*** 1 Progress [(?,O(n^5))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        f_0(x) -> a()
        f_1(x) -> g_1(x,x)
        f_2(x) -> g_2(x,x)
        f_3(x) -> g_3(x,x)
        f_4(x) -> g_4(x,x)
        f_5(x) -> g_5(x,x)
        g_1(s(x),y) -> b(f_0(y),g_1(x,y))
        g_2(s(x),y) -> b(f_1(y),g_2(x,y))
        g_3(s(x),y) -> b(f_2(y),g_3(x,y))
        g_4(s(x),y) -> b(f_3(y),g_4(x,y))
        g_5(s(x),y) -> b(f_4(y),g_5(x,y))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2} / {a/0,b/2,s/1}
      Obligation:
        Innermost
        basic terms: {f_0,f_1,f_2,f_3,f_4,f_5,g_1,g_2,g_3,g_4,g_5}/{a,b,s}
    Applied Processor:
      DependencyPairs {dpKind_ = WIDP}
    Proof:
      We add the following weak innermost dependency pairs:
      
      Strict DPs
        f_0#(x) -> c_1()
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        f_5#(x) -> c_6(g_5#(x,x))
        g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^5))]  ***
    Considered Problem:
      Strict DP Rules:
        f_0#(x) -> c_1()
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        f_5#(x) -> c_6(g_5#(x,x))
        g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
      Strict TRS Rules:
        f_0(x) -> a()
        f_1(x) -> g_1(x,x)
        f_2(x) -> g_2(x,x)
        f_3(x) -> g_3(x,x)
        f_4(x) -> g_4(x,x)
        f_5(x) -> g_5(x,x)
        g_1(s(x),y) -> b(f_0(y),g_1(x,y))
        g_2(s(x),y) -> b(f_1(y),g_2(x,y))
        g_3(s(x),y) -> b(f_2(y),g_3(x,y))
        g_4(s(x),y) -> b(f_3(y),g_4(x,y))
        g_5(s(x),y) -> b(f_4(y),g_5(x,y))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/2,c_8/2,c_9/2,c_10/2,c_11/2}
      Obligation:
        Innermost
        basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        f_0#(x) -> c_1()
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        f_5#(x) -> c_6(g_5#(x,x))
        g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
*** 1.1.1 Progress [(?,O(n^5))]  ***
    Considered Problem:
      Strict DP Rules:
        f_0#(x) -> c_1()
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        f_5#(x) -> c_6(g_5#(x,x))
        g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/2,c_8/2,c_9/2,c_10/2,c_11/2}
      Obligation:
        Innermost
        basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
    Applied Processor:
      Succeeding
    Proof:
      ()
*** 1.1.1.1 Progress [(?,O(n^5))]  ***
    Considered Problem:
      Strict DP Rules:
        f_0#(x) -> c_1()
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        f_5#(x) -> c_6(g_5#(x,x))
        g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/2,c_8/2,c_9/2,c_10/2,c_11/2}
      Obligation:
        Innermost
        basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1}
      by application of
        Pre({1}) = {7}.
      Here rules are labelled as follows:
        1:  f_0#(x) -> c_1()               
        2:  f_1#(x) -> c_2(g_1#(x,x))      
        3:  f_2#(x) -> c_3(g_2#(x,x))      
        4:  f_3#(x) -> c_4(g_3#(x,x))      
        5:  f_4#(x) -> c_5(g_4#(x,x))      
        6:  f_5#(x) -> c_6(g_5#(x,x))      
        7:  g_1#(s(x),y) -> c_7(f_0#(y)    
                               ,g_1#(x,y)) 
        8:  g_2#(s(x),y) -> c_8(f_1#(y)    
                               ,g_2#(x,y)) 
        9:  g_3#(s(x),y) -> c_9(f_2#(y)    
                               ,g_3#(x,y)) 
        10: g_4#(s(x),y) -> c_10(f_3#(y)   
                                ,g_4#(x,y))
        11: g_5#(s(x),y) -> c_11(f_4#(y)   
                                ,g_5#(x,y))
*** 1.1.1.1.1 Progress [(?,O(n^5))]  ***
    Considered Problem:
      Strict DP Rules:
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        f_5#(x) -> c_6(g_5#(x,x))
        g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        f_0#(x) -> c_1()
      Weak TRS Rules:
        
      Signature:
        {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/2,c_8/2,c_9/2,c_10/2,c_11/2}
      Obligation:
        Innermost
        basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:f_1#(x) -> c_2(g_1#(x,x))
           -->_1 g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)):6
        
        2:S:f_2#(x) -> c_3(g_2#(x,x))
           -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):7
        
        3:S:f_3#(x) -> c_4(g_3#(x,x))
           -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):8
        
        4:S:f_4#(x) -> c_5(g_4#(x,x))
           -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):9
        
        5:S:f_5#(x) -> c_6(g_5#(x,x))
           -->_1 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):10
        
        6:S:g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y))
           -->_1 f_0#(x) -> c_1():11
           -->_2 g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)):6
        
        7:S:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
           -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):7
           -->_1 f_1#(x) -> c_2(g_1#(x,x)):1
        
        8:S:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
           -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):8
           -->_1 f_2#(x) -> c_3(g_2#(x,x)):2
        
        9:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
           -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):9
           -->_1 f_3#(x) -> c_4(g_3#(x,x)):3
        
        10:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
           -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):10
           -->_1 f_4#(x) -> c_5(g_4#(x,x)):4
        
        11:W:f_0#(x) -> c_1()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        11: f_0#(x) -> c_1()
*** 1.1.1.1.1.1 Progress [(?,O(n^5))]  ***
    Considered Problem:
      Strict DP Rules:
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        f_5#(x) -> c_6(g_5#(x,x))
        g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/2,c_8/2,c_9/2,c_10/2,c_11/2}
      Obligation:
        Innermost
        basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
    Applied Processor:
      SimplifyRHS
    Proof:
      Consider the dependency graph
        1:S:f_1#(x) -> c_2(g_1#(x,x))
           -->_1 g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)):6
        
        2:S:f_2#(x) -> c_3(g_2#(x,x))
           -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):7
        
        3:S:f_3#(x) -> c_4(g_3#(x,x))
           -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):8
        
        4:S:f_4#(x) -> c_5(g_4#(x,x))
           -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):9
        
        5:S:f_5#(x) -> c_6(g_5#(x,x))
           -->_1 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):10
        
        6:S:g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y))
           -->_2 g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)):6
        
        7:S:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
           -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):7
           -->_1 f_1#(x) -> c_2(g_1#(x,x)):1
        
        8:S:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
           -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):8
           -->_1 f_2#(x) -> c_3(g_2#(x,x)):2
        
        9:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
           -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):9
           -->_1 f_3#(x) -> c_4(g_3#(x,x)):3
        
        10:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
           -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):10
           -->_1 f_4#(x) -> c_5(g_4#(x,x)):4
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        g_1#(s(x),y) -> c_7(g_1#(x,y))
*** 1.1.1.1.1.1.1 Progress [(?,O(n^5))]  ***
    Considered Problem:
      Strict DP Rules:
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        f_5#(x) -> c_6(g_5#(x,x))
        g_1#(s(x),y) -> c_7(g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
      Obligation:
        Innermost
        basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
    Applied Processor:
      RemoveHeads
    Proof:
      Consider the dependency graph
      
      1:S:f_1#(x) -> c_2(g_1#(x,x))
         -->_1 g_1#(s(x),y) -> c_7(g_1#(x,y)):6
      
      2:S:f_2#(x) -> c_3(g_2#(x,x))
         -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):7
      
      3:S:f_3#(x) -> c_4(g_3#(x,x))
         -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):8
      
      4:S:f_4#(x) -> c_5(g_4#(x,x))
         -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):9
      
      5:S:f_5#(x) -> c_6(g_5#(x,x))
         -->_1 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):10
      
      6:S:g_1#(s(x),y) -> c_7(g_1#(x,y))
         -->_1 g_1#(s(x),y) -> c_7(g_1#(x,y)):6
      
      7:S:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
         -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):7
         -->_1 f_1#(x) -> c_2(g_1#(x,x)):1
      
      8:S:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
         -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):8
         -->_1 f_2#(x) -> c_3(g_2#(x,x)):2
      
      9:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
         -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):9
         -->_1 f_3#(x) -> c_4(g_3#(x,x)):3
      
      10:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
         -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):10
         -->_1 f_4#(x) -> c_5(g_4#(x,x)):4
      
      
      Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
      
      [(5,f_5#(x) -> c_6(g_5#(x,x)))]
*** 1.1.1.1.1.1.1.1 Progress [(?,O(n^5))]  ***
    Considered Problem:
      Strict DP Rules:
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        g_1#(s(x),y) -> c_7(g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
      Obligation:
        Innermost
        basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          f_1#(x) -> c_2(g_1#(x,x))
          g_1#(s(x),y) -> c_7(g_1#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          f_2#(x) -> c_3(g_2#(x,x))
          f_3#(x) -> c_4(g_3#(x,x))
          f_4#(x) -> c_5(g_4#(x,x))
          g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
          g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
          g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
          g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
        Weak TRS Rules:
          
        Signature:
          {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
        Obligation:
          Innermost
          basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
      
      Problem (S)
        Strict DP Rules:
          f_2#(x) -> c_3(g_2#(x,x))
          f_3#(x) -> c_4(g_3#(x,x))
          f_4#(x) -> c_5(g_4#(x,x))
          g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
          g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
          g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
          g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          f_1#(x) -> c_2(g_1#(x,x))
          g_1#(s(x),y) -> c_7(g_1#(x,y))
        Weak TRS Rules:
          
        Signature:
          {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
        Obligation:
          Innermost
          basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
  *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^5))]  ***
      Considered Problem:
        Strict DP Rules:
          f_1#(x) -> c_2(g_1#(x,x))
          g_1#(s(x),y) -> c_7(g_1#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          f_2#(x) -> c_3(g_2#(x,x))
          f_3#(x) -> c_4(g_3#(x,x))
          f_4#(x) -> c_5(g_4#(x,x))
          g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
          g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
          g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
          g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
        Weak TRS Rules:
          
        Signature:
          {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
        Obligation:
          Innermost
          basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
      Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
      Proof:
        We decompose the input problem according to the dependency graph into the upper component
          g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
        and a lower component
          f_1#(x) -> c_2(g_1#(x,x))
          f_2#(x) -> c_3(g_2#(x,x))
          f_3#(x) -> c_4(g_3#(x,x))
          f_4#(x) -> c_5(g_4#(x,x))
          g_1#(s(x),y) -> c_7(g_1#(x,y))
          g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
          g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
          g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        Further, following extension rules are added to the lower component.
          g_5#(s(x),y) -> f_4#(y)
          g_5#(s(x),y) -> g_5#(x,y)
    *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
          Obligation:
            Innermost
            basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: g_5#(s(x),y) -> c_11(f_4#(y)   
                                   ,g_5#(x,y))
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
            Obligation:
              Innermost
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_11) = {2}
            
            Following symbols are considered usable:
              {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}
            TcT has computed the following interpretation:
                 p(a) = [0]                   
                 p(b) = [1] x1 + [1] x2 + [0] 
               p(f_0) = [0]                   
               p(f_1) = [0]                   
               p(f_2) = [0]                   
               p(f_3) = [1] x1 + [2]          
               p(f_4) = [1] x1 + [0]          
               p(f_5) = [1] x1 + [1]          
               p(g_1) = [2] x2 + [0]          
               p(g_2) = [8] x1 + [1] x2 + [0] 
               p(g_3) = [4] x1 + [8]          
               p(g_4) = [8] x2 + [1]          
               p(g_5) = [1] x1 + [1] x2 + [1] 
                 p(s) = [1] x1 + [2]          
              p(f_0#) = [4] x1 + [8]          
              p(f_1#) = [1] x1 + [2]          
              p(f_2#) = [1] x1 + [1]          
              p(f_3#) = [1]                   
              p(f_4#) = [1]                   
              p(f_5#) = [1]                   
              p(g_1#) = [1] x2 + [8]          
              p(g_2#) = [1] x2 + [2]          
              p(g_3#) = [8] x2 + [1]          
              p(g_4#) = [2] x1 + [2]          
              p(g_5#) = [8] x1 + [12] x2 + [0]
               p(c_1) = [1]                   
               p(c_2) = [8] x1 + [1]          
               p(c_3) = [2] x1 + [1]          
               p(c_4) = [2]                   
               p(c_5) = [1] x1 + [1]          
               p(c_6) = [1] x1 + [1]          
               p(c_7) = [1]                   
               p(c_8) = [1] x2 + [1]          
               p(c_9) = [2] x2 + [1]          
              p(c_10) = [1] x1 + [2]          
              p(c_11) = [1] x1 + [1] x2 + [11]
            
            Following rules are strictly oriented:
            g_5#(s(x),y) = [8] x + [12] y + [16]  
                         > [8] x + [12] y + [12]  
                         = c_11(f_4#(y),g_5#(x,y))
            
            
            Following rules are (at-least) weakly oriented:
            
      *** 1.1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
            Obligation:
              Innermost
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
            Obligation:
              Innermost
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
                 -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):1
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              1: g_5#(s(x),y) -> c_11(f_4#(y)   
                                     ,g_5#(x,y))
      *** 1.1.1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
            Obligation:
              Innermost
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).
      
