(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

minus(0, Y) → 0
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0) → true
geq(0, s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0, s(Y)) → 0
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
if(true, X, Y) → X
if(false, X, Y) → Y

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

minus(0', Y) → 0'
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0') → true
geq(0', s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0', s(Y)) → 0'
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0')
if(true, X, Y) → X
if(false, X, Y) → Y

S is empty.
Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
minus(0', Y) → 0'
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0') → true
geq(0', s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0', s(Y)) → 0'
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0')
if(true, X, Y) → X
if(false, X, Y) → Y

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
geq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
div :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
minus, geq, div

They will be analysed ascendingly in the following order:
minus < div
geq < div

(6) Obligation:

Innermost TRS:
Rules:
minus(0', Y) → 0'
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0') → true
geq(0', s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0', s(Y)) → 0'
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0')
if(true, X, Y) → X
if(false, X, Y) → Y

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
geq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
div :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
minus, geq, div

They will be analysed ascendingly in the following order:
minus < div
geq < div

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)

Induction Base:
minus(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
0'

Induction Step:
minus(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
gen_0':s3_0(0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
minus(0', Y) → 0'
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0') → true
geq(0', s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0', s(Y)) → 0'
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0')
if(true, X, Y) → X
if(false, X, Y) → Y

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
geq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
div :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
geq, div

They will be analysed ascendingly in the following order:
geq < div

(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
geq(gen_0':s3_0(n254_0), gen_0':s3_0(n254_0)) → true, rt ∈ Ω(1 + n2540)

Induction Base:
geq(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
true

Induction Step:
geq(gen_0':s3_0(+(n254_0, 1)), gen_0':s3_0(+(n254_0, 1))) →RΩ(1)
geq(gen_0':s3_0(n254_0), gen_0':s3_0(n254_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(11) Complex Obligation (BEST)

(12) Obligation:

Innermost TRS:
Rules:
minus(0', Y) → 0'
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0') → true
geq(0', s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0', s(Y)) → 0'
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0')
if(true, X, Y) → X
if(false, X, Y) → Y

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
geq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
div :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
geq(gen_0':s3_0(n254_0), gen_0':s3_0(n254_0)) → true, rt ∈ Ω(1 + n2540)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
div

(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol div.

(14) Obligation:

Innermost TRS:
Rules:
minus(0', Y) → 0'
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0') → true
geq(0', s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0', s(Y)) → 0'
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0')
if(true, X, Y) → X
if(false, X, Y) → Y

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
geq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
div :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
geq(gen_0':s3_0(n254_0), gen_0':s3_0(n254_0)) → true, rt ∈ Ω(1 + n2540)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)

(16) BOUNDS(n^1, INF)

(17) Obligation:

Innermost TRS:
Rules:
minus(0', Y) → 0'
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0') → true
geq(0', s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0', s(Y)) → 0'
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0')
if(true, X, Y) → X
if(false, X, Y) → Y

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
geq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
div :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
geq(gen_0':s3_0(n254_0), gen_0':s3_0(n254_0)) → true, rt ∈ Ω(1 + n2540)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(18) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)

(19) BOUNDS(n^1, INF)

(20) Obligation:

Innermost TRS:
Rules:
minus(0', Y) → 0'
minus(s(X), s(Y)) → minus(X, Y)
geq(X, 0') → true
geq(0', s(Y)) → false
geq(s(X), s(Y)) → geq(X, Y)
div(0', s(Y)) → 0'
div(s(X), s(Y)) → if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0')
if(true, X, Y) → X
if(false, X, Y) → Y

Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
geq :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
div :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(21) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)

(22) BOUNDS(n^1, INF)