictly oriented: g_5#(s(x),y) = [1] x + [2] y + [4] > [1] x + [2] y + [2] = c_11(f_4#(y),g_5#(x,y)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: g_5#(s(x),y) -> c_11(f_4#(y) ,g_5#(x,y)) *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f_3#(x) -> c_4(g_3#(x,x)) g_3#(s(x),y) -> c_9(g_3#(x,y)) Strict TRS Rules: Weak DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: f_3#(x) -> c_4(g_3#(x,x)) 2: g_3#(s(x),y) -> c_9(g_3#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f_3#(x) -> c_4(g_3#(x,x)) g_3#(s(x),y) -> c_9(g_3#(x,y)) Strict TRS Rules: Weak DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_9) = {1}, uargs(c_10) = {1,2} Following symbols are considered usable: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#} TcT has computed the following interpretation: p(a) = 1 p(b) = 1 p(f_0) = 2 p(f_1) = x1^2 p(f_2) = x1 + x1^2 p(f_3) = 2 + x1 + x1^2 p(f_4) = 4 + x1 + 2*x1^2 p(f_5) = 4 + x1^2 p(g_1) = 1 + 2*x1 + x1^2 + x2 p(g_2) = 4 + x1 + x1^2 + x2 + 2*x2^2 p(g_3) = 1 + 4*x1*x2 + x1^2 + x2 p(g_4) = 4*x1 + x1^2 + 4*x2^2 p(g_5) = 1 + 4*x1 + x1*x2 + x1^2 + x2 p(s) = 1 + x1 p(f_0#) = 4*x1 + 2*x1^2 p(f_1#) = 1 + x1 p(f_2#) = 1 p(f_3#) = 4 + 3*x1 p(f_4#) = 6*x1 + 7*x1^2 p(f_5#) = x1 + 4*x1^2 p(g_1#) = x1 + x1^2 + x2^2 p(g_2#) = 1 + 2*x1 + 4*x1^2 + 4*x2^2 p(g_3#) = 2*x1 + x2 p(g_4#) = 6*x1 + 3*x1*x2 + 2*x1^2 + 2*x2^2 p(g_5#) = 1 + x1 + 2*x1*x2 + 3*x1^2 + 6*x2 + 7*x2^2 p(c_1) = 0 p(c_2) = 0 p(c_3) = x1 p(c_4) = x1 p(c_5) = x1 p(c_6) = 1 p(c_7) = 0 p(c_8) = 0 p(c_9) = x1 p(c_10) = x1 + x2 p(c_11) = 1 + x2 Following rules are strictly oriented: f_3#(x) = 4 + 3*x > 3*x = c_4(g_3#(x,x)) g_3#(s(x),y) = 2 + 2*x + y > 2*x + y = c_9(g_3#(x,y)) Following rules are (at-least) weakly oriented: f_4#(x) = 6*x + 7*x^2 >= 6*x + 7*x^2 = c_5(g_4#(x,x)) g_4#(s(x),y) = 8 + 10*x + 3*x*y + 2*x^2 + 3*y + 2*y^2 >= 4 + 6*x + 3*x*y + 2*x^2 + 3*y + 2*y^2 = c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) = 5 + 7*x + 2*x*y + 3*x^2 + 8*y + 7*y^2 >= 6*y + 7*y^2 = f_4#(y) g_5#(s(x),y) = 5 + 7*x + 2*x*y + 3*x^2 + 8*y + 7*y^2 >= 1 + x + 2*x*y + 3*x^2 + 6*y + 7*y^2 = g_5#(x,y) *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_3#(s(x),y) -> c_9(g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f_3#(x) -> c_4(g_3#(x,x)) f_4#(x) -> c_5(g_4#(x,x)) g_3#(s(x),y) -> c_9(g_3#(x,y)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> f_4#(y) g_5#(s(x),y) -> g_5#(x,y) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:f_3#(x) -> c_4(g_3#(x,x)) -->_1 g_3#(s(x),y) -> c_9(g_3#(x,y)):3 2:W:f_4#(x) -> c_5(g_4#(x,x)) -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):4 3:W:g_3#(s(x),y) -> c_9(g_3#(x,y)) -->_1 g_3#(s(x),y) -> c_9(g_3#(x,y)):3 4:W:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):4 -->_1 f_3#(x) -> c_4(g_3#(x,x)):1 5:W:g_5#(s(x),y) -> f_4#(y) -->_1 f_4#(x) -> c_5(g_4#(x,x)):2 6:W:g_5#(s(x),y) -> g_5#(x,y) -->_1 g_5#(s(x),y) -> g_5#(x,y):6 -->_1 g_5#(s(x),y) -> f_4#(y):5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: g_5#(s(x),y) -> g_5#(x,y) 5: g_5#(s(x),y) -> f_4#(y) 2: f_4#(x) -> c_5(g_4#(x,x)) 4: