We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^5)). Strict Trs: { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) , sum(cons(0(), x), y) -> sum(x, y) , sum(nil(), y) -> y , weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0(), x))) , weight(cons(n, nil())) -> n } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^5)) We add the following dependency tuples: Strict DPs: { sum^#(cons(s(n), x), cons(m, y)) -> c_1(sum^#(cons(n, x), cons(s(m), y))) , sum^#(cons(0(), x), y) -> c_2(sum^#(x, y)) , sum^#(nil(), y) -> c_3() , weight^#(cons(n, cons(m, x))) -> c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))), sum^#(cons(n, cons(m, x)), cons(0(), x))) , weight^#(cons(n, nil())) -> c_5() } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^5)). Strict DPs: { sum^#(cons(s(n), x), cons(m, y)) -> c_1(sum^#(cons(n, x), cons(s(m), y))) , sum^#(cons(0(), x), y) -> c_2(sum^#(x, y)) , sum^#(nil(), y) -> c_3() , weight^#(cons(n, cons(m, x))) -> c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))), sum^#(cons(n, cons(m, x)), cons(0(), x))) , weight^#(cons(n, nil())) -> c_5() } Weak Trs: { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) , sum(cons(0(), x), y) -> sum(x, y) , sum(nil(), y) -> y , weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0(), x))) , weight(cons(n, nil())) -> n } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^5)) We estimate the number of application of {3,5} by applications of Pre({3,5}) = {2,4}. Here rules are labeled as follows: DPs: { 1: sum^#(cons(s(n), x), cons(m, y)) -> c_1(sum^#(cons(n, x), cons(s(m), y))) , 2: sum^#(cons(0(), x), y) -> c_2(sum^#(x, y)) , 3: sum^#(nil(), y) -> c_3() , 4: weight^#(cons(n, cons(m, x))) -> c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))), sum^#(cons(n, cons(m, x)), cons(0(), x))) , 5: weight^#(cons(n, nil())) -> c_5() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^5)). Strict DPs: { sum^#(cons(s(n), x), cons(m, y)) -> c_1(sum^#(cons(n, x), cons(s(m), y))) , sum^#(cons(0(), x), y) -> c_2(sum^#(x, y)) , weight^#(cons(n, cons(m, x))) -> c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))), sum^#(cons(n, cons(m, x)), cons(0(), x))) } Weak DPs: { sum^#(nil(), y) -> c_3() , weight^#(cons(n, nil())) -> c_5() } Weak Trs: { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) , sum(cons(0(), x), y) -> sum(x, y) , sum(nil(), y) -> y , weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0(), x))) , weight(cons(n, nil())) -> n } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^5)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { sum^#(nil(), y) -> c_3() , weight^#(cons(n, nil())) -> c_5() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^5)). Strict DPs: { sum^#(cons(s(n), x), cons(m, y)) -> c_1(sum^#(cons(n, x), cons(s(m), y))) , sum^#(cons(0(), x), y) -> c_2(sum^#(x, y)) , weight^#(cons(n, cons(m, x))) -> c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))), sum^#(cons(n, cons(m, x)), cons(0(), x))) } Weak Trs: { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) , sum(cons(0(), x), y) -> sum(x, y) , sum(nil(), y) -> y , weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0(), x))) , weight(cons(n, nil())) -> n } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^5)) We replace rewrite rules by usable rules: Weak Usable Rules: { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) , sum(cons(0(), x), y) -> sum(x, y) , sum(nil(), y) -> y } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^5)). Strict DPs: { sum^#(cons(s(n), x), cons(m, y)) -> c_1(sum^#(cons(n, x), cons(s(m), y))) , sum^#(cons(0(), x), y) -> c_2(sum^#(x, y)) , weight^#(cons(n, cons(m, x))) -> c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))), sum^#(cons(n, cons(m, x)), cons(0(), x))) } Weak Trs: { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) , sum(cons(0(), x), y) -> sum(x, y) , sum(nil(), y) -> y } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^5)) We