*** 1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        sum(cons(0(),x),y) -> sum(x,y)
        sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
        sum(nil(),y) -> y
        weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(0(),x)))
        weight(cons(n,nil())) -> n
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {sum/2,weight/1} / {0/0,cons/2,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {sum,weight}/{0,cons,nil,s}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        sum#(cons(0(),x),y) -> c_1(sum#(x,y))
        sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
        sum#(nil(),y) -> c_3()
        weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
        weight#(cons(n,nil())) -> c_5()
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        sum#(cons(0(),x),y) -> c_1(sum#(x,y))
        sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
        sum#(nil(),y) -> c_3()
        weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
        weight#(cons(n,nil())) -> c_5()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        sum(cons(0(),x),y) -> sum(x,y)
        sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
        sum(nil(),y) -> y
        weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(0(),x)))
        weight(cons(n,nil())) -> n
      Signature:
        {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
      Obligation:
        Innermost
        basic terms: {sum#,weight#}/{0,cons,nil,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        sum(cons(0(),x),y) -> sum(x,y)
        sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
        sum(nil(),y) -> y
        sum#(cons(0(),x),y) -> c_1(sum#(x,y))
        sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
        sum#(nil(),y) -> c_3()
        weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
        weight#(cons(n,nil())) -> c_5()
*** 1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        sum#(cons(0(),x),y) -> c_1(sum#(x,y))
        sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
        sum#(nil(),y) -> c_3()
        weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
        weight#(cons(n,nil())) -> c_5()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        sum(cons(0(),x),y) -> sum(x,y)
        sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
        sum(nil(),y) -> y
      Signature:
        {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
      Obligation:
        Innermost
        basic terms: {sum#,weight#}/{0,cons,nil,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {3,5}
      by application of
        Pre({3,5}) = {1,4}.
      Here rules are labelled as follows:
        1: sum#(cons(0(),x),y) ->           
             c_1(sum#(x,y))                 
        2: sum#(cons(s(n),x),cons(m,y)) ->  
             c_2(sum#(cons(n,x)             
                     ,cons(s(m),y)))        
        3: sum#(nil(),y) -> c_3()           
        4: weight#(cons(n,cons(m,x))) ->    
             c_4(weight#(sum(cons(n         
                                 ,cons(m,x))
                            ,cons(0(),x)))  
                ,sum#(cons(n,cons(m,x))     
                     ,cons(0(),x)))         
        5: weight#(cons(n,nil())) -> c_5()  
*** 1.1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        sum#(cons(0(),x),y) -> c_1(sum#(x,y))
        sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
        weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
      Strict TRS Rules:
        
      Weak DP Rules:
        sum#(nil(),y) -> c_3()
        weight#(cons(n,nil())) -> c_5()
      Weak TRS Rules:
        sum(cons(0(),x),y) -> sum(x,y)
        sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
        sum(nil(),y) -> y
      Signature:
        {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
      Obligation:
        Innermost
        basic terms: {sum#,weight#}/{0,cons,nil,s}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:sum#(cons(0(),x),y) -> c_1(sum#(x,y))
           -->_1 sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y))):2
           -->_1 sum#(nil(),y) -> c_3():4
           -->_1 sum#(cons(0(),x),y) -> c_1(sum#(x,y)):1
        
        2:S:sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
           -->_1 sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y))):2
           -->_1 sum#(cons(0(),x),y) -> c_1(sum#(x,y)):1
        
        3:S:weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
           -->_1 weight#(cons(n,nil())) -> c_5():5
           -->_1 weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x))):3
           -->_2 sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y))):2
           -->_2 sum#(cons(0(),x),y) -> c_1(sum#(x,y)):1
        
        4:W:sum#(nil(),y) -> c_3()
           
        
        5:W:weight#(cons(n,nil())) -> c_5()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        5: weight#(cons(n,nil())) -> c_5()
        4: sum#(nil(),y) -> c_3()         
*** 1.1.1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        sum#(cons(0(),x),y) -> c_1(sum#(x,y))
        sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
        weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        sum(cons(0(),x),y) -> sum(x,y)
        sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
        sum(nil(),y) -> y
      Signature:
        {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
      Obligation:
        Innermost
        basic terms: {sum#,weight#}/{0,cons,nil,s}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          sum#(cons(0(),x),y) -> c_1(sum#(x,y))
          sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
        Strict TRS Rules:
          