g_4#(s(x),y) -> c_10(f_3#(y) ,g_4#(x,y)) 1: f_3#(x) -> c_4(g_3#(x,x)) 3: g_3#(s(x),y) -> c_9(g_3#(x,y)) *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: f_3#(x) -> c_4(g_3#(x,x)) g_3#(s(x),y) -> c_9(g_3#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:f_4#(x) -> c_5(g_4#(x,x)) -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):2 2:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) -->_1 f_3#(x) -> c_4(g_3#(x,x)):4 -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):2 3:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):3 -->_1 f_4#(x) -> c_5(g_4#(x,x)):1 4:W:f_3#(x) -> c_4(g_3#(x,x)) -->_1 g_3#(s(x),y) -> c_9(g_3#(x,y)):5 5:W:g_3#(s(x),y) -> c_9(g_3#(x,y)) -->_1 g_3#(s(x),y) -> c_9(g_3#(x,y)):5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: f_3#(x) -> c_4(g_3#(x,x)) 5: g_3#(s(x),y) -> c_9(g_3#(x,y)) *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:f_4#(x) -> c_5(g_4#(x,x)) -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):2 2:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)) -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):2 3:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):3 -->_1 f_4#(x) -> c_5(g_4#(x,x)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: g_4#(s(x),y) -> c_10(g_4#(x,y)) *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(g_4#(x,y)) Strict TRS Rules: Weak DP Rules: g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Problem (S) Strict DP Rules: g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(g_4#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(g_4#(x,y)) Strict TRS Rules: Weak DP Rules: g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: f_4#(x) -> c_5(g_4#(x,x)) 2: g_4#(s(x),y) -> c_10(g_4#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(g_4#(x,y)) Strict TRS Rules: Weak DP Rules: g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_5) = {1}, uargs(c_10) = {1}, uargs(c_11) = {1,2} Following symbols are considered usable: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#} TcT has computed the following interpretation: p(a) = 0 p(b) = 0 p(f_0) = 8 + 8*x1 p(f_1) = x1 + 4*x1^2 p(f_2) = 2*x1^2 p(f_3) = 0 p(f_4) = x1^2 p(f_5) = 4 + x1 p(g_1) = x1*x2 + x2 + x2^2 p(g_2) = 2 + x1 + x1*x2 + 4*x1^2 + 8*x2 p(g_3) = x1 + 4*x1*x2 + x1^2 + x2 + x2^2 p(g_4) = x1^2 + x2 + x2^2 p(g_5) = 4 + x1 + x1^2 + x2^2 p(s) = 1 + x1 p(f_0#) = 2 + 2*x1 + 2*x1^2 p(f_1#) = 2*x1^2 p(f_2#) = 2 p(f_3#) = 1 + x1^2 p(f_4#) = 15 + 9*x1 p(f_5#) = 8 + 4*x1 + x1^2 p(g_1#) = 2 + x2 + x2^2 p(g_2#) = 1 + 8*x1 + x1^2 + 2*x2 + x2^2 p(g_3#) = 1 + x2 + x2^2 p(g_4#) = 12 + 8*x1 + x2 p(g_5#) = 8 + 4*x1 + 14*x1*x2 + 12*x1^2 p(c_1) = 0 p(c_2) = x1 p(c_3) = 0 p(c_4) = 1 p(c_5) = 1 + x1 p(c_6) = 0 p(c_7) = 0 p(c_8) = 0 p(c_9) = 1 + x1 p(c_10) = x1 p(c_11) = 1 + x1 + x2 Following rules are strictly oriented: f_4#(x) = 15 + 9*x > 13 + 9*x = c_5(g_4#(x,x)) g_4#(s(x),y) = 20 + 8*x + y > 12 + 8*x + y = c_10(g_4#(x,y)) Following rules are (at-least) weakly oriented: g_5#(s(x),y) = 24 + 28*x + 14*x*y + 12*x^2 + 14*y >= 24 + 4*x + 14*x*y + 12*x^2 + 9*y = c_11(f_4#(y),g_5#(x,y)) *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(g_4#(x,y)) g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:f_4#(x) -> c_5(g_4#(x,x)) -->_1 g_4#(s(x),y) -> c_10(g_4#(x,y)):2 2:W:g_4#(s(x),y) -> c_10(g_4#(x,y)) -->_1 g_4#(s(x),y) -> c_10(g_4#(x,y)):2 3:W:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):3 -->_1 f_4#(x) -> c_5(g_4#(x,x)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: g_5#(s(x),y) -> c_11(f_4#(y) ,g_5#(x,y)) 1: f_4#(x) -> c_5(g_4#(x,x)) 2: g_4#(s(x),y) -> c_10(g_4#(x,y)) *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: f_4#(x) -> c_5(g_4#(x,x)) g_4#(s(x),y) -> c_10(g_4#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) -->_1 f_4#(x) -> c_5(g_4#(x,x)):2 -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):1 2:W:f_4#(x) -> c_5(g_4#(x,x)) -->_1 g_4#(s(x),y) -> c_10(g_4#(x,y)):3 3:W:g_4#(s(x),y) -> c_10(g_4#(x,y)) -->_1 g_4#(s(x),y) -> c_10(g_4#(x,y)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: f_4#(x) -> c_5(g_4#(x,x)) 3: g_4#(s(x),y) -> c_10(g_4#(x,y)) *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)) -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: g_5#(s(x),y) -> c_11(g_5#(x,y)) *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g_5#(s(x),y) -> c_11(g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/1} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: g_5#(s(x),y) -> c_11(g_5#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g_5#(s(x),y) -> c_11(g_5#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/1} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_11) = {1} Following symbols are considered usable: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#} TcT has computed the following interpretation: p(a) = [0] p(b) = [1] x2 + [0] p(f_0) = [4] x1 + [1] p(f_1) = [1] p(f_2) = [0] p(f_3) = [0] p(f_4) = [0] p(f_5) = [0] p(g_1) = [0] p(g_2) = [0] p(g_3) = [0] p(g_4) = [0] p(g_5) = [0] p(s) = [1] x1 + [2] p(f_0#) = [0] p(f_1#) = [8] p(f_2#) = [2] p(f_3#) = [4] p(f_4#) = [2] p(f_5#) = [2] x1 + [2] p(g_1#) = [2] x1 + [1] x2 + [1] p(g_2#) = [8] x1 + [8] p(g_3#) = [1] x1 + [1] x2 + [1] p(g_4#) = [8] x1 + [1] p(g_5#) = [8] x1 + [0] p(c_1) = [1] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [8] p(c_5) = [1] x1 + [2] p(c_6) = [0] p(c_7) = [1] x1 + [4] p(c_8) = [1] p(c_9) = [0] p(c_10) = [2] p(c_11) = [1] x1 + [14] Following rules are strictly oriented: g_5#(s(x),y) = [8] x + [16] > [8] x + [14] = c_11(g_5#(x,y)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: g_5#(s(x),y) -> c_11(g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/1} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: g_5#(s(x),y) -> c_11(g_5#(x,y)) Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/1} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:g_5#(s(x),y) -> c_11(g_5#(x,y)) -->_1 g_5#(s(x),y) -> c_11(g_5#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: g_5#(s(x),y) -> c_11(g_5#(x,y)) *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/1} Obligation: Innermost basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).