(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
h(X, Z) → f(X, s(X), Z)
f(X, Y, g(X, Y)) → h(0, g(X, Y))
g(0, Y) → 0
g(X, s(Y)) → g(X, Y)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
h(X, Z) → f(X, s(X), Z)
f(X, Y, g(X, Y)) → h(0', g(X, Y))
g(0', Y) → 0'
g(X, s(Y)) → g(X, Y)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
h(X, Z) → f(X, s(X), Z)
f(X, Y, g(X, Y)) → h(0', g(X, Y))
g(0', Y) → 0'
g(X, s(Y)) → g(X, Y)
Types:
h :: s:0' → s:0' → h:f
f :: s:0' → s:0' → s:0' → h:f
s :: s:0' → s:0'
g :: s:0' → s:0' → s:0'
0' :: s:0'
hole_h:f1_0 :: h:f
hole_s:0'2_0 :: s:0'
gen_s:0'3_0 :: Nat → s:0'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
h,
gThey will be analysed ascendingly in the following order:
g < h
(6) Obligation:
Innermost TRS:
Rules:
h(
X,
Z) →
f(
X,
s(
X),
Z)
f(
X,
Y,
g(
X,
Y)) →
h(
0',
g(
X,
Y))
g(
0',
Y) →
0'g(
X,
s(
Y)) →
g(
X,
Y)
Types:
h :: s:0' → s:0' → h:f
f :: s:0' → s:0' → s:0' → h:f
s :: s:0' → s:0'
g :: s:0' → s:0' → s:0'
0' :: s:0'
hole_h:f1_0 :: h:f
hole_s:0'2_0 :: s:0'
gen_s:0'3_0 :: Nat → s:0'
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
g, h
They will be analysed ascendingly in the following order:
g < h
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
g(
gen_s:0'3_0(
a),
gen_s:0'3_0(
+(
1,
n5_0))) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
g(gen_s:0'3_0(a), gen_s:0'3_0(+(1, 0)))
Induction Step:
g(gen_s:0'3_0(a), gen_s:0'3_0(+(1, +(n5_0, 1)))) →RΩ(1)
g(gen_s:0'3_0(a), gen_s:0'3_0(+(1, n5_0))) →IH
*4_0
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
h(
X,
Z) →
f(
X,
s(
X),
Z)
f(
X,
Y,
g(
X,
Y)) →
h(
0',
g(
X,
Y))
g(
0',
Y) →
0'g(
X,
s(
Y)) →
g(
X,
Y)
Types:
h :: s:0' → s:0' → h:f
f :: s:0' → s:0' → s:0' → h:f
s :: s:0' → s:0'
g :: s:0' → s:0' → s:0'
0' :: s:0'
hole_h:f1_0 :: h:f
hole_s:0'2_0 :: s:0'
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
g(gen_s:0'3_0(a), gen_s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
h
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol h.
(11) Obligation:
Innermost TRS:
Rules:
h(
X,
Z) →
f(
X,
s(
X),
Z)
f(
X,
Y,
g(
X,
Y)) →
h(
0',
g(
X,
Y))
g(
0',
Y) →
0'g(
X,
s(
Y)) →
g(
X,
Y)
Types:
h :: s:0' → s:0' → h:f
f :: s:0' → s:0' → s:0' → h:f
s :: s:0' → s:0'
g :: s:0' → s:0' → s:0'
0' :: s:0'
hole_h:f1_0 :: h:f
hole_s:0'2_0 :: s:0'
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
g(gen_s:0'3_0(a), gen_s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_s:0'3_0(a), gen_s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
h(
X,
Z) →
f(
X,
s(
X),
Z)
f(
X,
Y,
g(
X,
Y)) →
h(
0',
g(
X,
Y))
g(
0',
Y) →
0'g(
X,
s(
Y)) →
g(
X,
Y)
Types:
h :: s:0' → s:0' → h:f
f :: s:0' → s:0' → s:0' → h:f
s :: s:0' → s:0'
g :: s:0' → s:0' → s:0'
0' :: s:0'
hole_h:f1_0 :: h:f
hole_s:0'2_0 :: s:0'
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
g(gen_s:0'3_0(a), gen_s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_s:0'3_0(a), gen_s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(16) BOUNDS(n^1, INF)