        Weak DP Rules:
          weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
        Weak TRS Rules:
          sum(cons(0(),x),y) -> sum(x,y)
          sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
          sum(nil(),y) -> y
        Signature:
          {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
        Obligation:
          Innermost
          basic terms: {sum#,weight#}/{0,cons,nil,s}
      
      Problem (S)
        Strict DP Rules:
          weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
        Strict TRS Rules:
          
        Weak DP Rules:
          sum#(cons(0(),x),y) -> c_1(sum#(x,y))
          sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
        Weak TRS Rules:
          sum(cons(0(),x),y) -> sum(x,y)
          sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
          sum(nil(),y) -> y
        Signature:
          {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
        Obligation:
          Innermost
          basic terms: {sum#,weight#}/{0,cons,nil,s}
  *** 1.1.1.1.1.1 Progress [(?,O(n^3))]  ***
      Considered Problem:
        Strict DP Rules:
          sum#(cons(0(),x),y) -> c_1(sum#(x,y))
          sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
        Strict TRS Rules:
          
        Weak DP Rules:
          weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
        Weak TRS Rules:
          sum(cons(0(),x),y) -> sum(x,y)
          sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
          sum(nil(),y) -> y
        Signature:
          {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
        Obligation:
          Innermost
          basic terms: {sum#,weight#}/{0,cons,nil,s}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: sum#(cons(0(),x),y) ->
               c_1(sum#(x,y))      
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            sum#(cons(0(),x),y) -> c_1(sum#(x,y))
            sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
          Strict TRS Rules:
            
          Weak DP Rules:
            weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
          Weak TRS Rules:
            sum(cons(0(),x),y) -> sum(x,y)
            sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
            sum(nil(),y) -> y
          Signature:
            {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
          Obligation:
            Innermost
            basic terms: {sum#,weight#}/{0,cons,nil,s}
        Applied Processor:
          NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_1) = {1},
            uargs(c_2) = {1},
            uargs(c_4) = {1,2}
          
          Following symbols are considered usable:
            {sum,sum#,weight#}
          TcT has computed the following interpretation:
                  p(0) = [0]                      
                         [1]                      
               p(cons) = [0 2] x1 + [1 2] x2 + [2]
                         [0 1]      [0 1]      [0]
                p(nil) = [0]                      
                         [1]                      
                  p(s) = [0 0] x1 + [1]           
                         [0 1]      [0]           
                p(sum) = [0 1] x1 + [1 0] x2 + [0]
                         [0 0]      [1 1]      [0]
             p(weight) = [1 0] x1 + [0]           
                         [2 2]      [1]           
               p(sum#) = [0 1] x1 + [0]           
                         [1 1]      [1]           
            p(weight#) = [1 0] x1 + [0]           
                         [1 0]      [0]           
                p(c_1) = [1 0] x1 + [0]           
                         [0 0]      [0]           
                p(c_2) = [1 0] x1 + [0]           
                         [0 1]      [0]           
                p(c_3) = [0]                      
                         [2]                      
                p(c_4) = [1 0] x1 + [1 0] x2 + [0]
                         [0 0]      [0 0]      [0]
                p(c_5) = [0]                      
                         [2]                      
          
          Following rules are strictly oriented:
          sum#(cons(0(),x),y) = [0 1] x + [1] 
                                [1 3]     [6] 
                              > [0 1] x + [0] 
                                [0 0]     [0] 
                              = c_1(sum#(x,y))
          