    *** 1.1.1.1.1.1.1.1.1.2 Progress [(?,O(n^4))]  ***
        Considered Problem:
          Strict DP Rules:
            f_1#(x) -> c_2(g_1#(x,x))
            g_1#(s(x),y) -> c_7(g_1#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            f_2#(x) -> c_3(g_2#(x,x))
            f_3#(x) -> c_4(g_3#(x,x))
            f_4#(x) -> c_5(g_4#(x,x))
            g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
            g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
            g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
            g_5#(s(x),y) -> f_4#(y)
            g_5#(s(x),y) -> g_5#(x,y)
          Weak TRS Rules:
            
          Signature:
            {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
          Obligation:
            Innermost
            basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
        Applied Processor:
          DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
        Proof:
          We decompose the input problem according to the dependency graph into the upper component
            f_4#(x) -> c_5(g_4#(x,x))
            g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
            g_5#(s(x),y) -> f_4#(y)
            g_5#(s(x),y) -> g_5#(x,y)
          and a lower component
            f_1#(x) -> c_2(g_1#(x,x))
            f_2#(x) -> c_3(g_2#(x,x))
            f_3#(x) -> c_4(g_3#(x,x))
            g_1#(s(x),y) -> c_7(g_1#(x,y))
            g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
            g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
          Further, following extension rules are added to the lower component.
            f_4#(x) -> g_4#(x,x)
            g_4#(s(x),y) -> f_3#(y)
            g_4#(s(x),y) -> g_4#(x,y)
            g_5#(s(x),y) -> f_4#(y)
            g_5#(s(x),y) -> g_5#(x,y)
      *** 1.1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              f_4#(x) -> c_5(g_4#(x,x))
              g_5#(s(x),y) -> f_4#(y)
              g_5#(s(x),y) -> g_5#(x,y)
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
            Obligation:
              Innermost
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              1: g_4#(s(x),y) -> c_10(f_3#(y)   
                                     ,g_4#(x,y))
              
            The strictly oriented rules are moved into the weak component.
        *** 1.1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                f_4#(x) -> c_5(g_4#(x,x))
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation:
              The following argument positions are considered usable:
                uargs(c_5) = {1},
                uargs(c_10) = {2}
              
              Following symbols are considered usable:
                {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}
              TcT has computed the following interpretation:
                   p(a) = [0]                    
                   p(b) = [1] x1 + [1] x2 + [0]  
                 p(f_0) = [0]                    
                 p(f_1) = [0]                    
                 p(f_2) = [0]                    
                 p(f_3) = [2]                    
                 p(f_4) = [0]                    
                 p(f_5) = [2] x1 + [2]           
                 p(g_1) = [2]                    
                 p(g_2) = [1] x1 + [0]           
                 p(g_3) = [1] x2 + [1]           
                 p(g_4) = [1] x1 + [1]           
                 p(g_5) = [1] x2 + [0]           
                   p(s) = [1] x1 + [1]           
                p(f_0#) = [1] x1 + [0]           
                p(f_1#) = [1] x1 + [2]           
                p(f_2#) = [1] x1 + [1]           
                p(f_3#) = [1]                    
                p(f_4#) = [12] x1 + [14]         
                p(f_5#) = [2] x1 + [1]           
                p(g_1#) = [1]                    
                p(g_2#) = [2] x1 + [1] x2 + [1]  
                p(g_3#) = [1] x2 + [0]           
                p(g_4#) = [2] x1 + [4] x2 + [0]  
                p(g_5#) = [14] x1 + [14] x2 + [0]
                 p(c_1) = [0]                    
                 p(c_2) = [1] x1 + [0]           
                 p(c_3) = [1] x1 + [2]           
                 p(c_4) = [2] x1 + [4]           
                 p(c_5) = [2] x1 + [14]          
                 p(c_6) = [1]                    
                 p(c_7) = [2] x1 + [8]           
                 p(c_8) = [2] x1 + [1] x2 + [1]  
                 p(c_9) = [2] x2 + [1]           
                p(c_10) = [1] x2 + [0]           
                p(c_11) = [2]                    
              
              Following rules are strictly oriented:
              g_4#(s(x),y) = [2] x + [4] y + [2]    
                           > [2] x + [4] y + [0]    
                           = c_10(f_3#(y),g_4#(x,y))
              
              
              Following rules are (at-least) weakly oriented:
                   f_4#(x) =  [12] x + [14]         
                           >= [12] x + [14]         
                           =  c_5(g_4#(x,x))        
              
              g_5#(s(x),y) =  [14] x + [14] y + [14]
                           >= [12] y + [14]         
                           =  f_4#(y)               
              
              g_5#(s(x),y) =  [14] x + [14] y + [14]
                           >= [14] x + [14] y + [0] 
                           =  g_5#(x,y)             
              
        *** 1.1.1.1.1.1.1.1.1.2.1.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                f_4#(x) -> c_5(g_4#(x,x))
                g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.1.1.1.2.1.2 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                f_4#(x) -> c_5(g_4#(x,x))
                g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:W:f_4#(x) -> c_5(g_4#(x,x))
                   -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):2
                
                2:W:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
                   -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):2
                
                3:W:g_5#(s(x),y) -> f_4#(y)
                   -->_1 f_4#(x) -> c_5(g_4#(x,x)):1
                
                4:W:g_5#(s(x),y) -> g_5#(x,y)
                   -->_1 g_5#(s(x),y) -> g_5#(x,y):4
                   -->_1 g_5#(s(x),y) -> f_4#(y):3
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                4: g_5#(s(x),y) -> g_5#(x,y)      
                3: g_5#(s(x),y) -> f_4#(y)        
                1: f_4#(x) -> c_5(g_4#(x,x))      
                2: g_4#(s(x),y) -> c_10(f_3#(y)   
                                       ,g_4#(x,y))
        *** 1.1.1.1.1.1.1.1.1.2.1.2.1 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              EmptyProcessor
            Proof:
              The problem is already closed. The intended complexity is O(1).
        
      *** 1.1.1.1.1.1.1.1.1.2.2 Progress [(?,O(n^3))]  ***
          Considered Problem:
            Strict DP Rules:
              f_1#(x) -> c_2(g_1#(x,x))
              g_1#(s(x),y) -> c_7(g_1#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              f_2#(x) -> c_3(g_2#(x,x))
              f_3#(x) -> c_4(g_3#(x,x))
              f_4#(x) -> g_4#(x,x)
              g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
              g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
              g_4#(s(x),y) -> f_3#(y)
              g_4#(s(x),y) -> g_4#(x,y)
              g_5#(s(x),y) -> f_4#(y)
              g_5#(s(x),y) -> g_5#(x,y)
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
            Obligation:
              Innermost
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
          Proof:
            We decompose the input problem according to the dependency graph into the upper component
              f_3#(x) -> c_4(g_3#(x,x))
              f_4#(x) -> g_4#(x,x)
              g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
              g_4#(s(x),y) -> f_3#(y)
              g_4#(s(x),y) -> g_4#(x,y)
              g_5#(s(x),y) -> f_4#(y)
              g_5#(s(x),y) -> g_5#(x,y)
            and a lower component
              f_1#(x) -> c_2(g_1#(x,x))
              f_2#(x) -> c_3(g_2#(x,x))
              g_1#(s(x),y) -> c_7(g_1#(x,y))
              g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
            Further, following extension rules are added to the lower component.
              f_3#(x) -> g_3#(x,x)
              f_4#(x) -> g_4#(x,x)
              g_3#(s(x),y) -> f_2#(y)
              g_3#(s(x),y) -> g_3#(x,y)
              g_4#(s(x),y) -> f_3#(y)
              g_4#(s(x),y) -> g_4#(x,y)
              g_5#(s(x),y) -> f_4#(y)
              g_5#(s(x),y) -> g_5#(x,y)
        *** 1.1.1.1.1.1.1.1.1.2.2.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                f_3#(x) -> c_4(g_3#(x,x))
                f_4#(x) -> g_4#(x,x)
                g_4#(s(x),y) -> f_3#(y)
                g_4#(s(x),y) -> g_4#(x,y)
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                1: g_3#(s(x),y) -> c_9(f_2#(y)   
                                      ,g_3#(x,y))
                
              The strictly oriented rules are moved into the weak component.
          *** 1.1.1.1.1.1.1.1.1.2.2.1.1 Progress [(?,O(n^1))]  ***
              Considered Problem:
                Strict DP Rules:
                  g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_3#(x) -> c_4(g_3#(x,x))
                  f_4#(x) -> g_4#(x,x)
                  g_4#(s(x),y) -> f_3#(y)
                  g_4#(s(x),y) -> g_4#(x,y)
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a matrix interpretation of kind constructor based matrix interpretation:
                The following argument positions are considered usable:
                  uargs(c_4) = {1},
                  uargs(c_9) = {2}
                
                Following symbols are considered usable:
                  {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}
                TcT has computed the following interpretation:
                     p(a) = [1]                   
                     p(b) = [1] x1 + [1] x2 + [1] 
                   p(f_0) = [0]                   
                   p(f_1) = [1] x1 + [1]          
                   p(f_2) = [0]                   
                   p(f_3) = [4] x1 + [2]          
                   p(f_4) = [1]                   
                   p(f_5) = [1] x1 + [8]          
                   p(g_1) = [1] x1 + [2]          
                   p(g_2) = [1] x2 + [1]          
                   p(g_3) = [2] x2 + [1]          
                   p(g_4) = [0]                   
                   p(g_5) = [0]                   
                     p(s) = [1] x1 + [2]          
                  p(f_0#) = [0]                   
                  p(f_1#) = [0]                   
                  p(f_2#) = [1]                   
                  p(f_3#) = [12] x1 + [5]         
                  p(f_4#) = [12] x1 + [8]         
                  p(f_5#) = [0]                   
                  p(g_1#) = [1] x2 + [4]          
                  p(g_2#) = [1]                   
                  p(g_3#) = [12] x1 + [4]         
                  p(g_4#) = [12] x2 + [5]         
                  p(g_5#) = [2] x1 + [12] x2 + [9]
                   p(c_1) = [0]                   
                   p(c_2) = [0]                   
                   p(c_3) = [0]                   
                   p(c_4) = [1] x1 + [0]          
                   p(c_5) = [0]                   
                   p(c_6) = [2] x1 + [1]          
                   p(c_7) = [2]                   
                   p(c_8) = [2] x1 + [1] x2 + [0] 
                   p(c_9) = [8] x1 + [1] x2 + [14]
                  p(c_10) = [1] x1 + [1] x2 + [2] 
                  p(c_11) = [2] x1 + [4] x2 + [8] 
                
