(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
eq(0, 0) → true
eq(s(X), s(Y)) → eq(X, Y)
eq(X, Y) → false
inf(X) → cons(X, inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(Y, take(X, L))
length(nil) → 0
length(cons(X, L)) → s(length(L))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
eq(0', 0') → true
eq(s(X), s(Y)) → eq(X, Y)
eq(X, Y) → false
inf(X) → cons(X, inf(s(X)))
take(0', X) → nil
take(s(X), cons(Y, L)) → cons(Y, take(X, L))
length(nil) → 0'
length(cons(X, L)) → s(length(L))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
eq(0', 0') → true
eq(s(X), s(Y)) → eq(X, Y)
eq(X, Y) → false
inf(X) → cons(X, inf(s(X)))
take(0', X) → nil
take(s(X), cons(Y, L)) → cons(Y, take(X, L))
length(nil) → 0'
length(cons(X, L)) → s(length(L))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
inf :: 0':s → cons:nil
cons :: 0':s → cons:nil → cons:nil
take :: 0':s → cons:nil → cons:nil
nil :: cons:nil
length :: cons:nil → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_cons:nil3_0 :: cons:nil
gen_0':s4_0 :: Nat → 0':s
gen_cons:nil5_0 :: Nat → cons:nil
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
eq, inf, take, length
(6) Obligation:
Innermost TRS:
Rules:
eq(
0',
0') →
trueeq(
s(
X),
s(
Y)) →
eq(
X,
Y)
eq(
X,
Y) →
falseinf(
X) →
cons(
X,
inf(
s(
X)))
take(
0',
X) →
niltake(
s(
X),
cons(
Y,
L)) →
cons(
Y,
take(
X,
L))
length(
nil) →
0'length(
cons(
X,
L)) →
s(
length(
L))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
inf :: 0':s → cons:nil
cons :: 0':s → cons:nil → cons:nil
take :: 0':s → cons:nil → cons:nil
nil :: cons:nil
length :: cons:nil → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_cons:nil3_0 :: cons:nil
gen_0':s4_0 :: Nat → 0':s
gen_cons:nil5_0 :: Nat → cons:nil
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_cons:nil5_0(0) ⇔ nil
gen_cons:nil5_0(+(x, 1)) ⇔ cons(0', gen_cons:nil5_0(x))
The following defined symbols remain to be analysed:
eq, inf, take, length
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
eq(
gen_0':s4_0(
n7_0),
gen_0':s4_0(
n7_0)) →
true, rt ∈ Ω(1 + n7
0)
Induction Base:
eq(gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
true
Induction Step:
eq(gen_0':s4_0(+(n7_0, 1)), gen_0':s4_0(+(n7_0, 1))) →RΩ(1)
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
eq(
0',
0') →
trueeq(
s(
X),
s(
Y)) →
eq(
X,
Y)
eq(
X,
Y) →
falseinf(
X) →
cons(
X,
inf(
s(
X)))
take(
0',
X) →
niltake(
s(
X),
cons(
Y,
L)) →
cons(
Y,
take(
X,
L))
length(
nil) →
0'length(
cons(
X,
L)) →
s(
length(
L))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
inf :: 0':s → cons:nil
cons :: 0':s → cons:nil → cons:nil
take :: 0':s → cons:nil → cons:nil
nil :: cons:nil
length :: cons:nil → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_cons:nil3_0 :: cons:nil
gen_0':s4_0 :: Nat → 0':s
gen_cons:nil5_0 :: Nat → cons:nil
Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_cons:nil5_0(0) ⇔ nil
gen_cons:nil5_0(+(x, 1)) ⇔ cons(0', gen_cons:nil5_0(x))
The following defined symbols remain to be analysed:
inf, take, length
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol inf.