          
          Following rules are (at-least) weakly oriented:
          sum#(cons(s(n),x),cons(m,y)) =  [0 1] n + [0 1] x + [0]         
                                          [0 3]     [1 3]     [3]         
                                       >= [0 1] n + [0 1] x + [0]         
                                          [0 3]     [1 3]     [3]         
                                       =  c_2(sum#(cons(n,x)              
                                                  ,cons(s(m),y)))         
          
            weight#(cons(n,cons(m,x))) =  [0 4] m + [0 2] n + [1          
                                          4] x + [4]                      
                                          [0 4]     [0 2]     [1          
                                          4]     [4]                      
                                       >= [0 2] m + [0 2] n + [1          
                                          4] x + [4]                      
                                          [0 0]     [0 0]     [0          
                                          0]     [0]                      
                                       =  c_4(weight#(sum(cons(n          
                                                              ,cons(m,x)) 
                                                         ,cons(0(),x)))   
                                             ,sum#(cons(n,cons(m,x))      
                                                  ,cons(0(),x)))          
          
                    sum(cons(0(),x),y) =  [0 1] x + [1 0] y + [1]         
                                          [0 0]     [1 1]     [0]         
                                       >= [0 1] x + [1 0] y + [0]         
                                          [0 0]     [1 1]     [0]         
                                       =  sum(x,y)                        
          
           sum(cons(s(n),x),cons(m,y)) =  [0 2] m + [0 1] n + [0 1] x + [1
                                          2] y + [2]                      
                                          [0 3]     [0 0]     [0 0]     [1
                                          3]     [2]                      
                                       >= [0 2] m + [0 1] n + [0 1] x + [1
                                          2] y + [2]                      
                                          [0 3]     [0 0]     [0 0]     [1
                                          3]     [2]                      
                                       =  sum(cons(n,x),cons(s(m),y))     
          
                          sum(nil(),y) =  [1 0] y + [1]                   
                                          [1 1]     [0]                   
                                       >= [1 0] y + [0]                   
                                          [0 1]     [0]                   
                                       =  y                               
          
    *** 1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
          Strict TRS Rules:
            
          Weak DP Rules:
            sum#(cons(0(),x),y) -> c_1(sum#(x,y))
            weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
          Weak TRS Rules:
            sum(cons(0(),x),y) -> sum(x,y)
            sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
            sum(nil(),y) -> y
          Signature:
            {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
          Obligation:
            Innermost
            basic terms: {sum#,weight#}/{0,cons,nil,s}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.2 Progress [(?,O(n^3))]  ***
        Considered Problem:
          Strict DP Rules:
            sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
          Strict TRS Rules:
            
          Weak DP Rules:
            sum#(cons(0(),x),y) -> c_1(sum#(x,y))
            weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
          Weak TRS Rules:
            sum(cons(0(),x),y) -> sum(x,y)
            sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
            sum(nil(),y) -> y
          Signature:
            {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
          Obligation:
            Innermost
            basic terms: {sum#,weight#}/{0,cons,nil,s}
        Applied Processor:
          DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
        Proof:
          We decompose the input problem according to the dependency graph into the upper component
            weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
          and a lower component
            sum#(cons(0(),x),y) -> c_1(sum#(x,y))
            sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
          Further, following extension rules are added to the lower component.
            weight#(cons(n,cons(m,x))) -> sum#(cons(n,cons(m,x)),cons(0(),x))
            weight#(cons(n,cons(m,x))) -> weight#(sum(cons(n,cons(m,x)),cons(0(),x)))
      *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              sum(cons(0(),x),y) -> sum(x,y)
              sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
              sum(nil(),y) -> y
            Signature:
              {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
            Obligation:
              Innermost
              basic terms: {sum#,weight#}/{0,cons,nil,s}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              1: weight#(cons(n,cons(m,x))) ->    
                   c_4(weight#(sum(cons(n         
                                       ,cons(m,x))
                                  ,cons(0(),x)))  
                      ,sum#(cons(n,cons(m,x))     
                           ,cons(0(),x)))         
              
            The strictly oriented rules are moved into the weak component.
        *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                sum(cons(0(),x),y) -> sum(x,y)
                sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
                sum(nil(),y) -> y
              Signature:
                {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
              Obligation:
                Innermost
                basic terms: {sum#,weight#}/{0,cons,nil,s}
            Applied Processor:
              NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation:
              The following argument positions are considered usable:
                uargs(c_4) = {1}
              