                Following rules are strictly oriented:
                g_3#(s(x),y) = [12] x + [28]         
                             > [12] x + [26]         
                             = c_9(f_2#(y),g_3#(x,y))
                
                
                Following rules are (at-least) weakly oriented:
                     f_3#(x) =  [12] x + [5]         
                             >= [12] x + [4]         
                             =  c_4(g_3#(x,x))       
                
                     f_4#(x) =  [12] x + [8]         
                             >= [12] x + [5]         
                             =  g_4#(x,x)            
                
                g_4#(s(x),y) =  [12] y + [5]         
                             >= [12] y + [5]         
                             =  f_3#(y)              
                
                g_4#(s(x),y) =  [12] y + [5]         
                             >= [12] y + [5]         
                             =  g_4#(x,y)            
                
                g_5#(s(x),y) =  [2] x + [12] y + [13]
                             >= [12] y + [8]         
                             =  f_4#(y)              
                
                g_5#(s(x),y) =  [2] x + [12] y + [13]
                             >= [2] x + [12] y + [9] 
                             =  g_5#(x,y)            
                
          *** 1.1.1.1.1.1.1.1.1.2.2.1.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_3#(x) -> c_4(g_3#(x,x))
                  f_4#(x) -> g_4#(x,x)
                  g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
                  g_4#(s(x),y) -> f_3#(y)
                  g_4#(s(x),y) -> g_4#(x,y)
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.1.1.2.2.1.2 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_3#(x) -> c_4(g_3#(x,x))
                  f_4#(x) -> g_4#(x,x)
                  g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
                  g_4#(s(x),y) -> f_3#(y)
                  g_4#(s(x),y) -> g_4#(x,y)
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                RemoveWeakSuffixes
              Proof:
                Consider the dependency graph
                  1:W:f_3#(x) -> c_4(g_3#(x,x))
                     -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):3
                  
                  2:W:f_4#(x) -> g_4#(x,x)
                     -->_1 g_4#(s(x),y) -> g_4#(x,y):5
                     -->_1 g_4#(s(x),y) -> f_3#(y):4
                  
                  3:W:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
                     -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):3
                  
                  4:W:g_4#(s(x),y) -> f_3#(y)
                     -->_1 f_3#(x) -> c_4(g_3#(x,x)):1
                  
                  5:W:g_4#(s(x),y) -> g_4#(x,y)
                     -->_1 g_4#(s(x),y) -> g_4#(x,y):5
                     -->_1 g_4#(s(x),y) -> f_3#(y):4
                  
                  6:W:g_5#(s(x),y) -> f_4#(y)
                     -->_1 f_4#(x) -> g_4#(x,x):2
                  
                  7:W:g_5#(s(x),y) -> g_5#(x,y)
                     -->_1 g_5#(s(x),y) -> g_5#(x,y):7
                     -->_1 g_5#(s(x),y) -> f_4#(y):6
                  
                The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                  7: g_5#(s(x),y) -> g_5#(x,y)     
                  6: g_5#(s(x),y) -> f_4#(y)       
                  2: f_4#(x) -> g_4#(x,x)          
                  5: g_4#(s(x),y) -> g_4#(x,y)     
                  4: g_4#(s(x),y) -> f_3#(y)       
                  1: f_3#(x) -> c_4(g_3#(x,x))     
                  3: g_3#(s(x),y) -> c_9(f_2#(y)   
                                        ,g_3#(x,y))
          *** 1.1.1.1.1.1.1.1.1.2.2.1.2.1 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                EmptyProcessor
              Proof:
                The problem is already closed. The intended complexity is O(1).
          
        *** 1.1.1.1.1.1.1.1.1.2.2.2 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                f_1#(x) -> c_2(g_1#(x,x))
                g_1#(s(x),y) -> c_7(g_1#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                f_2#(x) -> c_3(g_2#(x,x))
                f_3#(x) -> g_3#(x,x)
                f_4#(x) -> g_4#(x,x)
                g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
                g_3#(s(x),y) -> f_2#(y)
                g_3#(s(x),y) -> g_3#(x,y)
                g_4#(s(x),y) -> f_3#(y)
                g_4#(s(x),y) -> g_4#(x,y)
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                2: g_1#(s(x),y) -> c_7(g_1#(x,y))
                
              The strictly oriented rules are moved into the weak component.
          *** 1.1.1.1.1.1.1.1.1.2.2.2.1 Progress [(?,O(n^2))]  ***
              Considered Problem:
                Strict DP Rules:
                  f_1#(x) -> c_2(g_1#(x,x))
                  g_1#(s(x),y) -> c_7(g_1#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_2#(x) -> c_3(g_2#(x,x))
                  f_3#(x) -> g_3#(x,x)
                  f_4#(x) -> g_4#(x,x)
                  g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
                  g_3#(s(x),y) -> f_2#(y)
                  g_3#(s(x),y) -> g_3#(x,y)
                  g_4#(s(x),y) -> f_3#(y)
                  g_4#(s(x),y) -> g_4#(x,y)
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a polynomial interpretation of kind constructor-based(mixed(2)):
                The following argument positions are considered usable:
                  uargs(c_2) = {1},
                  uargs(c_3) = {1},
                  uargs(c_7) = {1},
                  uargs(c_8) = {1,2}
                
                Following symbols are considered usable:
                  {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}
                TcT has computed the following interpretation:
                     p(a) = 0                                 
                     p(b) = 0                                 
                   p(f_0) = 1 + x1 + x1^2                     
                   p(f_1) = 1 + 2*x1 + 2*x1^2                 
                   p(f_2) = 2 + x1^2                          
                   p(f_3) = 2*x1 + 4*x1^2                     
                   p(f_4) = 4                                 
                   p(f_5) = x1 + 2*x1^2                       
                   p(g_1) = 1 + 2*x1 + 4*x2^2                 
                   p(g_2) = 4 + x1^2 + x2                     
                   p(g_3) = x1 + x1^2 + 2*x2^2                
                   p(g_4) = x1 + x1^2                         
                   p(g_5) = 4 + 4*x1 + 2*x1^2 + x2            
                     p(s) = 1 + x1                            
                  p(f_0#) = 1 + x1 + 2*x1^2                   
                  p(f_1#) = x1                                
                  p(f_2#) = 1 + 2*x1 + 3*x1^2                 
                  p(f_3#) = 6*x1 + 3*x1^2                     
                  p(f_4#) = 2 + 3*x1 + 7*x1^2                 
                  p(f_5#) = 1 + x1^2                          
                  p(g_1#) = x1                                
                  p(g_2#) = x1 + 2*x1*x2 + x2^2               
                  p(g_3#) = x1 + 2*x2 + 3*x2^2                
                  p(g_4#) = 1 + 3*x1*x2 + x1^2 + 3*x2 + 3*x2^2
                  p(g_5#) = 2 + 4*x1*x2 + 7*x2^2              
                   p(c_1) = 1                                 
                   p(c_2) = x1                                
                   p(c_3) = x1                                
                   p(c_4) = 1 + x1                            
                   p(c_5) = 1                                 
                   p(c_6) = x1                                
                   p(c_7) = x1                                
                   p(c_8) = x1 + x2                           
                   p(c_9) = x2                                
                  p(c_10) = 1                                 
                  p(c_11) = 0                                 
                
                Following rules are strictly oriented:
                g_1#(s(x),y) = 1 + x         
                             > x             
                             = c_7(g_1#(x,y))
                
                
                Following rules are (at-least) weakly oriented:
                     f_1#(x) =  x                                  
                             >= x                                  
                             =  c_2(g_1#(x,x))                     
                
                     f_2#(x) =  1 + 2*x + 3*x^2                    
                             >= x + 3*x^2                          
                             =  c_3(g_2#(x,x))                     
                
                     f_3#(x) =  6*x + 3*x^2                        
                             >= 3*x + 3*x^2                        
                             =  g_3#(x,x)                          
                
                     f_4#(x) =  2 + 3*x + 7*x^2                    
                             >= 1 + 3*x + 7*x^2                    
                             =  g_4#(x,x)                          
                
                g_2#(s(x),y) =  1 + x + 2*x*y + 2*y + y^2          
                             >= x + 2*x*y + y + y^2                
                             =  c_8(f_1#(y),g_2#(x,y))             
                
                g_3#(s(x),y) =  1 + x + 2*y + 3*y^2                
                             >= 1 + 2*y + 3*y^2                    
                             =  f_2#(y)                            
                
                g_3#(s(x),y) =  1 + x + 2*y + 3*y^2                
                             >= x + 2*y + 3*y^2                    
                             =  g_3#(x,y)                          
                
                g_4#(s(x),y) =  2 + 2*x + 3*x*y + x^2 + 6*y + 3*y^2
                             >= 6*y + 3*y^2                        
                             =  f_3#(y)                            
                
                g_4#(s(x),y) =  2 + 2*x + 3*x*y + x^2 + 6*y + 3*y^2
                             >= 1 + 3*x*y + x^2 + 3*y + 3*y^2      
                             =  g_4#(x,y)                          
                
                g_5#(s(x),y) =  2 + 4*x*y + 4*y + 7*y^2            
                             >= 2 + 3*y + 7*y^2                    
                             =  f_4#(y)                            
                
                g_5#(s(x),y) =  2 + 4*x*y + 4*y + 7*y^2            
                             >= 2 + 4*x*y + 7*y^2                  
                             =  g_5#(x,y)                          
                
          *** 1.1.1.1.1.1.1.1.1.2.2.2.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  f_1#(x) -> c_2(g_1#(x,x))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_2#(x) -> c_3(g_2#(x,x))
                  f_3#(x) -> g_3#(x,x)
                  f_4#(x) -> g_4#(x,x)
                  g_1#(s(x),y) -> c_7(g_1#(x,y))
                  g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
                  g_3#(s(x),y) -> f_2#(y)
                  g_3#(s(x),y) -> g_3#(x,y)
                  g_4#(s(x),y) -> f_3#(y)
                  g_4#(s(x),y) -> g_4#(x,y)
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.1.1.2.2.2.2 Progress [(?,O(n^1))]  ***
              Considered Problem:
                Strict DP Rules:
                  f_1#(x) -> c_2(g_1#(x,x))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_2#(x) -> c_3(g_2#(x,x))
                  f_3#(x) -> g_3#(x,x)
                  f_4#(x) -> g_4#(x,x)
                  g_1#(s(x),y) -> c_7(g_1#(x,y))
                  g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
                  g_3#(s(x),y) -> f_2#(y)
                  g_3#(s(x),y) -> g_3#(x,y)
                  g_4#(s(x),y) -> f_3#(y)
                  g_4#(s(x),y) -> g_4#(x,y)
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                RemoveWeakSuffixes
              Proof:
                Consider the dependency graph
                  1:S:f_1#(x) -> c_2(g_1#(x,x))
                     -->_1 g_1#(s(x),y) -> c_7(g_1#(x,y)):5
                  
                  2:W:f_2#(x) -> c_3(g_2#(x,x))
                     -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):6
                  
                  3:W:f_3#(x) -> g_3#(x,x)
                     -->_1 g_3#(s(x),y) -> g_3#(x,y):8
                     -->_1 g_3#(s(x),y) -> f_2#(y):7
                  
                  4:W:f_4#(x) -> g_4#(x,x)
                     -->_1 g_4#(s(x),y) -> g_4#(x,y):10
                     -->_1 g_4#(s(x),y) -> f_3#(y):9
                  
                  5:W:g_1#(s(x),y) -> c_7(g_1#(x,y))
                     -->_1 g_1#(s(x),y) -> c_7(g_1#(x,y)):5
                  
                  6:W:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
                     -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):6
                     -->_1 f_1#(x) -> c_2(g_1#(x,x)):1
                  
                  7:W:g_3#(s(x),y) -> f_2#(y)
                     -->_1 f_2#(x) -> c_3(g_2#(x,x)):2
                  
                  8:W:g_3#(s(x),y) -> g_3#(x,y)
                     -->_1 g_3#(s(x),y) -> g_3#(x,y):8
                     -->_1 g_3#(s(x),y) -> f_2#(y):7
                  