(11) Obligation:
Innermost TRS:
Rules:
eq(
0',
0') →
trueeq(
s(
X),
s(
Y)) →
eq(
X,
Y)
eq(
X,
Y) →
falseinf(
X) →
cons(
X,
inf(
s(
X)))
take(
0',
X) →
niltake(
s(
X),
cons(
Y,
L)) →
cons(
Y,
take(
X,
L))
length(
nil) →
0'length(
cons(
X,
L)) →
s(
length(
L))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
inf :: 0':s → cons:nil
cons :: 0':s → cons:nil → cons:nil
take :: 0':s → cons:nil → cons:nil
nil :: cons:nil
length :: cons:nil → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_cons:nil3_0 :: cons:nil
gen_0':s4_0 :: Nat → 0':s
gen_cons:nil5_0 :: Nat → cons:nil
Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_cons:nil5_0(0) ⇔ nil
gen_cons:nil5_0(+(x, 1)) ⇔ cons(0', gen_cons:nil5_0(x))
The following defined symbols remain to be analysed:
take, length
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
take(
gen_0':s4_0(
n288_0),
gen_cons:nil5_0(
n288_0)) →
gen_cons:nil5_0(
n288_0), rt ∈ Ω(1 + n288
0)
Induction Base:
take(gen_0':s4_0(0), gen_cons:nil5_0(0)) →RΩ(1)
nil
Induction Step:
take(gen_0':s4_0(+(n288_0, 1)), gen_cons:nil5_0(+(n288_0, 1))) →RΩ(1)
cons(0', take(gen_0':s4_0(n288_0), gen_cons:nil5_0(n288_0))) →IH
cons(0', gen_cons:nil5_0(c289_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
Innermost TRS:
Rules:
eq(
0',
0') →
trueeq(
s(
X),
s(
Y)) →
eq(
X,
Y)
eq(
X,
Y) →
falseinf(
X) →
cons(
X,
inf(
s(
X)))
take(
0',
X) →
niltake(
s(
X),
cons(
Y,
L)) →
cons(
Y,
take(
X,
L))
length(
nil) →
0'length(
cons(
X,
L)) →
s(
length(
L))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
inf :: 0':s → cons:nil
cons :: 0':s → cons:nil → cons:nil
take :: 0':s → cons:nil → cons:nil
nil :: cons:nil
length :: cons:nil → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_cons:nil3_0 :: cons:nil
gen_0':s4_0 :: Nat → 0':s
gen_cons:nil5_0 :: Nat → cons:nil
Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
take(gen_0':s4_0(n288_0), gen_cons:nil5_0(n288_0)) → gen_cons:nil5_0(n288_0), rt ∈ Ω(1 + n2880)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_cons:nil5_0(0) ⇔ nil
gen_cons:nil5_0(+(x, 1)) ⇔ cons(0', gen_cons:nil5_0(x))
The following defined symbols remain to be analysed:
length
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
length(
gen_cons:nil5_0(
n632_0)) →
gen_0':s4_0(
n632_0), rt ∈ Ω(1 + n632
0)
Induction Base:
length(gen_cons:nil5_0(0)) →RΩ(1)
0'
Induction Step:
length(gen_cons:nil5_0(+(n632_0, 1))) →RΩ(1)
s(length(gen_cons:nil5_0(n632_0))) →IH
s(gen_0':s4_0(c633_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
Innermost TRS:
Rules:
eq(
0',
0') →
trueeq(
s(
X),
s(
Y)) →
eq(
X,
Y)
eq(
X,
Y) →
falseinf(
X) →
cons(
X,
inf(
s(
X)))
take(
0',
X) →
niltake(
s(
X),
cons(
Y,
L)) →
cons(
Y,
take(
X,
L))
length(
nil) →
0'length(
cons(
X,
L)) →
s(
length(
L))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
inf :: 0':s → cons:nil
cons :: 0':s → cons:nil → cons:nil
take :: 0':s → cons:nil → cons:nil
nil :: cons:nil
length :: cons:nil → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_cons:nil3_0 :: cons:nil
gen_0':s4_0 :: Nat → 0':s
gen_cons:nil5_0 :: Nat → cons:nil
Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