              Following symbols are considered usable:
                {sum,sum#,weight#}
              TcT has computed the following interpretation:
                      p(0) = [2]         
                   p(cons) = [1] x2 + [1]
                    p(nil) = [1]         
                      p(s) = [1] x1 + [8]
                    p(sum) = [1] x2 + [0]
                 p(weight) = [1] x1 + [1]
                   p(sum#) = [0]         
                p(weight#) = [2] x1 + [0]
                    p(c_1) = [1]         
                    p(c_2) = [1] x1 + [4]
                    p(c_3) = [2]         
                    p(c_4) = [1] x1 + [1]
                    p(c_5) = [1]         
              
              Following rules are strictly oriented:
              weight#(cons(n,cons(m,x))) = [2] x + [4]                    
                                         > [2] x + [3]                    
                                         = c_4(weight#(sum(cons(n         
                                                               ,cons(m,x))
                                                          ,cons(0(),x)))  
                                              ,sum#(cons(n,cons(m,x))     
                                                   ,cons(0(),x)))         
              
              
              Following rules are (at-least) weakly oriented:
                       sum(cons(0(),x),y) =  [1] y + [0]                
                                          >= [1] y + [0]                
                                          =  sum(x,y)                   
              
              sum(cons(s(n),x),cons(m,y)) =  [1] y + [1]                
                                          >= [1] y + [1]                
                                          =  sum(cons(n,x),cons(s(m),y))
              
                             sum(nil(),y) =  [1] y + [0]                
                                          >= [1] y + [0]                
                                          =  y                          
              
        *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
              Weak TRS Rules:
                sum(cons(0(),x),y) -> sum(x,y)
                sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
                sum(nil(),y) -> y
              Signature:
                {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
              Obligation:
                Innermost
                basic terms: {sum#,weight#}/{0,cons,nil,s}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.2.1.2 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
              Weak TRS Rules:
                sum(cons(0(),x),y) -> sum(x,y)
                sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
                sum(nil(),y) -> y
              Signature:
                {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
              Obligation:
                Innermost
                basic terms: {sum#,weight#}/{0,cons,nil,s}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:W:weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
                   -->_1 weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x))):1
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                1: weight#(cons(n,cons(m,x))) ->    
                     c_4(weight#(sum(cons(n         
                                         ,cons(m,x))
                                    ,cons(0(),x)))  
                        ,sum#(cons(n,cons(m,x))     
                             ,cons(0(),x)))         
        *** 1.1.1.1.1.1.2.1.2.1 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                sum(cons(0(),x),y) -> sum(x,y)
                sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
                sum(nil(),y) -> y
              Signature:
                {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
              Obligation:
                Innermost
                basic terms: {sum#,weight#}/{0,cons,nil,s}
            Applied Processor:
              EmptyProcessor
            Proof:
              The problem is already closed. The intended complexity is O(1).
        
      *** 1.1.1.1.1.1.2.2 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
            Strict TRS Rules:
              
            Weak DP Rules:
              sum#(cons(0(),x),y) -> c_1(sum#(x,y))
              weight#(cons(n,cons(m,x))) -> sum#(cons(n,cons(m,x)),cons(0(),x))
              weight#(cons(n,cons(m,x))) -> weight#(sum(cons(n,cons(m,x)),cons(0(),x)))
            Weak TRS Rules:
              sum(cons(0(),x),y) -> sum(x,y)
              sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
              sum(nil(),y) -> y
            Signature:
              {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
            Obligation:
              Innermost
              basic terms: {sum#,weight#}/{0,cons,nil,s}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              1: sum#(cons(s(n),x),cons(m,y)) ->
                   c_2(sum#(cons(n,x)           
                           ,cons(s(m),y)))      
              
            The strictly oriented rules are moved into the weak component.
        *** 1.1.1.1.1.1.2.2.1 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
              Strict TRS Rules:
                
              Weak DP Rules:
                sum#(cons(0(),x),y) -> c_1(sum#(x,y))
                weight#(cons(n,cons(m,x))) -> sum#(cons(n,cons(m,x)),cons(0(),x))
                weight#(cons(n,cons(m,x))) -> weight#(sum(cons(n,cons(m,x)),cons(0(),x)))
              Weak TRS Rules:
                sum(cons(0(),x),y) -> sum(x,y)
                sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
                sum(nil(),y) -> y
              Signature:
                {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
              Obligation:
                Innermost
                basic terms: {sum#,weight#}/{0,cons,nil,s}
            Applied Processor:
              NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation:
              The following argument positions are considered usable:
                uargs(c_1) = {1},
                uargs(c_2) = {1}
              