                  9:W:g_4#(s(x),y) -> f_3#(y)
                     -->_1 f_3#(x) -> g_3#(x,x):3
                  
                  10:W:g_4#(s(x),y) -> g_4#(x,y)
                     -->_1 g_4#(s(x),y) -> g_4#(x,y):10
                     -->_1 g_4#(s(x),y) -> f_3#(y):9
                  
                  11:W:g_5#(s(x),y) -> f_4#(y)
                     -->_1 f_4#(x) -> g_4#(x,x):4
                  
                  12:W:g_5#(s(x),y) -> g_5#(x,y)
                     -->_1 g_5#(s(x),y) -> g_5#(x,y):12
                     -->_1 g_5#(s(x),y) -> f_4#(y):11
                  
                The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                  5: g_1#(s(x),y) -> c_7(g_1#(x,y))
          *** 1.1.1.1.1.1.1.1.1.2.2.2.2.1 Progress [(?,O(n^1))]  ***
              Considered Problem:
                Strict DP Rules:
                  f_1#(x) -> c_2(g_1#(x,x))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_2#(x) -> c_3(g_2#(x,x))
                  f_3#(x) -> g_3#(x,x)
                  f_4#(x) -> g_4#(x,x)
                  g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
                  g_3#(s(x),y) -> f_2#(y)
                  g_3#(s(x),y) -> g_3#(x,y)
                  g_4#(s(x),y) -> f_3#(y)
                  g_4#(s(x),y) -> g_4#(x,y)
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                SimplifyRHS
              Proof:
                Consider the dependency graph
                  1:S:f_1#(x) -> c_2(g_1#(x,x))
                     
                  
                  2:W:f_2#(x) -> c_3(g_2#(x,x))
                     -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):6
                  
                  3:W:f_3#(x) -> g_3#(x,x)
                     -->_1 g_3#(s(x),y) -> g_3#(x,y):8
                     -->_1 g_3#(s(x),y) -> f_2#(y):7
                  
                  4:W:f_4#(x) -> g_4#(x,x)
                     -->_1 g_4#(s(x),y) -> g_4#(x,y):10
                     -->_1 g_4#(s(x),y) -> f_3#(y):9
                  
                  6:W:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
                     -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):6
                     -->_1 f_1#(x) -> c_2(g_1#(x,x)):1
                  
                  7:W:g_3#(s(x),y) -> f_2#(y)
                     -->_1 f_2#(x) -> c_3(g_2#(x,x)):2
                  
                  8:W:g_3#(s(x),y) -> g_3#(x,y)
                     -->_1 g_3#(s(x),y) -> g_3#(x,y):8
                     -->_1 g_3#(s(x),y) -> f_2#(y):7
                  
                  9:W:g_4#(s(x),y) -> f_3#(y)
                     -->_1 f_3#(x) -> g_3#(x,x):3
                  
                  10:W:g_4#(s(x),y) -> g_4#(x,y)
                     -->_1 g_4#(s(x),y) -> g_4#(x,y):10
                     -->_1 g_4#(s(x),y) -> f_3#(y):9
                  
                  11:W:g_5#(s(x),y) -> f_4#(y)
                     -->_1 f_4#(x) -> g_4#(x,x):4
                  
                  12:W:g_5#(s(x),y) -> g_5#(x,y)
                     -->_1 g_5#(s(x),y) -> g_5#(x,y):12
                     -->_1 g_5#(s(x),y) -> f_4#(y):11
                  
                Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
                  f_1#(x) -> c_2()
          *** 1.1.1.1.1.1.1.1.1.2.2.2.2.1.1 Progress [(?,O(n^1))]  ***
              Considered Problem:
                Strict DP Rules:
                  f_1#(x) -> c_2()
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_2#(x) -> c_3(g_2#(x,x))
                  f_3#(x) -> g_3#(x,x)
                  f_4#(x) -> g_4#(x,x)
                  g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
                  g_3#(s(x),y) -> f_2#(y)
                  g_3#(s(x),y) -> g_3#(x,y)
                  g_4#(s(x),y) -> f_3#(y)
                  g_4#(s(x),y) -> g_4#(x,y)
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
              Proof:
                We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                  1: f_1#(x) -> c_2()
                  
                The strictly oriented rules are moved into the weak component.
            *** 1.1.1.1.1.1.1.1.1.2.2.2.2.1.1.1 Progress [(?,O(n^1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    f_1#(x) -> c_2()
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    f_2#(x) -> c_3(g_2#(x,x))
                    f_3#(x) -> g_3#(x,x)
                    f_4#(x) -> g_4#(x,x)
                    g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
                    g_3#(s(x),y) -> f_2#(y)
                    g_3#(s(x),y) -> g_3#(x,y)
                    g_4#(s(x),y) -> f_3#(y)
                    g_4#(s(x),y) -> g_4#(x,y)
                    g_5#(s(x),y) -> f_4#(y)
                    g_5#(s(x),y) -> g_5#(x,y)
                  Weak TRS Rules:
                    
                  Signature:
                    {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
                  Obligation:
                    Innermost
                    basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
                Applied Processor:
                  NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
                Proof:
                  We apply a matrix interpretation of kind constructor based matrix interpretation:
                  The following argument positions are considered usable:
                    uargs(c_3) = {1},
                    uargs(c_8) = {1,2}
                  
                  Following symbols are considered usable:
                    {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}
                  TcT has computed the following interpretation:
                       p(a) = [0]                  
                       p(b) = [1] x1 + [1] x2 + [0]
                     p(f_0) = [0]                  
                     p(f_1) = [0]                  
                     p(f_2) = [0]                  
                     p(f_3) = [0]                  
                     p(f_4) = [0]                  
                     p(f_5) = [0]                  
                     p(g_1) = [0]                  
                     p(g_2) = [0]                  
                     p(g_3) = [0]                  
                     p(g_4) = [0]                  
                     p(g_5) = [1] x2 + [0]         
                       p(s) = [1] x1 + [9]         
                    p(f_0#) = [0]                  
                    p(f_1#) = [1]                  
                    p(f_2#) = [6] x1 + [1]         
                    p(f_3#) = [6] x1 + [2]         
                    p(f_4#) = [7] x1 + [9]         
                    p(f_5#) = [0]                  
                    p(g_1#) = [1] x1 + [1] x2 + [1]
                    p(g_2#) = [2] x1 + [4] x2 + [0]
                    p(g_3#) = [6] x2 + [2]         
                    p(g_4#) = [7] x2 + [2]         
                    p(g_5#) = [2] x1 + [7] x2 + [8]
                     p(c_1) = [1]                  
                     p(c_2) = [0]                  
                     p(c_3) = [1] x1 + [1]         
                     p(c_4) = [0]                  
                     p(c_5) = [1]                  
                     p(c_6) = [8] x1 + [0]         
                     p(c_7) = [8] x1 + [2]         
                     p(c_8) = [1] x1 + [1] x2 + [0]
                     p(c_9) = [0]                  
                    p(c_10) = [1]                  
                    p(c_11) = [8] x1 + [1]         
                  
                  Following rules are strictly oriented:
                  f_1#(x) = [1]  
                          > [0]  
                          = c_2()
                  
                  
                  Following rules are (at-least) weakly oriented:
                       f_2#(x) =  [6] x + [1]           
                               >= [6] x + [1]           
                               =  c_3(g_2#(x,x))        
                  
                       f_3#(x) =  [6] x + [2]           
                               >= [6] x + [2]           
                               =  g_3#(x,x)             
                  
                       f_4#(x) =  [7] x + [9]           
                               >= [7] x + [2]           
                               =  g_4#(x,x)             
                  
                  g_2#(s(x),y) =  [2] x + [4] y + [18]  
                               >= [2] x + [4] y + [1]   
                               =  c_8(f_1#(y),g_2#(x,y))
                  
                  g_3#(s(x),y) =  [6] y + [2]           
                               >= [6] y + [1]           
                               =  f_2#(y)               
                  
                  g_3#(s(x),y) =  [6] y + [2]           
                               >= [6] y + [2]           
                               =  g_3#(x,y)             
                  
                  g_4#(s(x),y) =  [7] y + [2]           
                               >= [6] y + [2]           
                               =  f_3#(y)               
                  
                  g_4#(s(x),y) =  [7] y + [2]           
                               >= [7] y + [2]           
                               =  g_4#(x,y)             
                  
                  g_5#(s(x),y) =  [2] x + [7] y + [26]  
                               >= [7] y + [9]           
                               =  f_4#(y)               
                  
                  g_5#(s(x),y) =  [2] x + [7] y + [26]  
                               >= [2] x + [7] y + [8]   
                               =  g_5#(x,y)             
                  
            *** 1.1.1.1.1.1.1.1.1.2.2.2.2.1.1.1.1 Progress [(?,O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    f_1#(x) -> c_2()
                    f_2#(x) -> c_3(g_2#(x,x))
                    f_3#(x) -> g_3#(x,x)
                    f_4#(x) -> g_4#(x,x)
                    g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
                    g_3#(s(x),y) -> f_2#(y)
                    g_3#(s(x),y) -> g_3#(x,y)
                    g_4#(s(x),y) -> f_3#(y)
                    g_4#(s(x),y) -> g_4#(x,y)
                    g_5#(s(x),y) -> f_4#(y)
                    g_5#(s(x),y) -> g_5#(x,y)
                  Weak TRS Rules:
                    
                  Signature:
                    {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
                  Obligation:
                    Innermost
                    basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
                Applied Processor:
                  Assumption
                Proof:
                  ()
            
            *** 1.1.1.1.1.1.1.1.1.2.2.2.2.1.1.2 Progress [(O(1),O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    f_1#(x) -> c_2()
                    f_2#(x) -> c_3(g_2#(x,x))
                    f_3#(x) -> g_3#(x,x)
                    f_4#(x) -> g_4#(x,x)
                    g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
                    g_3#(s(x),y) -> f_2#(y)
                    g_3#(s(x),y) -> g_3#(x,y)
                    g_4#(s(x),y) -> f_3#(y)
                    g_4#(s(x),y) -> g_4#(x,y)
                    g_5#(s(x),y) -> f_4#(y)
                    g_5#(s(x),y) -> g_5#(x,y)
                  Weak TRS Rules:
                    
                  Signature:
                    {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
                  Obligation:
                    Innermost
                    basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
                Applied Processor:
                  RemoveWeakSuffixes
                Proof:
                  Consider the dependency graph
                    1:W:f_1#(x) -> c_2()
                       
                    
                    2:W:f_2#(x) -> c_3(g_2#(x,x))
                       -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):5
                    
                    3:W:f_3#(x) -> g_3#(x,x)
                       -->_1 g_3#(s(x),y) -> g_3#(x,y):7
                       -->_1 g_3#(s(x),y) -> f_2#(y):6
                    
                    4:W:f_4#(x) -> g_4#(x,x)
                       -->_1 g_4#(s(x),y) -> g_4#(x,y):9
                       -->_1 g_4#(s(x),y) -> f_3#(y):8
                    
                    5:W:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
                       -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):5
                       -->_1 f_1#(x) -> c_2():1
                    
                    6:W:g_3#(s(x),y) -> f_2#(y)
                       -->_1 f_2#(x) -> c_3(g_2#(x,x)):2
                    
                    7:W:g_3#(s(x),y) -> g_3#(x,y)
                       -->_1 g_3#(s(x),y) -> g_3#(x,y):7
                       -->_1 g_3#(s(x),y) -> f_2#(y):6
                    
                    8:W:g_4#(s(x),y) -> f_3#(y)
                       -->_1 f_3#(x) -> g_3#(x,x):3
                    
                    9:W:g_4#(s(x),y) -> g_4#(x,y)
                       -->_1 g_4#(s(x),y) -> g_4#(x,y):9
                       -->_1 g_4#(s(x),y) -> f_3#(y):8
                    
                    10:W:g_5#(s(x),y) -> f_4#(y)
                       -->_1 f_4#(x) -> g_4#(x,x):4
                    
                    11:W:g_5#(s(x),y) -> g_5#(x,y)
                       -->_1 g_5#(s(x),y) -> g_5#(x,y):11
                       -->_1 g_5#(s(x),y) -> f_4#(y):10
                    
                  The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                    11: g_5#(s(x),y) -> g_5#(x,y)     
                    10: g_5#(s(x),y) -> f_4#(y)       
                    4:  f_4#(x) -> g_4#(x,x)          
                    9:  g_4#(s(x),y) -> g_4#(x,y)     
                    8:  g_4#(s(x),y) -> f_3#(y)       
                    3:  f_3#(x) -> g_3#(x,x)          
                    7:  g_3#(s(x),y) -> g_3#(x,y)     
                    6:  g_3#(s(x),y) -> f_2#(y)       
                    2:  f_2#(x) -> c_3(g_2#(x,x))     
                    5:  g_2#(s(x),y) -> c_8(f_1#(y)   
                                           ,g_2#(x,y))
                    1:  f_1#(x) -> c_2()              
            *** 1.1.1.1.1.1.1.1.1.2.2.2.2.1.1.2.1 Progress [(O(1),O(1))]  ***
                Considered Problem:
                  Strict DP Rules:
                    
                  Strict TRS Rules:
                    
                  Weak DP Rules:
                    
                  Weak TRS Rules:
                    
                  Signature:
                    {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
                  Obligation:
                    Innermost
                    basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
                Applied Processor:
                  EmptyProcessor
                Proof:
                  The problem is already closed. The intended complexity is O(1).
            
