*** 1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Weak DP Rules: Weak TRS Rules: Signature: {f/1,g/2,if/3} / {0/0,1/0,c/1,false/0,s/1,true/0} Obligation: Innermost basic terms: {f,g,if}/{0,1,c,false,s,true} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs f#(0()) -> c_1() f#(1()) -> c_2() f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)) if#(false(),x,y) -> c_6() if#(true(),x,y) -> c_7() Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(0()) -> c_1() f#(1()) -> c_2() f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)) if#(false(),x,y) -> c_6() if#(true(),x,y) -> c_7() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,2,6,7} by application of Pre({1,2,6,7}) = {3,5}. Here rules are labelled as follows: 1: f#(0()) -> c_1() 2: f#(1()) -> c_2() 3: f#(s(x)) -> c_3(f#(x)) 4: g#(x,c(y)) -> c_4(g#(x ,g(s(c(y)),y)) ,g#(s(c(y)),y)) 5: g#(s(x),s(y)) -> c_5(if#(f(x) ,s(x) ,s(y)) ,f#(x)) 6: if#(false(),x,y) -> c_6() 7: if#(true(),x,y) -> c_7() *** 1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)) Strict TRS Rules: Weak DP Rules: f#(0()) -> c_1() f#(1()) -> c_2() if#(false(),x,y) -> c_6() if#(true(),x,y) -> c_7() Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:f#(s(x)) -> c_3(f#(x)) -->_1 f#(1()) -> c_2():5 -->_1 f#(0()) -> c_1():4 -->_1 f#(s(x)) -> c_3(f#(x)):1 2:S:g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) -->_2 g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)):3 -->_1 g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)):3 -->_2 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):2 -->_1 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):2 3:S:g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)) -->_1 if#(true(),x,y) -> c_7():7 -->_1 if#(false(),x,y) -> c_6():6 -->_2 f#(1()) -> c_2():5 -->_2 f#(0()) -> c_1():4 -->_2 f#(s(x)) -> c_3(f#(x)):1 4:W:f#(0()) -> c_1() 5:W:f#(1()) -> c_2() 6:W:if#(false(),x,y) -> c_6() 7:W:if#(true(),x,y) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: if#(false(),x,y) -> c_6() 7: if#(true(),x,y) -> c_7() 4: f#(0()) -> c_1() 5: f#(1()) -> c_2() *** 1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:f#(s(x)) -> c_3(f#(x)) -->_1 f#(s(x)) -> c_3(f#(x)):1 2:S:g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) -->_2 g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)):3 -->_1 g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)):3 -->_2 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):2 -->_1 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):2 3:S:g#(s(x),s(y)) -> c_5(if#(f(x),s(x),s(y)),f#(x)) -->_2 f#(s(x)) -> c_3(f#(x)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: g#(s(x),s(y)) -> c_5(f#(x)) *** 1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(f#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: f#(s(x)) -> c_3(f#(x)) Strict TRS Rules: Weak DP Rules: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(f#(x)) Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Problem (S) Strict DP Rules: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(f#(x)) Strict TRS Rules: Weak DP Rules: f#(s(x)) -> c_3(f#(x)) Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} *** 1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(s(x)) -> c_3(f#(x)) Strict TRS Rules: Weak DP Rules: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(f#(x)) Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: f#(s(x)) -> c_3(f#(x)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(s(x)) -> c_3(f#(x)) Strict TRS Rules: Weak DP Rules: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(f#(x)) Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_4) = {1,2}, uargs(c_5) = {1} Following symbols are considered usable: {f#,g#,if#} TcT has computed the following interpretation: p(0) = [0] [1] [0] p(1) = [1] [1] [0] p(c) = [0 0 1] [0] [0 0 0] x1 + [0] [0 0 0] [0] p(f) = [0 0 0] [0] [1 1 0] x1 + [0] [1 0 1] [1] p(false) = [0] [0] [1] p(g) = [0 0 0] [0 0 1] [1] [0 0 1] x1 + [0 1 0] x2 + [0] [0 1 0] [1 0 0] [0] p(if) = [0 1 0] [0 0 1] [0 0 0] [0] [0 0 1] x1 + [0 0 1] x2 + [0 0 1] x3 + [0] [0 0 1] [0 0 0] [0 1 0] [1] p(s) = [0 0 0] [0] [0 0 1] x1 + [0] [0 0 1] [1] p(true) = [0] [0] [0] p(f#) = [0 0 1] [0] [0 1 1] x1 + [0] [0 0 1] [1] p(g#) = [0 1 0] [0] [0 0 0] x1 + [0] [0 0 0] [0] p(if#) = [0] [0] [0] p(c_1) = [0] [0] [0] p(c_2) = [0] [0] [0] p(c_3) = [1 0 0] [0] [0 0 1] x1 + [0] [0 0 1] [1] p(c_4) = [1 0 0] [1 0 0] [0] [0 0 0] x1 + [0 0 0] x2 + [0] [0 0 0] [0 0 0] [0] p(c_5) = [1 0 0] [0] [0 0 0] x1 + [0] [0 0 0] [0] p(c_6) = [0] [0] [0] p(c_7) = [0] [0] [0] Following rules are strictly oriented: f#(s(x)) = [0 0 1] [1] [0 0 2] x + [1] [0 0 1] [2] > [0 0 1] [0] [0 0 1] x + [1] [0 0 1] [2] = c_3(f#(x)) Following rules are (at-least) weakly oriented: g#(x,c(y)) = [0 1 0] [0] [0 0 0] x + [0] [0 0 0] [0] >= [0 1 0] [0] [0 0 0] x + [0] [0 0 0] [0] = c_4(g#(x,g(s(c(y)),y)) ,g#(s(c(y)),y)) g#(s(x),s(y)) = [0 0 1] [0] [0 0 0] x + [0] [0 0 0] [0] >= [0 0 1] [0] [0 0 0] x + [0] [0 0 0] [0] = c_5(f#(x)) *** 1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(f#(x)) Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(f#(x)) Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:f#(s(x)) -> c_3(f#(x)) -->_1 f#(s(x)) -> c_3(f#(x)):1 2:W:g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) -->_2 g#(s(x),s(y)) -> c_5(f#(x)):3 -->_1 g#(s(x),s(y)) -> c_5(f#(x)):3 -->_2 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):2 -->_1 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):2 3:W:g#(s(x),s(y)) -> c_5(f#(x)) -->_1 f#(s(x)) -> c_3(f#(x)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: g#(x,c(y)) -> c_4(g#(x ,g(s(c(y)),y)) ,g#(s(c(y)),y)) 3: g#(s(x),s(y)) -> c_5(f#(x)) 1: f#(s(x)) -> c_3(f#(x)) *** 1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) g#(s(x),s(y)) -> c_5(f#(x)) Strict TRS Rules: Weak DP Rules: f#(s(x)) -> c_3(f#(x)) Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {2} by application of Pre({2}) = {1}. Here rules are labelled as follows: 1: g#(x,c(y)) -> c_4(g#(x ,g(s(c(y)),y)) ,g#(s(c(y)),y)) 2: g#(s(x),s(y)) -> c_5(f#(x)) 3: f#(s(x)) -> c_3(f#(x)) *** 1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) Strict TRS Rules: Weak DP Rules: f#(s(x)) -> c_3(f#(x)) g#(s(x),s(y)) -> c_5(f#(x)) Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) -->_2 g#(s(x),s(y)) -> c_5(f#(x)):3 -->_1 g#(s(x),s(y)) -> c_5(f#(x)):3 -->_2 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):1 -->_1 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):1 2:W:f#(s(x)) -> c_3(f#(x)) -->_1 f#(s(x)) -> c_3(f#(x)):2 3:W:g#(s(x),s(y)) -> c_5(f#(x)) -->_1 f#(s(x)) -> c_3(f#(x)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: g#(s(x),s(y)) -> c_5(f#(x)) 2: f#(s(x)) -> c_3(f#(x)) *** 1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: g#(x,c(y)) -> c_4(g#(x ,g(s(c(y)),y)) ,g#(s(c(y)),y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1,2} Following symbols are considered usable: {g,if,f#,g#,if#} TcT has computed the following interpretation: p(0) = [0] p(1) = [0] p(c) = [1] x1 + [12] p(f) = [2] x1 + [2] p(false) = [0] p(g) = [1] p(if) = [2] x2 + [1] x3 + [0] p(s) = [0] p(true) = [8] p(f#) = [1] x1 + [1] p(g#) = [1] x2 + [1] p(if#) = [1] x1 + [4] x3 + [0] p(c_1) = [1] p(c_2) = [0] p(c_3) = [1] x1 + [0] p(c_4) = [4] x1 + [1] x2 + [1] p(c_5) = [0] p(c_6) = [8] p(c_7) = [1] Following rules are strictly oriented: g#(x,c(y)) = [1] y + [13] > [1] y + [10] = c_4(g#(x,g(s(c(y)),y)) ,g#(s(c(y)),y)) Following rules are (at-least) weakly oriented: g(x,c(y)) = [1] >= [1] = g(x,g(s(c(y)),y)) g(s(x),s(y)) = [1] >= [0] = if(f(x),s(x),s(y)) if(false(),x,y) = [2] x + [1] y + [0] >= [1] y + [0] = y if(true(),x,y) = [2] x + [1] y + [0] >= [1] x + [0] = x *** 1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)) -->_2 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):1 -->_1 g#(x,c(y)) -> c_4(g#(x,g(s(c(y)),y)),g#(s(c(y)),y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: g#(x,c(y)) -> c_4(g#(x ,g(s(c(y)),y)) ,g#(s(c(y)),y)) *** 1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> g(x,g(s(c(y)),y)) g(s(x),s(y)) -> if(f(x),s(x),s(y)) if(false(),x,y) -> y if(true(),x,y) -> x Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/2,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).