              Following symbols are considered usable:
                {sum,sum#,weight#}
              TcT has computed the following interpretation:
                      p(0) = [1]                      
                             [0]                      
                   p(cons) = [1 1] x1 + [1 2] x2 + [1]
                             [0 1]      [0 1]      [0]
                    p(nil) = [0]                      
                             [2]                      
                      p(s) = [1 0] x1 + [0]           
                             [0 1]      [2]           
                    p(sum) = [0 1] x1 + [1 0] x2 + [0]
                             [0 1]      [0 1]      [0]
                 p(weight) = [0 0] x1 + [2]           
                             [0 1]      [0]           
                   p(sum#) = [0 2] x1 + [0]           
                             [0 1]      [0]           
                p(weight#) = [1 1] x1 + [3]           
                             [1 0]      [0]           
                    p(c_1) = [1 0] x1 + [0]           
                             [0 0]      [0]           
                    p(c_2) = [1 0] x1 + [0]           
                             [0 0]      [0]           
                    p(c_3) = [0]                      
                             [0]                      
                    p(c_4) = [1 1] x1 + [0]           
                             [0 0]      [0]           
                    p(c_5) = [0]                      
                             [0]                      
              
              Following rules are strictly oriented:
              sum#(cons(s(n),x),cons(m,y)) = [0 2] n + [0 2] x + [4]
                                             [0 1]     [0 1]     [2]
                                           > [0 2] n + [0 2] x + [0]
                                             [0 0]     [0 0]     [0]
                                           = c_2(sum#(cons(n,x)     
                                                     ,cons(s(m),y)))
              
              
              Following rules are (at-least) weakly oriented:
                      sum#(cons(0(),x),y) =  [0 2] x + [0]                   
                                             [0 1]     [0]                   
                                          >= [0 2] x + [0]                   
                                             [0 0]     [0]                   
                                          =  c_1(sum#(x,y))                  
              
               weight#(cons(n,cons(m,x))) =  [1 4] m + [1 2] n + [1          
                                             5] x + [5]                      
                                             [1 3]     [1 1]     [1          
                                             4]     [2]                      
                                          >= [0 2] m + [0 2] n + [0          
                                             2] x + [0]                      
                                             [0 1]     [0 1]     [0          
                                             1]     [0]                      
                                          =  sum#(cons(n,cons(m,x))          
                                                 ,cons(0(),x))               
              
               weight#(cons(n,cons(m,x))) =  [1 4] m + [1 2] n + [1          
                                             5] x + [5]                      
                                             [1 3]     [1 1]     [1          
                                             4]     [2]                      
                                          >= [0 2] m + [0 2] n + [1          
                                             5] x + [5]                      
                                             [0 1]     [0 1]     [1          
                                             3]     [2]                      
                                          =  weight#(sum(cons(n,cons(m,x))   
                                                        ,cons(0(),x)))       
              
                       sum(cons(0(),x),y) =  [0 1] x + [1 0] y + [0]         
                                             [0 1]     [0 1]     [0]         
                                          >= [0 1] x + [1 0] y + [0]         
                                             [0 1]     [0 1]     [0]         
                                          =  sum(x,y)                        
              
              sum(cons(s(n),x),cons(m,y)) =  [1 1] m + [0 1] n + [0 1] x + [1
                                             2] y + [3]                      
                                             [0 1]     [0 1]     [0 1]     [0
                                             1]     [2]                      
                                          >= [1 1] m + [0 1] n + [0 1] x + [1
                                             2] y + [3]                      
                                             [0 1]     [0 1]     [0 1]     [0
                                             1]     [2]                      
                                          =  sum(cons(n,x),cons(s(m),y))     
              
                             sum(nil(),y) =  [1 0] y + [2]                   
                                             [0 1]     [2]                   
                                          >= [1 0] y + [0]                   
                                             [0 1]     [0]                   
                                          =  y                               
              