  *** 1.1.1.1.1.1.1.1.2 Progress [(?,O(n^4))]  ***
      Considered Problem:
        Strict DP Rules:
          f_2#(x) -> c_3(g_2#(x,x))
          f_3#(x) -> c_4(g_3#(x,x))
          f_4#(x) -> c_5(g_4#(x,x))
          g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
          g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
          g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
          g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          f_1#(x) -> c_2(g_1#(x,x))
          g_1#(s(x),y) -> c_7(g_1#(x,y))
        Weak TRS Rules:
          
        Signature:
          {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
        Obligation:
          Innermost
          basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:f_2#(x) -> c_3(g_2#(x,x))
             -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):4
          
          2:S:f_3#(x) -> c_4(g_3#(x,x))
             -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):5
          
          3:S:f_4#(x) -> c_5(g_4#(x,x))
             -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):6
          
          4:S:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
             -->_1 f_1#(x) -> c_2(g_1#(x,x)):8
             -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):4
          
          5:S:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
             -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):5
             -->_1 f_2#(x) -> c_3(g_2#(x,x)):1
          
          6:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
             -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):6
             -->_1 f_3#(x) -> c_4(g_3#(x,x)):2
          
          7:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
             -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):7
             -->_1 f_4#(x) -> c_5(g_4#(x,x)):3
          
          8:W:f_1#(x) -> c_2(g_1#(x,x))
             -->_1 g_1#(s(x),y) -> c_7(g_1#(x,y)):9
          
          9:W:g_1#(s(x),y) -> c_7(g_1#(x,y))
             -->_1 g_1#(s(x),y) -> c_7(g_1#(x,y)):9
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          8: f_1#(x) -> c_2(g_1#(x,x))     
          9: g_1#(s(x),y) -> c_7(g_1#(x,y))
  *** 1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^4))]  ***
      Considered Problem:
        Strict DP Rules:
          f_2#(x) -> c_3(g_2#(x,x))
          f_3#(x) -> c_4(g_3#(x,x))
          f_4#(x) -> c_5(g_4#(x,x))
          g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
          g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
          g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
          g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          
        Signature:
          {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
        Obligation:
          Innermost
          basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:f_2#(x) -> c_3(g_2#(x,x))
             -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):4
          
          2:S:f_3#(x) -> c_4(g_3#(x,x))
             -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):5
          
          3:S:f_4#(x) -> c_5(g_4#(x,x))
             -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):6
          
          4:S:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
             -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):4
          
          5:S:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
             -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):5
             -->_1 f_2#(x) -> c_3(g_2#(x,x)):1
          
          6:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
             -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):6
             -->_1 f_3#(x) -> c_4(g_3#(x,x)):2
          
          7:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
             -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):7
             -->_1 f_4#(x) -> c_5(g_4#(x,x)):3
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          g_2#(s(x),y) -> c_8(g_2#(x,y))
  *** 1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(n^4))]  ***
      Considered Problem:
        Strict DP Rules:
          f_2#(x) -> c_3(g_2#(x,x))
          f_3#(x) -> c_4(g_3#(x,x))
          f_4#(x) -> c_5(g_4#(x,x))
          g_2#(s(x),y) -> c_8(g_2#(x,y))
          g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
          g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
          g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          
        Signature:
          {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
        Obligation:
          Innermost
          basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
      Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
      Proof:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          Strict DP Rules:
            f_2#(x) -> c_3(g_2#(x,x))
            g_2#(s(x),y) -> c_8(g_2#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            f_3#(x) -> c_4(g_3#(x,x))
            f_4#(x) -> c_5(g_4#(x,x))
            g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
            g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
            g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
          Weak TRS Rules:
            
          Signature:
            {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
          Obligation:
            Innermost
            basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
        
        Problem (S)
          Strict DP Rules:
            f_3#(x) -> c_4(g_3#(x,x))
            f_4#(x) -> c_5(g_4#(x,x))
            g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
            g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
            g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            f_2#(x) -> c_3(g_2#(x,x))
            g_2#(s(x),y) -> c_8(g_2#(x,y))
          Weak TRS Rules:
            
          Signature:
            {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
          Obligation:
            Innermost
            basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
    *** 1.1.1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^4))]  ***
        Considered Problem:
          Strict DP Rules:
            f_2#(x) -> c_3(g_2#(x,x))
            g_2#(s(x),y) -> c_8(g_2#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            f_3#(x) -> c_4(g_3#(x,x))
            f_4#(x) -> c_5(g_4#(x,x))
            g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
            g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
            g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
          Weak TRS Rules:
            
          Signature:
            {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
          Obligation:
            Innermost
            basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
        Applied Processor:
          DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
        Proof:
          We decompose the input problem according to the dependency graph into the upper component
            g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
          and a lower component
            f_2#(x) -> c_3(g_2#(x,x))
            f_3#(x) -> c_4(g_3#(x,x))
            f_4#(x) -> c_5(g_4#(x,x))
            g_2#(s(x),y) -> c_8(g_2#(x,y))
            g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
            g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
          Further, following extension rules are added to the lower component.
            g_5#(s(x),y) -> f_4#(y)
            g_5#(s(x),y) -> g_5#(x,y)
      *** 1.1.1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
            Obligation:
              Innermost
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              1: g_5#(s(x),y) -> c_11(f_4#(y)   
                                     ,g_5#(x,y))
              
            The strictly oriented rules are moved into the weak component.
        *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation:
              The following argument positions are considered usable:
                uargs(c_11) = {2}
              
              Following symbols are considered usable:
                {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}
              TcT has computed the following interpretation:
                   p(a) = [0]                  
                   p(b) = [1] x1 + [1] x2 + [0]
                 p(f_0) = [0]                  
                 p(f_1) = [0]                  
                 p(f_2) = [0]                  
                 p(f_3) = [0]                  
                 p(f_4) = [0]                  
                 p(f_5) = [0]                  
                 p(g_1) = [8] x1 + [1] x2 + [0]
                 p(g_2) = [8] x2 + [2]         
                 p(g_3) = [8] x1 + [2]         
                 p(g_4) = [8] x1 + [4]         
                 p(g_5) = [1]                  
                   p(s) = [1] x1 + [4]         
                p(f_0#) = [4]                  
                p(f_1#) = [1] x1 + [1]         
                p(f_2#) = [1]                  
                p(f_3#) = [2] x1 + [1]         
                p(f_4#) = [1]                  
                p(f_5#) = [1]                  
                p(g_1#) = [2] x2 + [2]         
                p(g_2#) = [2] x1 + [0]         
                p(g_3#) = [2] x1 + [4] x2 + [0]
                p(g_4#) = [2] x1 + [1]         
                p(g_5#) = [1] x1 + [0]         
                 p(c_1) = [1]                  
                 p(c_2) = [1] x1 + [1]         
                 p(c_3) = [0]                  
                 p(c_4) = [1] x1 + [0]         
                 p(c_5) = [2] x1 + [1]         
                 p(c_6) = [1] x1 + [1]         
                 p(c_7) = [1]                  
                 p(c_8) = [1] x1 + [0]         
                 p(c_9) = [8] x1 + [1]         
                p(c_10) = [0]                  
                p(c_11) = [1] x1 + [1] x2 + [2]
              
              Following rules are strictly oriented:
              g_5#(s(x),y) = [1] x + [4]            
                           > [1] x + [3]            
                           = c_11(f_4#(y),g_5#(x,y))
              
              
              Following rules are (at-least) weakly oriented:
              
        *** 1.1.1.1.1.1.1.1.2.1.1.1.1.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.1.1.2.1.1.1.1.2 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:W:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
                   -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):1
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                1: g_5#(s(x),y) -> c_11(f_4#(y)   
                                       ,g_5#(x,y))
        *** 1.1.1.1.1.1.1.1.2.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              EmptyProcessor
            Proof:
              The problem is already closed. The intended complexity is O(1).
        
      *** 1.1.1.1.1.1.1.1.2.1.1.1.2 Progress [(?,O(n^3))]  ***
          Considered Problem:
            Strict DP Rules:
              f_2#(x) -> c_3(g_2#(x,x))
              g_2#(s(x),y) -> c_8(g_2#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              f_3#(x) -> c_4(g_3#(x,x))
              f_4#(x) -> c_5(g_4#(x,x))
              g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
              g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
              g_5#(s(x),y) -> f_4#(y)
              g_5#(s(x),y) -> g_5#(x,y)
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
            Obligation:
              Innermost
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
          Proof:
            We decompose the input problem according to the dependency graph into the upper component
              f_4#(x) -> c_5(g_4#(x,x))
              g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
              g_5#(s(x),y) -> f_4#(y)
              g_5#(s(x),y) -> g_5#(x,y)
            and a lower component
              f_2#(x) -> c_3(g_2#(x,x))
              f_3#(x) -> c_4(g_3#(x,x))
              g_2#(s(x),y) -> c_8(g_2#(x,y))
              g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
            Further, following extension rules are added to the lower component.
              f_4#(x) -> g_4#(x,x)
              g_4#(s(x),y) -> f_3#(y)
              g_4#(s(x),y) -> g_4#(x,y)
              g_5#(s(x),y) -> f_4#(y)
              g_5#(s(x),y) -> g_5#(x,y)
        *** 1.1.1.1.1.1.1.1.2.1.1.1.2.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                f_4#(x) -> c_5(g_4#(x,x))
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                1: g_4#(s(x),y) -> c_10(f_3#(y)   
                                       ,g_4#(x,y))
                
              The strictly oriented rules are moved into the weak component.
          *** 1.1.1.1.1.1.1.1.2.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
              Considered Problem:
                Strict DP Rules:
                  g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_4#(x) -> c_5(g_4#(x,x))
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a matrix interpretation of kind constructor based matrix interpretation:
                The following argument positions are considered usable:
                  uargs(c_5) = {1},
                  uargs(c_10) = {2}
                