take(gen_0':s4_0(n288_0), gen_cons:nil5_0(n288_0)) → gen_cons:nil5_0(n288_0), rt ∈ Ω(1 + n2880)
length(gen_cons:nil5_0(n632_0)) → gen_0':s4_0(n632_0), rt ∈ Ω(1 + n6320)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_cons:nil5_0(0) ⇔ nil
gen_cons:nil5_0(+(x, 1)) ⇔ cons(0', gen_cons:nil5_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
eq(
0',
0') →
trueeq(
s(
X),
s(
Y)) →
eq(
X,
Y)
eq(
X,
Y) →
falseinf(
X) →
cons(
X,
inf(
s(
X)))
take(
0',
X) →
niltake(
s(
X),
cons(
Y,
L)) →
cons(
Y,
take(
X,
L))
length(
nil) →
0'length(
cons(
X,
L)) →
s(
length(
L))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
inf :: 0':s → cons:nil
cons :: 0':s → cons:nil → cons:nil
take :: 0':s → cons:nil → cons:nil
nil :: cons:nil
length :: cons:nil → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_cons:nil3_0 :: cons:nil
gen_0':s4_0 :: Nat → 0':s
gen_cons:nil5_0 :: Nat → cons:nil
Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
take(gen_0':s4_0(n288_0), gen_cons:nil5_0(n288_0)) → gen_cons:nil5_0(n288_0), rt ∈ Ω(1 + n2880)
length(gen_cons:nil5_0(n632_0)) → gen_0':s4_0(n632_0), rt ∈ Ω(1 + n6320)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_cons:nil5_0(0) ⇔ nil
gen_cons:nil5_0(+(x, 1)) ⇔ cons(0', gen_cons:nil5_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
(22) BOUNDS(n^1, INF)
(23) Obligation:
Innermost TRS:
Rules:
eq(
0',
0') →
trueeq(
s(
X),
s(
Y)) →
eq(
X,
Y)
eq(
X,
Y) →
falseinf(
X) →
cons(
X,
inf(
s(
X)))
take(
0',
X) →
niltake(
s(
X),
cons(
Y,
L)) →
cons(
Y,
take(
X,
L))
length(
nil) →
0'length(
cons(
X,
L)) →
s(
length(
L))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
inf :: 0':s → cons:nil
cons :: 0':s → cons:nil → cons:nil
take :: 0':s → cons:nil → cons:nil
nil :: cons:nil
length :: cons:nil → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_cons:nil3_0 :: cons:nil
gen_0':s4_0 :: Nat → 0':s
gen_cons:nil5_0 :: Nat → cons:nil
Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
take(gen_0':s4_0(n288_0), gen_cons:nil5_0(n288_0)) → gen_cons:nil5_0(n288_0), rt ∈ Ω(1 + n2880)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_cons:nil5_0(0) ⇔ nil
gen_cons:nil5_0(+(x, 1)) ⇔ cons(0', gen_cons:nil5_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
(25) BOUNDS(n^1, INF)
(26) Obligation:
Innermost TRS:
Rules:
eq(
0',
0') →
trueeq(
s(
X),
s(
Y)) →
eq(
X,
Y)
eq(
X,
Y) →
falseinf(
X) →
cons(
X,
inf(
s(
X)))
take(
0',
X) →
niltake(
s(
X),
cons(
Y,
L)) →
cons(
Y,
take(
X,
L))
length(
nil) →
0'length(
cons(
X,
L)) →
s(
length(
L))
Types:
eq :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
inf :: 0':s → cons:nil
cons :: 0':s → cons:nil → cons:nil
take :: 0':s → cons:nil → cons:nil
nil :: cons:nil
length :: cons:nil → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
hole_cons:nil3_0 :: cons:nil
gen_0':s4_0 :: Nat → 0':s
gen_cons:nil5_0 :: Nat → cons:nil
Lemmas:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_cons:nil5_0(0) ⇔ nil
gen_cons:nil5_0(+(x, 1)) ⇔ cons(0', gen_cons:nil5_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
eq(gen_0':s4_0(n7_0), gen_0':s4_0(n7_0)) → true, rt ∈ Ω(1 + n70)
(28) BOUNDS(n^1, INF)