        *** 1.1.1.1.1.1.2.2.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                sum#(cons(0(),x),y) -> c_1(sum#(x,y))
                sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
                weight#(cons(n,cons(m,x))) -> sum#(cons(n,cons(m,x)),cons(0(),x))
                weight#(cons(n,cons(m,x))) -> weight#(sum(cons(n,cons(m,x)),cons(0(),x)))
              Weak TRS Rules:
                sum(cons(0(),x),y) -> sum(x,y)
                sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
                sum(nil(),y) -> y
              Signature:
                {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
              Obligation:
                Innermost
                basic terms: {sum#,weight#}/{0,cons,nil,s}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.2.2.2 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                sum#(cons(0(),x),y) -> c_1(sum#(x,y))
                sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
                weight#(cons(n,cons(m,x))) -> sum#(cons(n,cons(m,x)),cons(0(),x))
                weight#(cons(n,cons(m,x))) -> weight#(sum(cons(n,cons(m,x)),cons(0(),x)))
              Weak TRS Rules:
                sum(cons(0(),x),y) -> sum(x,y)
                sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
                sum(nil(),y) -> y
              Signature:
                {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
              Obligation:
                Innermost
                basic terms: {sum#,weight#}/{0,cons,nil,s}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:W:sum#(cons(0(),x),y) -> c_1(sum#(x,y))
                   -->_1 sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y))):2
                   -->_1 sum#(cons(0(),x),y) -> c_1(sum#(x,y)):1
                
                2:W:sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
                   -->_1 sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y))):2
                   -->_1 sum#(cons(0(),x),y) -> c_1(sum#(x,y)):1
                
                3:W:weight#(cons(n,cons(m,x))) -> sum#(cons(n,cons(m,x)),cons(0(),x))
                   -->_1 sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y))):2
                   -->_1 sum#(cons(0(),x),y) -> c_1(sum#(x,y)):1
                
                4:W:weight#(cons(n,cons(m,x))) -> weight#(sum(cons(n,cons(m,x)),cons(0(),x)))
                   -->_1 weight#(cons(n,cons(m,x))) -> weight#(sum(cons(n,cons(m,x)),cons(0(),x))):4
                   -->_1 weight#(cons(n,cons(m,x))) -> sum#(cons(n,cons(m,x)),cons(0(),x)):3
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                4: weight#(cons(n,cons(m,x))) ->  
                     weight#(sum(cons(n,cons(m,x))
                                ,cons(0(),x)))    
                3: weight#(cons(n,cons(m,x))) ->  
                     sum#(cons(n,cons(m,x))       
                         ,cons(0(),x))            
                1: sum#(cons(0(),x),y) ->         
                     c_1(sum#(x,y))               
                2: sum#(cons(s(n),x),cons(m,y)) ->
                     c_2(sum#(cons(n,x)           
                             ,cons(s(m),y)))      
        *** 1.1.1.1.1.1.2.2.2.1 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                sum(cons(0(),x),y) -> sum(x,y)
                sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
                sum(nil(),y) -> y
              Signature:
                {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
              Obligation:
                Innermost
                basic terms: {sum#,weight#}/{0,cons,nil,s}
            Applied Processor:
              EmptyProcessor
            Proof:
              The problem is already closed. The intended complexity is O(1).
        
  *** 1.1.1.1.1.2 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
        Strict TRS Rules:
          
        Weak DP Rules:
          sum#(cons(0(),x),y) -> c_1(sum#(x,y))
          sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
        Weak TRS Rules:
          sum(cons(0(),x),y) -> sum(x,y)
          sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
          sum(nil(),y) -> y
        Signature:
          {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
        Obligation:
          Innermost
          basic terms: {sum#,weight#}/{0,cons,nil,s}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
             -->_2 sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y))):3
             -->_2 sum#(cons(0(),x),y) -> c_1(sum#(x,y)):2
             -->_1 weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x))):1
          
          2:W:sum#(cons(0(),x),y) -> c_1(sum#(x,y))
             -->_1 sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y))):3
             -->_1 sum#(cons(0(),x),y) -> c_1(sum#(x,y)):2
          