                Following symbols are considered usable:
                  {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}
                TcT has computed the following interpretation:
                     p(a) = [0]                   
                     p(b) = [1] x1 + [1] x2 + [0] 
                   p(f_0) = [0]                   
                   p(f_1) = [1]                   
                   p(f_2) = [8] x1 + [0]          
                   p(f_3) = [1] x1 + [0]          
                   p(f_4) = [0]                   
                   p(f_5) = [8] x1 + [1]          
                   p(g_1) = [8] x2 + [1]          
                   p(g_2) = [1]                   
                   p(g_3) = [8]                   
                   p(g_4) = [1]                   
                   p(g_5) = [0]                   
                     p(s) = [1] x1 + [8]          
                  p(f_0#) = [1]                   
                  p(f_1#) = [2] x1 + [0]          
                  p(f_2#) = [2]                   
                  p(f_3#) = [3]                   
                  p(f_4#) = [8] x1 + [0]          
                  p(f_5#) = [1]                   
                  p(g_1#) = [1] x2 + [2]          
                  p(g_2#) = [1] x1 + [0]          
                  p(g_3#) = [1] x1 + [1]          
                  p(g_4#) = [1] x1 + [7] x2 + [0] 
                  p(g_5#) = [1] x1 + [8] x2 + [10]
                   p(c_1) = [0]                   
                   p(c_2) = [1] x1 + [1]          
                   p(c_3) = [0]                   
                   p(c_4) = [1] x1 + [1]          
                   p(c_5) = [1] x1 + [0]          
                   p(c_6) = [1]                   
                   p(c_7) = [4]                   
                   p(c_8) = [2]                   
                   p(c_9) = [1] x1 + [2] x2 + [1] 
                  p(c_10) = [1] x1 + [1] x2 + [4] 
                  p(c_11) = [2] x2 + [1]          
                
                Following rules are strictly oriented:
                g_4#(s(x),y) = [1] x + [7] y + [8]    
                             > [1] x + [7] y + [7]    
                             = c_10(f_3#(y),g_4#(x,y))
                
                
                Following rules are (at-least) weakly oriented:
                     f_4#(x) =  [8] x + [0]         
                             >= [8] x + [0]         
                             =  c_5(g_4#(x,x))      
                
                g_5#(s(x),y) =  [1] x + [8] y + [18]
                             >= [8] y + [0]         
                             =  f_4#(y)             
                
                g_5#(s(x),y) =  [1] x + [8] y + [18]
                             >= [1] x + [8] y + [10]
                             =  g_5#(x,y)           
                
          *** 1.1.1.1.1.1.1.1.2.1.1.1.2.1.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_4#(x) -> c_5(g_4#(x,x))
                  g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.1.2.1.1.1.2.1.2 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_4#(x) -> c_5(g_4#(x,x))
                  g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                RemoveWeakSuffixes
              Proof:
                Consider the dependency graph
                  1:W:f_4#(x) -> c_5(g_4#(x,x))
                     -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):2
                  
                  2:W:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
                     -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):2
                  
                  3:W:g_5#(s(x),y) -> f_4#(y)
                     -->_1 f_4#(x) -> c_5(g_4#(x,x)):1
                  
                  4:W:g_5#(s(x),y) -> g_5#(x,y)
                     -->_1 g_5#(s(x),y) -> g_5#(x,y):4
                     -->_1 g_5#(s(x),y) -> f_4#(y):3
                  
                The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                  4: g_5#(s(x),y) -> g_5#(x,y)      
                  3: g_5#(s(x),y) -> f_4#(y)        
                  1: f_4#(x) -> c_5(g_4#(x,x))      
                  2: g_4#(s(x),y) -> c_10(f_3#(y)   
                                         ,g_4#(x,y))
          *** 1.1.1.1.1.1.1.1.2.1.1.1.2.1.2.1 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                EmptyProcessor
              Proof:
                The problem is already closed. The intended complexity is O(1).
          
        *** 1.1.1.1.1.1.1.1.2.1.1.1.2.2 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                f_2#(x) -> c_3(g_2#(x,x))
                g_2#(s(x),y) -> c_8(g_2#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                f_3#(x) -> c_4(g_3#(x,x))
                f_4#(x) -> g_4#(x,x)
                g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
                g_4#(s(x),y) -> f_3#(y)
                g_4#(s(x),y) -> g_4#(x,y)
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                1: f_2#(x) -> c_3(g_2#(x,x))     
                2: g_2#(s(x),y) -> c_8(g_2#(x,y))
                
              The strictly oriented rules are moved into the weak component.
          *** 1.1.1.1.1.1.1.1.2.1.1.1.2.2.1 Progress [(?,O(n^2))]  ***
              Considered Problem:
                Strict DP Rules:
                  f_2#(x) -> c_3(g_2#(x,x))
                  g_2#(s(x),y) -> c_8(g_2#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_3#(x) -> c_4(g_3#(x,x))
                  f_4#(x) -> g_4#(x,x)
                  g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
                  g_4#(s(x),y) -> f_3#(y)
                  g_4#(s(x),y) -> g_4#(x,y)
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a polynomial interpretation of kind constructor-based(mixed(2)):
                The following argument positions are considered usable:
                  uargs(c_3) = {1},
                  uargs(c_4) = {1},
                  uargs(c_8) = {1},
                  uargs(c_9) = {1,2}
                
                Following symbols are considered usable:
                  {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}
                TcT has computed the following interpretation:
                     p(a) = 0                                        
                     p(b) = 0                                        
                   p(f_0) = x1 + x1^2                                
                   p(f_1) = 1 + x1^2                                 
                   p(f_2) = 0                                        
                   p(f_3) = 1 + x1^2                                 
                   p(f_4) = 2 + x1^2                                 
                   p(f_5) = 2*x1^2                                   
                   p(g_1) = x1 + 4*x1^2 + x2 + x2^2                  
                   p(g_2) = x1 + x2^2                                
                   p(g_3) = 4*x1 + x1*x2 + x1^2 + x2                 
                   p(g_4) = x1 + x1*x2 + 4*x1^2 + x2 + x2^2          
                   p(g_5) = 4*x1*x2 + x1^2 + x2                      
                     p(s) = 1 + x1                                   
                  p(f_0#) = x1 + 4*x1^2                              
                  p(f_1#) = x1^2                                     
                  p(f_2#) = 4 + 4*x1                                 
                  p(f_3#) = 7 + 7*x1 + 7*x1^2                        
                  p(f_4#) = 7 + 7*x1 + 7*x1^2                        
                  p(f_5#) = 1 + x1^2                                 
                  p(g_1#) = 1 + x2^2                                 
                  p(g_2#) = 2*x1 + 2*x2                              
                  p(g_3#) = 6 + 2*x1 + 4*x1*x2 + 2*x1^2 + 5*x2 + x2^2
                  p(g_4#) = 7 + 7*x2 + 7*x2^2                        
                  p(g_5#) = 6 + 2*x1 + 6*x1*x2 + 4*x2 + 7*x2^2       
                   p(c_1) = 0                                        
                   p(c_2) = 0                                        
                   p(c_3) = 1 + x1                                   
                   p(c_4) = 1 + x1                                   
                   p(c_5) = 1 + x1                                   
                   p(c_6) = 1 + x1                                   
                   p(c_7) = 0                                        
                   p(c_8) = x1                                       
                   p(c_9) = x1 + x2                                  
                  p(c_10) = x1                                       
                  p(c_11) = 0                                        
                
                Following rules are strictly oriented:
                     f_2#(x) = 4 + 4*x       
                             > 1 + 4*x       
                             = c_3(g_2#(x,x))
                
                g_2#(s(x),y) = 2 + 2*x + 2*y 
                             > 2*x + 2*y     
                             = c_8(g_2#(x,y))
                
                
                Following rules are (at-least) weakly oriented:
                     f_3#(x) =  7 + 7*x + 7*x^2                     
                             >= 7 + 7*x + 7*x^2                     
                             =  c_4(g_3#(x,x))                      
                
                     f_4#(x) =  7 + 7*x + 7*x^2                     
                             >= 7 + 7*x + 7*x^2                     
                             =  g_4#(x,x)                           
                
                g_3#(s(x),y) =  10 + 6*x + 4*x*y + 2*x^2 + 9*y + y^2
                             >= 10 + 2*x + 4*x*y + 2*x^2 + 9*y + y^2
                             =  c_9(f_2#(y),g_3#(x,y))              
                
                g_4#(s(x),y) =  7 + 7*y + 7*y^2                     
                             >= 7 + 7*y + 7*y^2                     
                             =  f_3#(y)                             
                
                g_4#(s(x),y) =  7 + 7*y + 7*y^2                     
                             >= 7 + 7*y + 7*y^2                     
                             =  g_4#(x,y)                           
                
                g_5#(s(x),y) =  8 + 2*x + 6*x*y + 10*y + 7*y^2      
                             >= 7 + 7*y + 7*y^2                     
                             =  f_4#(y)                             
                
                g_5#(s(x),y) =  8 + 2*x + 6*x*y + 10*y + 7*y^2      
                             >= 6 + 2*x + 6*x*y + 4*y + 7*y^2       
                             =  g_5#(x,y)                           
                
          *** 1.1.1.1.1.1.1.1.2.1.1.1.2.2.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_2#(x) -> c_3(g_2#(x,x))
                  f_3#(x) -> c_4(g_3#(x,x))
                  f_4#(x) -> g_4#(x,x)
                  g_2#(s(x),y) -> c_8(g_2#(x,y))
                  g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
                  g_4#(s(x),y) -> f_3#(y)
                  g_4#(s(x),y) -> g_4#(x,y)
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.1.2.1.1.1.2.2.2 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_2#(x) -> c_3(g_2#(x,x))
                  f_3#(x) -> c_4(g_3#(x,x))
                  f_4#(x) -> g_4#(x,x)
                  g_2#(s(x),y) -> c_8(g_2#(x,y))
                  g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
                  g_4#(s(x),y) -> f_3#(y)
                  g_4#(s(x),y) -> g_4#(x,y)
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                RemoveWeakSuffixes
              Proof:
                Consider the dependency graph
                  1:W:f_2#(x) -> c_3(g_2#(x,x))
                     -->_1 g_2#(s(x),y) -> c_8(g_2#(x,y)):4
                  
                  2:W:f_3#(x) -> c_4(g_3#(x,x))
                     -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):5
                  
                  3:W:f_4#(x) -> g_4#(x,x)
                     -->_1 g_4#(s(x),y) -> g_4#(x,y):7
                     -->_1 g_4#(s(x),y) -> f_3#(y):6
                  
                  4:W:g_2#(s(x),y) -> c_8(g_2#(x,y))
                     -->_1 g_2#(s(x),y) -> c_8(g_2#(x,y)):4
                  
                  5:W:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
                     -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):5
                     -->_1 f_2#(x) -> c_3(g_2#(x,x)):1
                  
                  6:W:g_4#(s(x),y) -> f_3#(y)
                     -->_1 f_3#(x) -> c_4(g_3#(x,x)):2
                  
                  7:W:g_4#(s(x),y) -> g_4#(x,y)
                     -->_1 g_4#(s(x),y) -> g_4#(x,y):7
                     -->_1 g_4#(s(x),y) -> f_3#(y):6
                  
                  8:W:g_5#(s(x),y) -> f_4#(y)
                     -->_1 f_4#(x) -> g_4#(x,x):3
                  
                  9:W:g_5#(s(x),y) -> g_5#(x,y)
                     -->_1 g_5#(s(x),y) -> g_5#(x,y):9
                     -->_1 g_5#(s(x),y) -> f_4#(y):8
                  
                The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                  9: g_5#(s(x),y) -> g_5#(x,y)     
                  8: g_5#(s(x),y) -> f_4#(y)       
                  3: f_4#(x) -> g_4#(x,x)          
                  7: g_4#(s(x),y) -> g_4#(x,y)     
                  6: g_4#(s(x),y) -> f_3#(y)       
                  2: f_3#(x) -> c_4(g_3#(x,x))     
                  5: g_3#(s(x),y) -> c_9(f_2#(y)   
                                        ,g_3#(x,y))
                  1: f_2#(x) -> c_3(g_2#(x,x))     
                  4: g_2#(s(x),y) -> c_8(g_2#(x,y))
          *** 1.1.1.1.1.1.1.1.2.1.1.1.2.2.2.1 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                EmptyProcessor
              Proof:
                The problem is already closed. The intended complexity is O(1).
          