          3:W:sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y)))
             -->_1 sum#(cons(s(n),x),cons(m,y)) -> c_2(sum#(cons(n,x),cons(s(m),y))):3
             -->_1 sum#(cons(0(),x),y) -> c_1(sum#(x,y)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: sum#(cons(s(n),x),cons(m,y)) ->
               c_2(sum#(cons(n,x)           
                       ,cons(s(m),y)))      
          2: sum#(cons(0(),x),y) ->         
               c_1(sum#(x,y))               
  *** 1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          sum(cons(0(),x),y) -> sum(x,y)
          sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
          sum(nil(),y) -> y
        Signature:
          {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/2,c_5/0}
        Obligation:
          Innermost
          basic terms: {sum#,weight#}/{0,cons,nil,s}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x)))
             -->_1 weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))),sum#(cons(n,cons(m,x)),cons(0(),x))):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))))
  *** 1.1.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          sum(cons(0(),x),y) -> sum(x,y)
          sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
          sum(nil(),y) -> y
        Signature:
          {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/1,c_5/0}
        Obligation:
          Innermost
          basic terms: {sum#,weight#}/{0,cons,nil,s}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: weight#(cons(n,cons(m,x))) ->    
               c_4(weight#(sum(cons(n         
                                   ,cons(m,x))
                              ,cons(0(),x)))) 
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            sum(cons(0(),x),y) -> sum(x,y)
            sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
            sum(nil(),y) -> y
          Signature:
            {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/1,c_5/0}
          Obligation:
            Innermost
            basic terms: {sum#,weight#}/{0,cons,nil,s}
        Applied Processor:
          NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_4) = {1}
          
          Following symbols are considered usable:
            {sum,sum#,weight#}
          TcT has computed the following interpretation:
                  p(0) = [1]                  
               p(cons) = [1] x2 + [1]         
                p(nil) = [1]                  
                  p(s) = [0]                  
                p(sum) = [1] x2 + [0]         
             p(weight) = [1]                  
               p(sum#) = [1] x1 + [1] x2 + [0]
            p(weight#) = [8] x1 + [12]        
                p(c_1) = [1]                  
                p(c_2) = [1]                  
                p(c_3) = [1]                  
                p(c_4) = [1] x1 + [3]         
                p(c_5) = [0]                  
          
          Following rules are strictly oriented:
          weight#(cons(n,cons(m,x))) = [8] x + [28]                   
                                     > [8] x + [23]                   
                                     = c_4(weight#(sum(cons(n         
                                                           ,cons(m,x))
                                                      ,cons(0(),x)))) 
          
          
          Following rules are (at-least) weakly oriented:
                   sum(cons(0(),x),y) =  [1] y + [0]                
                                      >= [1] y + [0]                
                                      =  sum(x,y)                   
          
          sum(cons(s(n),x),cons(m,y)) =  [1] y + [1]                
                                      >= [1] y + [1]                
                                      =  sum(cons(n,x),cons(s(m),y))
          
                         sum(nil(),y) =  [1] y + [0]                
                                      >= [1] y + [0]                
                                      =  y                          
          
    *** 1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))))
          Weak TRS Rules:
            sum(cons(0(),x),y) -> sum(x,y)
            sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
            sum(nil(),y) -> y
          Signature:
            {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/1,c_5/0}
          Obligation:
            Innermost
            basic terms: {sum#,weight#}/{0,cons,nil,s}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))))
          Weak TRS Rules:
            sum(cons(0(),x),y) -> sum(x,y)
            sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
            sum(nil(),y) -> y
          Signature:
            {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/1,c_5/0}
          Obligation:
            Innermost
            basic terms: {sum#,weight#}/{0,cons,nil,s}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x))))
               -->_1 weight#(cons(n,cons(m,x))) -> c_4(weight#(sum(cons(n,cons(m,x)),cons(0(),x)))):1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: weight#(cons(n,cons(m,x))) ->    
                 c_4(weight#(sum(cons(n         
                                     ,cons(m,x))
                                ,cons(0(),x)))) 
    *** 1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            sum(cons(0(),x),y) -> sum(x,y)
            sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y))
            sum(nil(),y) -> y
          Signature:
            {sum/2,weight/1,sum#/2,weight#/1} / {0/0,cons/2,nil/0,s/1,c_1/1,c_2/1,c_3/0,c_4/1,c_5/0}
          Obligation:
            Innermost
            basic terms: {sum#,weight#}/{0,cons,nil,s}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).