    *** 1.1.1.1.1.1.1.1.2.1.1.2 Progress [(?,O(n^3))]  ***
        Considered Problem:
          Strict DP Rules:
            f_3#(x) -> c_4(g_3#(x,x))
            f_4#(x) -> c_5(g_4#(x,x))
            g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
            g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
            g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            f_2#(x) -> c_3(g_2#(x,x))
            g_2#(s(x),y) -> c_8(g_2#(x,y))
          Weak TRS Rules:
            
          Signature:
            {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
          Obligation:
            Innermost
            basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:S:f_3#(x) -> c_4(g_3#(x,x))
               -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):3
            
            2:S:f_4#(x) -> c_5(g_4#(x,x))
               -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):4
            
            3:S:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
               -->_1 f_2#(x) -> c_3(g_2#(x,x)):6
               -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):3
            
            4:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
               -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):4
               -->_1 f_3#(x) -> c_4(g_3#(x,x)):1
            
            5:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
               -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):5
               -->_1 f_4#(x) -> c_5(g_4#(x,x)):2
            
            6:W:f_2#(x) -> c_3(g_2#(x,x))
               -->_1 g_2#(s(x),y) -> c_8(g_2#(x,y)):7
            
            7:W:g_2#(s(x),y) -> c_8(g_2#(x,y))
               -->_1 g_2#(s(x),y) -> c_8(g_2#(x,y)):7
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            6: f_2#(x) -> c_3(g_2#(x,x))     
            7: g_2#(s(x),y) -> c_8(g_2#(x,y))
    *** 1.1.1.1.1.1.1.1.2.1.1.2.1 Progress [(?,O(n^3))]  ***
        Considered Problem:
          Strict DP Rules:
            f_3#(x) -> c_4(g_3#(x,x))
            f_4#(x) -> c_5(g_4#(x,x))
            g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
            g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
            g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/2,c_10/2,c_11/2}
          Obligation:
            Innermost
            basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
        Applied Processor:
          SimplifyRHS
        Proof:
          Consider the dependency graph
            1:S:f_3#(x) -> c_4(g_3#(x,x))
               -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):3
            
            2:S:f_4#(x) -> c_5(g_4#(x,x))
               -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):4
            
            3:S:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
               -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):3
            
            4:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
               -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):4
               -->_1 f_3#(x) -> c_4(g_3#(x,x)):1
            
            5:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
               -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):5
               -->_1 f_4#(x) -> c_5(g_4#(x,x)):2
            
          Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
            g_3#(s(x),y) -> c_9(g_3#(x,y))
    *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1 Progress [(?,O(n^3))]  ***
        Considered Problem:
          Strict DP Rules:
            f_3#(x) -> c_4(g_3#(x,x))
            f_4#(x) -> c_5(g_4#(x,x))
            g_3#(s(x),y) -> c_9(g_3#(x,y))
            g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
            g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2}
          Obligation:
            Innermost
            basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
        Applied Processor:
          Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
        Proof:
          We analyse the complexity of following sub-problems (R) and (S).
          Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
          
          Problem (R)
            Strict DP Rules:
              f_3#(x) -> c_4(g_3#(x,x))
              g_3#(s(x),y) -> c_9(g_3#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              f_4#(x) -> c_5(g_4#(x,x))
              g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
              g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2}
            Obligation:
              Innermost
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          
          Problem (S)
            Strict DP Rules:
              f_4#(x) -> c_5(g_4#(x,x))
              g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
              g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              f_3#(x) -> c_4(g_3#(x,x))
              g_3#(s(x),y) -> c_9(g_3#(x,y))
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2}
            Obligation:
              Innermost
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
      *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^3))]  ***
          Considered Problem:
            Strict DP Rules:
              f_3#(x) -> c_4(g_3#(x,x))
              g_3#(s(x),y) -> c_9(g_3#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              f_4#(x) -> c_5(g_4#(x,x))
              g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
              g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2}
            Obligation:
              Innermost
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
          Proof:
            We decompose the input problem according to the dependency graph into the upper component
              g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
            and a lower component
              f_3#(x) -> c_4(g_3#(x,x))
              f_4#(x) -> c_5(g_4#(x,x))
              g_3#(s(x),y) -> c_9(g_3#(x,y))
              g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
            Further, following extension rules are added to the lower component.
              g_5#(s(x),y) -> f_4#(y)
              g_5#(s(x),y) -> g_5#(x,y)
        *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                1: g_5#(s(x),y) -> c_11(f_4#(y)   
                                       ,g_5#(x,y))
                
              The strictly oriented rules are moved into the weak component.
          *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1 Progress [(?,O(n^1))]  ***
              Considered Problem:
                Strict DP Rules:
                  g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a matrix interpretation of kind constructor based matrix interpretation:
                The following argument positions are considered usable:
                  uargs(c_11) = {2}
                
                Following symbols are considered usable:
                  {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}
                TcT has computed the following interpretation:
                     p(a) = [0]                  
                     p(b) = [1] x1 + [1] x2 + [0]
                   p(f_0) = [0]                  
                   p(f_1) = [0]                  
                   p(f_2) = [0]                  
                   p(f_3) = [0]                  
                   p(f_4) = [0]                  
                   p(f_5) = [0]                  
                   p(g_1) = [0]                  
                   p(g_2) = [0]                  
                   p(g_3) = [0]                  
                   p(g_4) = [1] x2 + [0]         
                   p(g_5) = [2] x1 + [2] x2 + [2]
                     p(s) = [1] x1 + [4]         
                  p(f_0#) = [1]                  
                  p(f_1#) = [1]                  
                  p(f_2#) = [4] x1 + [8]         
                  p(f_3#) = [1] x1 + [4]         
                  p(f_4#) = [1]                  
                  p(f_5#) = [1] x1 + [0]         
                  p(g_1#) = [1] x1 + [1] x2 + [1]
                  p(g_2#) = [1] x1 + [1] x2 + [0]
                  p(g_3#) = [1] x1 + [1]         
                  p(g_4#) = [1] x1 + [1] x2 + [0]
                  p(g_5#) = [1] x1 + [2] x2 + [0]
                   p(c_1) = [1]                  
                   p(c_2) = [1]                  
                   p(c_3) = [0]                  
                   p(c_4) = [1] x1 + [0]         
                   p(c_5) = [1]                  
                   p(c_6) = [1] x1 + [1]         
                   p(c_7) = [2]                  
                   p(c_8) = [2] x1 + [0]         
                   p(c_9) = [1] x1 + [2]         
                  p(c_10) = [2] x2 + [2]         
                  p(c_11) = [1] x1 + [1] x2 + [1]
                
                Following rules are strictly oriented:
                g_5#(s(x),y) = [1] x + [2] y + [4]    
                             > [1] x + [2] y + [2]    
                             = c_11(f_4#(y),g_5#(x,y))
                
                
                Following rules are (at-least) weakly oriented:
                
          *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.2 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                RemoveWeakSuffixes
              Proof:
                Consider the dependency graph
                  1:W:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
                     -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):1
                  
                The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                  1: g_5#(s(x),y) -> c_11(f_4#(y)   
                                         ,g_5#(x,y))
          *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                EmptyProcessor
              Proof:
                The problem is already closed. The intended complexity is O(1).
          
        *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                f_3#(x) -> c_4(g_3#(x,x))
                g_3#(s(x),y) -> c_9(g_3#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                f_4#(x) -> c_5(g_4#(x,x))
                g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                1: f_3#(x) -> c_4(g_3#(x,x))     
                2: g_3#(s(x),y) -> c_9(g_3#(x,y))
                
              The strictly oriented rules are moved into the weak component.
          *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2.1 Progress [(?,O(n^2))]  ***
              Considered Problem:
                Strict DP Rules:
                  f_3#(x) -> c_4(g_3#(x,x))
                  g_3#(s(x),y) -> c_9(g_3#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_4#(x) -> c_5(g_4#(x,x))
                  g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a polynomial interpretation of kind constructor-based(mixed(2)):
                The following argument positions are considered usable:
                  uargs(c_4) = {1},
                  uargs(c_5) = {1},
                  uargs(c_9) = {1},
                  uargs(c_10) = {1,2}
                
                Following symbols are considered usable:
                  {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}
                TcT has computed the following interpretation:
                     p(a) = 1                                        
                     p(b) = 1                                        
                   p(f_0) = 2                                        
                   p(f_1) = x1^2                                     
                   p(f_2) = x1 + x1^2                                
                   p(f_3) = 2 + x1 + x1^2                            
                   p(f_4) = 4 + x1 + 2*x1^2                          
                   p(f_5) = 4 + x1^2                                 
                   p(g_1) = 1 + 2*x1 + x1^2 + x2                     
                   p(g_2) = 4 + x1 + x1^2 + x2 + 2*x2^2              
                   p(g_3) = 1 + 4*x1*x2 + x1^2 + x2                  
                   p(g_4) = 4*x1 + x1^2 + 4*x2^2                     
                   p(g_5) = 1 + 4*x1 + x1*x2 + x1^2 + x2             
                     p(s) = 1 + x1                                   
                  p(f_0#) = 4*x1 + 2*x1^2                            
                  p(f_1#) = 1 + x1                                   
                  p(f_2#) = 1                                        
                  p(f_3#) = 4 + 3*x1                                 
                  p(f_4#) = 6*x1 + 7*x1^2                            
                  p(f_5#) = x1 + 4*x1^2                              
                  p(g_1#) = x1 + x1^2 + x2^2                         
                  p(g_2#) = 1 + 2*x1 + 4*x1^2 + 4*x2^2               
                  p(g_3#) = 2*x1 + x2                                
                  p(g_4#) = 6*x1 + 3*x1*x2 + 2*x1^2 + 2*x2^2         
                  p(g_5#) = 1 + x1 + 2*x1*x2 + 3*x1^2 + 6*x2 + 7*x2^2
                   p(c_1) = 0                                        
                   p(c_2) = 0                                        
                   p(c_3) = x1                                       
                   p(c_4) = x1                                       
                   p(c_5) = x1                                       
                   p(c_6) = 1                                        
                   p(c_7) = 0                                        
                   p(c_8) = 0                                        
                   p(c_9) = x1                                       
                  p(c_10) = x1 + x2                                  
                  p(c_11) = 1 + x2                                   
                
                Following rules are strictly oriented:
                     f_3#(x) = 4 + 3*x       
                             > 3*x           
                             = c_4(g_3#(x,x))
                
                g_3#(s(x),y) = 2 + 2*x + y   
                             > 2*x + y       
                             = c_9(g_3#(x,y))
                
                
                Following rules are (at-least) weakly oriented:
                     f_4#(x) =  6*x + 7*x^2                           
                             >= 6*x + 7*x^2                           
                             =  c_5(g_4#(x,x))                        
                
                g_4#(s(x),y) =  8 + 10*x + 3*x*y + 2*x^2 + 3*y + 2*y^2
                             >= 4 + 6*x + 3*x*y + 2*x^2 + 3*y + 2*y^2 
                             =  c_10(f_3#(y),g_4#(x,y))               
                
                g_5#(s(x),y) =  5 + 7*x + 2*x*y + 3*x^2 + 8*y + 7*y^2 
                             >= 6*y + 7*y^2                           
                             =  f_4#(y)                               
                
                g_5#(s(x),y) =  5 + 7*x + 2*x*y + 3*x^2 + 8*y + 7*y^2 
                             >= 1 + x + 2*x*y + 3*x^2 + 6*y + 7*y^2   
                             =  g_5#(x,y)                             
                
          *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_3#(x) -> c_4(g_3#(x,x))
                  f_4#(x) -> c_5(g_4#(x,x))
                  g_3#(s(x),y) -> c_9(g_3#(x,y))
                  g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2.2 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_3#(x) -> c_4(g_3#(x,x))
                  f_4#(x) -> c_5(g_4#(x,x))
                  g_3#(s(x),y) -> c_9(g_3#(x,y))
                  g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                RemoveWeakSuffixes
              Proof:
                Consider the dependency graph
                  1:W:f_3#(x) -> c_4(g_3#(x,x))
                     -->_1 g_3#(s(x),y) -> c_9(g_3#(x,y)):3
                  
                  2:W:f_4#(x) -> c_5(g_4#(x,x))
                     -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):4
                  
                  3:W:g_3#(s(x),y) -> c_9(g_3#(x,y))
                     -->_1 g_3#(s(x),y) -> c_9(g_3#(x,y)):3
                  
                  4:W:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
                     -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):4
                     -->_1 f_3#(x) -> c_4(g_3#(x,x)):1
                  
                  5:W:g_5#(s(x),y) -> f_4#(y)
                     -->_1 f_4#(x) -> c_5(g_4#(x,x)):2
                  
                  6:W:g_5#(s(x),y) -> g_5#(x,y)
                     -->_1 g_5#(s(x),y) -> g_5#(x,y):6
                     -->_1 g_5#(s(x),y) -> f_4#(y):5
                  
                The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                  6: g_5#(s(x),y) -> g_5#(x,y)      
                  5: g_5#(s(x),y) -> f_4#(y)        
                  2: f_4#(x) -> c_5(g_4#(x,x))      
                  4: g_4#(s(x),y) -> c_10(f_3#(y)   
                                         ,g_4#(x,y))
                  1: f_3#(x) -> c_4(g_3#(x,x))      
                  3: g_3#(s(x),y) -> c_9(g_3#(x,y)) 
          *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.1.2.2.1 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                EmptyProcessor
              Proof:
                The problem is already closed. The intended complexity is O(1).
          
      *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              f_4#(x) -> c_5(g_4#(x,x))
              g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
              g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              f_3#(x) -> c_4(g_3#(x,x))
              g_3#(s(x),y) -> c_9(g_3#(x,y))
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2}
            Obligation:
              Innermost
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:S:f_4#(x) -> c_5(g_4#(x,x))
                 -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):2
              
              2:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
                 -->_1 f_3#(x) -> c_4(g_3#(x,x)):4
                 -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):2
              
              3:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
                 -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):3
                 -->_1 f_4#(x) -> c_5(g_4#(x,x)):1
              
              4:W:f_3#(x) -> c_4(g_3#(x,x))
                 -->_1 g_3#(s(x),y) -> c_9(g_3#(x,y)):5
              
              5:W:g_3#(s(x),y) -> c_9(g_3#(x,y))
                 -->_1 g_3#(s(x),y) -> c_9(g_3#(x,y)):5
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              4: f_3#(x) -> c_4(g_3#(x,x))     
              5: g_3#(s(x),y) -> c_9(g_3#(x,y))
      *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              f_4#(x) -> c_5(g_4#(x,x))
              g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
              g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/2,c_11/2}
            Obligation:
              Innermost
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            SimplifyRHS
          Proof:
            Consider the dependency graph
              1:S:f_4#(x) -> c_5(g_4#(x,x))
                 -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):2
              
              2:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
                 -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):2
              
              3:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
                 -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):3
                 -->_1 f_4#(x) -> c_5(g_4#(x,x)):1
              
            Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
              g_4#(s(x),y) -> c_10(g_4#(x,y))
      *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              f_4#(x) -> c_5(g_4#(x,x))
              g_4#(s(x),y) -> c_10(g_4#(x,y))
              g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2}
            Obligation:
              Innermost
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
          Proof:
            We analyse the complexity of following sub-problems (R) and (S).
            Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
            
            Problem (R)
              Strict DP Rules:
                f_4#(x) -> c_5(g_4#(x,x))
                g_4#(s(x),y) -> c_10(g_4#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            
            Problem (S)
              Strict DP Rules:
                g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                f_4#(x) -> c_5(g_4#(x,x))
                g_4#(s(x),y) -> c_10(g_4#(x,y))
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
        *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                f_4#(x) -> c_5(g_4#(x,x))
                g_4#(s(x),y) -> c_10(g_4#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                1: f_4#(x) -> c_5(g_4#(x,x))      
                2: g_4#(s(x),y) -> c_10(g_4#(x,y))
                
              The strictly oriented rules are moved into the weak component.
          *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(n^2))]  ***
              Considered Problem:
                Strict DP Rules:
                  f_4#(x) -> c_5(g_4#(x,x))
                  g_4#(s(x),y) -> c_10(g_4#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a polynomial interpretation of kind constructor-based(mixed(2)):
                The following argument positions are considered usable:
                  uargs(c_5) = {1},
                  uargs(c_10) = {1},
                  uargs(c_11) = {1,2}
                
                Following symbols are considered usable:
                  {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}
                TcT has computed the following interpretation:
                     p(a) = 0                              
                     p(b) = 0                              
                   p(f_0) = 8 + 8*x1                       
                   p(f_1) = x1 + 4*x1^2                    
                   p(f_2) = 2*x1^2                         
                   p(f_3) = 0                              
                   p(f_4) = x1^2                           
                   p(f_5) = 4 + x1                         
                   p(g_1) = x1*x2 + x2 + x2^2              
                   p(g_2) = 2 + x1 + x1*x2 + 4*x1^2 + 8*x2 
                   p(g_3) = x1 + 4*x1*x2 + x1^2 + x2 + x2^2
                   p(g_4) = x1^2 + x2 + x2^2               
                   p(g_5) = 4 + x1 + x1^2 + x2^2           
                     p(s) = 1 + x1                         
                  p(f_0#) = 2 + 2*x1 + 2*x1^2              
                  p(f_1#) = 2*x1^2                         
                  p(f_2#) = 2                              
                  p(f_3#) = 1 + x1^2                       
                  p(f_4#) = 15 + 9*x1                      
                  p(f_5#) = 8 + 4*x1 + x1^2                
                  p(g_1#) = 2 + x2 + x2^2                  
                  p(g_2#) = 1 + 8*x1 + x1^2 + 2*x2 + x2^2  
                  p(g_3#) = 1 + x2 + x2^2                  
                  p(g_4#) = 12 + 8*x1 + x2                 
                  p(g_5#) = 8 + 4*x1 + 14*x1*x2 + 12*x1^2  
                   p(c_1) = 0                              
                   p(c_2) = x1                             
                   p(c_3) = 0                              
                   p(c_4) = 1                              
                   p(c_5) = 1 + x1                         
                   p(c_6) = 0                              
                   p(c_7) = 0                              
                   p(c_8) = 0                              
                   p(c_9) = 1 + x1                         
                  p(c_10) = x1                             
                  p(c_11) = 1 + x1 + x2                    
                
                Following rules are strictly oriented:
                     f_4#(x) = 15 + 9*x       
                             > 13 + 9*x       
                             = c_5(g_4#(x,x)) 
                
                g_4#(s(x),y) = 20 + 8*x + y   
                             > 12 + 8*x + y   
                             = c_10(g_4#(x,y))
                
                
                Following rules are (at-least) weakly oriented:
                g_5#(s(x),y) =  24 + 28*x + 14*x*y + 12*x^2 + 14*y
                             >= 24 + 4*x + 14*x*y + 12*x^2 + 9*y  
                             =  c_11(f_4#(y),g_5#(x,y))           
                
          *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_4#(x) -> c_5(g_4#(x,x))
                  g_4#(s(x),y) -> c_10(g_4#(x,y))
                  g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.2 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_4#(x) -> c_5(g_4#(x,x))
                  g_4#(s(x),y) -> c_10(g_4#(x,y))
                  g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                RemoveWeakSuffixes
              Proof:
                Consider the dependency graph
                  1:W:f_4#(x) -> c_5(g_4#(x,x))
                     -->_1 g_4#(s(x),y) -> c_10(g_4#(x,y)):2
                  
                  2:W:g_4#(s(x),y) -> c_10(g_4#(x,y))
                     -->_1 g_4#(s(x),y) -> c_10(g_4#(x,y)):2
                  
                  3:W:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
                     -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):3
                     -->_1 f_4#(x) -> c_5(g_4#(x,x)):1
                  
                The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                  3: g_5#(s(x),y) -> c_11(f_4#(y)   
                                         ,g_5#(x,y))
                  1: f_4#(x) -> c_5(g_4#(x,x))      
                  2: g_4#(s(x),y) -> c_10(g_4#(x,y))
          *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                EmptyProcessor
              Proof:
                The problem is already closed. The intended complexity is O(1).
          
        *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.2 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                f_4#(x) -> c_5(g_4#(x,x))
                g_4#(s(x),y) -> c_10(g_4#(x,y))
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
                   -->_1 f_4#(x) -> c_5(g_4#(x,x)):2
                   -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):1
                
                2:W:f_4#(x) -> c_5(g_4#(x,x))
                   -->_1 g_4#(s(x),y) -> c_10(g_4#(x,y)):3
                
                3:W:g_4#(s(x),y) -> c_10(g_4#(x,y))
                   -->_1 g_4#(s(x),y) -> c_10(g_4#(x,y)):3
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                2: f_4#(x) -> c_5(g_4#(x,x))      
                3: g_4#(s(x),y) -> c_10(g_4#(x,y))
        *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.2.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/2}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              SimplifyRHS
            Proof:
              Consider the dependency graph
                1:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
                   -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):1
                
              Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
                g_5#(s(x),y) -> c_11(g_5#(x,y))
        *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.2.1.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                g_5#(s(x),y) -> c_11(g_5#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/1}
              Obligation:
                Innermost
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                1: g_5#(s(x),y) -> c_11(g_5#(x,y))
                
              The strictly oriented rules are moved into the weak component.
          *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
              Considered Problem:
                Strict DP Rules:
                  g_5#(s(x),y) -> c_11(g_5#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/1}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a matrix interpretation of kind constructor based matrix interpretation:
                The following argument positions are considered usable:
                  uargs(c_11) = {1}
                
                Following symbols are considered usable:
                  {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}
                TcT has computed the following interpretation:
                     p(a) = [0]                  
                     p(b) = [1] x2 + [0]         
                   p(f_0) = [4] x1 + [1]         
                   p(f_1) = [1]                  
                   p(f_2) = [0]                  
                   p(f_3) = [0]                  
                   p(f_4) = [0]                  
                   p(f_5) = [0]                  
                   p(g_1) = [0]                  
                   p(g_2) = [0]                  
                   p(g_3) = [0]                  
                   p(g_4) = [0]                  
                   p(g_5) = [0]                  
                     p(s) = [1] x1 + [2]         
                  p(f_0#) = [0]                  
                  p(f_1#) = [8]                  
                  p(f_2#) = [2]                  
                  p(f_3#) = [4]                  
                  p(f_4#) = [2]                  
                  p(f_5#) = [2] x1 + [2]         
                  p(g_1#) = [2] x1 + [1] x2 + [1]
                  p(g_2#) = [8] x1 + [8]         
                  p(g_3#) = [1] x1 + [1] x2 + [1]
                  p(g_4#) = [8] x1 + [1]         
                  p(g_5#) = [8] x1 + [0]         
                   p(c_1) = [1]                  
                   p(c_2) = [1] x1 + [0]         
                   p(c_3) = [0]                  
                   p(c_4) = [8]                  
                   p(c_5) = [1] x1 + [2]         
                   p(c_6) = [0]                  
                   p(c_7) = [1] x1 + [4]         
                   p(c_8) = [1]                  
                   p(c_9) = [0]                  
                  p(c_10) = [2]                  
                  p(c_11) = [1] x1 + [14]        
                
                Following rules are strictly oriented:
                g_5#(s(x),y) = [8] x + [16]   
                             > [8] x + [14]   
                             = c_11(g_5#(x,y))
                
                
                Following rules are (at-least) weakly oriented:
                
          *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  g_5#(s(x),y) -> c_11(g_5#(x,y))
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/1}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  g_5#(s(x),y) -> c_11(g_5#(x,y))
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/1}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                RemoveWeakSuffixes
              Proof:
                Consider the dependency graph
                  1:W:g_5#(s(x),y) -> c_11(g_5#(x,y))
                     -->_1 g_5#(s(x),y) -> c_11(g_5#(x,y)):1
                  
                The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                  1: g_5#(s(x),y) -> c_11(g_5#(x,y))
          *** 1.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/1,c_11/1}
                Obligation:
                  Innermost
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                EmptyProcessor
              Proof:
                The problem is already closed. The intended complexity is O(1).