decompose the input problem according to the dependency graph into the upper component { weight^#(cons(n, cons(m, x))) -> c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))), sum^#(cons(n, cons(m, x)), cons(0(), x))) } and lower component { sum^#(cons(s(n), x), cons(m, y)) -> c_1(sum^#(cons(n, x), cons(s(m), y))) , sum^#(cons(0(), x), y) -> c_2(sum^#(x, y)) } Further, following extension rules are added to the lower component. { weight^#(cons(n, cons(m, x))) -> sum^#(cons(n, cons(m, x)), cons(0(), x)) , weight^#(cons(n, cons(m, x))) -> weight^#(sum(cons(n, cons(m, x)), cons(0(), x))) } TcT solves the upper component with certificate YES(O(1),O(n^1)). Sub-proof: ---------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { weight^#(cons(n, cons(m, x))) -> c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))), sum^#(cons(n, cons(m, x)), cons(0(), x))) } Weak Trs: { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) , sum(cons(0(), x), y) -> sum(x, y) , sum(nil(), y) -> y } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'Small Polynomial Path Order (PS,1-bounded)' to orient following rules strictly. DPs: { 1: weight^#(cons(n, cons(m, x))) -> c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))), sum^#(cons(n, cons(m, x)), cons(0(), x))) } Sub-proof: ---------- The input was oriented with the instance of 'Small Polynomial Path Order (PS,1-bounded)' as induced by the safe mapping safe(sum) = {}, safe(cons) = {1, 2}, safe(s) = {1}, safe(0) = {}, safe(nil) = {}, safe(sum^#) = {}, safe(weight^#) = {}, safe(c_4) = {} and precedence empty . Following symbols are considered recursive: {weight^#} The recursion depth is 1. Further, following argument filtering is employed: pi(sum) = 2, pi(cons) = [2], pi(s) = [], pi(0) = [], pi(nil) = [], pi(sum^#) = [], pi(weight^#) = [1], pi(c_4) = [1, 2] Usable defined function symbols are a subset of: {sum, sum^#, weight^#} For your convenience, here are the satisfied ordering constraints: pi(weight^#(cons(n, cons(m, x)))) = weight^#(cons(; cons(; x));) > c_4(weight^#(cons(; x);), sum^#();) = pi(c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))), sum^#(cons(n, cons(m, x)), cons(0(), x)))) pi(sum(cons(s(n), x), cons(m, y))) = cons(; y) >= cons(; y) = pi(sum(cons(n, x), cons(s(m), y))) pi(sum(cons(0(), x), y)) = y >= y = pi(sum(x, y)) pi(sum(nil(), y)) = y >= y = pi(y) The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { weight^#(cons(n, cons(m, x))) -> c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))), sum^#(cons(n, cons(m, x)), cons(0(), x))) } Weak Trs: { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) , sum(cons(0(), x), y) -> sum(x, y) , sum(nil(), y) -> y } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { weight^#(cons(n, cons(m, x))) -> c_4(weight^#(sum(cons(n, cons(m, x)), cons(0(), x))), sum^#(cons(n, cons(m, x)), cons(0(), x))) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) , sum(cons(0(), x), y) -> sum(x, y) , sum(nil(), y) -> y } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^4)). Strict DPs: { sum^#(cons(s(n), x), cons(m, y)) -> c_1(sum^#(cons(n, x), cons(s(m), y))) , sum^#(cons(0(), x), y) -> c_2(sum^#(x, y)) } Weak DPs: { weight^#(cons(n, cons(m, x))) -> sum^#(cons(n, cons(m, x)), cons(0(), x)) , weight^#(cons(n, cons(m, x))) -> weight^#(sum(cons(n, cons(m, x)), cons(0(), x))) } Weak Trs: { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) , sum(cons(0(), x), y) -> sum(x, y) , sum(nil(), y) -> y } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^4)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 2: sum^#(cons(0(), x), y) -> c_2(sum^#(x, y)) , 4: weight^#(cons(n, cons(m, x))) -> weight^#(sum(cons(n, cons(m, x)), cons(0(), x))) } Trs: { sum(nil(), y) -> y } Sub-proof: ---------- The following argument positions are usable: Uargs(c_1) = {1}, Uargs(c_2) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [sum](x1, x2) = [1] x2 + [1] [cons](x1, x2) = [1] x2 + [2] [s](x1) = [1] x1 + [2] [0] = [0] [nil] = [0] [sum^#](x1, x2) = [3] x1 + [3] [c_1](x1) = [1] x1 + [0] [c_2](x1) = [1] x1 + [0] [weight^#](x1) = [3] x1 + [3] The order satisfies the following ordering constraints: [sum(cons(s(n), x), cons(m, y))] = [1] y + [3] >= [1] y + [3] = [sum(cons(n, x), cons(s(m), y))] [sum(cons(0(), x), y)] = [1] y + [1] >= [1] y + [1] = [sum(x, y)] [sum(nil(), y)] = [1] y + [1] > [1] y + [0] = [y] [sum^#(cons(s(n), x), cons(m, y))] = [3] x + [9] >= [3] x + [9] = [c_1(sum^#(cons(n, x), cons(s(m), y)))] [sum^#(cons(0(), x), y)] = [3] x + [9] > [3] x + [3] = [c_2(sum^#(x, y))] [weight^#(cons(n, cons(m, x)))] = [3] x + [15] >= [3] x + [15] = [sum^#(cons(n, cons(m, x)), cons(0(), x))] [weight^#(cons(n, cons(m, x)))] = [3] x + [15] > [3] x + [12] = [weight^#(sum(cons(n, cons(m, x)), cons(0(), x)))] We return to the main proof. Consider the set of all dependency pairs : { 1: sum^#(cons(s(n), x), cons(m, y)) -> c_1(sum^#(cons(n, x), cons(s(m), y))) , 2: sum^#(cons(0(), x), y) -> c_2(sum^#(x, y)) , 3: weight^#(cons(n, cons(m, x))) -> sum^#(cons(n, cons(m, x)), cons(0(), x)) , 4: weight^#(cons(n, cons(m, x))) -> weight^#(sum(cons(n, cons(m, x)), cons(0(), x))) } Processor 'matrix interpretation of dimension 1' induces the complexity certificate YES(?,O(n^1)) on application of dependency pairs {2,4}. These cover all (indirect) predecessors of dependency pairs {2,3,4}, their number of application is equally bounded. The dependency pairs are shifted into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^4)). Strict DPs: { sum^#(cons(s(n), x), cons(m, y)) -> c_1(sum^#(cons(n, x), cons(s(m), y))) } Weak DPs: { sum^#(cons(0(), x), y) -> c_2(sum^#(x, y)) , weight^#(cons(n, cons(m, x))) -> sum^#(cons(n, cons(m, x)), cons(0(), x)) , weight^#(cons(n, cons(m, x))) -> weight^#(sum(cons(n, cons(m, x)), cons(0(), x))) } Weak Trs: { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) , sum(cons(0(), x), y) -> sum(x, y) , sum(nil(), y) -> y } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^4)) We use the processor 'matrix interpretation of dimension 4' to orient following rules strictly. DPs: { sum^#(cons(s(n), x), cons(m, y)) -> c_1(sum^#(cons(n, x), cons(s(m), y))) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^4)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- The following argument positions are usable: Uargs(c_1) = {1}, Uargs(c_2) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [1 0 0 0] [1 0 0 0] [0] [sum](x1, x2) = [0 0 0 0] x1 + [0 1 0 0] x2 + [0] [1 0 0 0] [0 0 1 0] [1] [0 0 1 0] [0 0 0 1] [1] [0 0 0 1] [1 0 0 1] [0] [cons](x1, x2) = [0 0 0 0] x1 + [1 0 0 1] x2 + [1] [0 0 0 1] [0 0 1 0] [0] [0 0 0 1] [0 0 1 0] [1] [0 0 1 0] [0] [s](x1) = [0 1 1 0] x1 + [0] [0 0 0 0] [0] [0 0 0 1] [1] [1] [0] = [1] [1] [0] [0] [nil] = [0] [0] [0] [1 0 0 0] [0] [sum^#](x1, x2) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [0] [1 1 1 0] [0] [c_1](x1) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [0] [1 0 0 0] [0] [c_2](x1) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [0] [0 1 0 1] [0] [weight^#](x1) = [0 0 0 0] x1 + [0] [0 0 0 0] [0] [0 0 0 0] [0] The order satisfies the following ordering constraints: [sum(cons(s(n), x), cons(m, y))] = [0 0 0 1] [1 0 0 1] [0 0 0 1] [1 0 0 1] [1] [0 0 0 0] n + [0 0 0 0] x + [0 0 0 0] m + [1 0 0 1] y + [1] [0 0 0 1] [1 0 0 1] [0 0 0 1] [0 0 1 0] [2] [0 0 0 1] [0 0 1 0] [0 0 0 1] [0 0 1 0] [3] >= [0 0 0 1] [1 0 0 1] [0 0 0 1] [1 0 0 1] [1] [0 0 0 0] n + [0 0 0 0] x + [0 0 0 0] m + [1 0 0 1] y + [1] [0 0 0 1] [1 0 0 1] [0 0 0 1] [0 0 1 0] [2] [0 0 0 1] [0 0 1 0] [0 0 0 1] [0 0 1 0] [3] = [sum(cons(n, x), cons(s(m), y))] [sum(cons(0(), x), y)] = [1 0 0 1] [1 0 0 0] [0] [0 0 0 0] x + [0 1 0 0] y + [0] [1 0 0 1] [0 0 1 0] [1] [0 0 1 0] [0 0 0 1] [1] >= [1 0 0 0] [1 0 0 0] [0] [0 0 0 0] x + [0 1 0 0] y + [0] [1 0 0 0] [0 0 1 0] [1] [0 0 1 0] [0 0 0 1] [1] = [sum(x, y)] [sum(nil(), y)] = [1 0 0 0] [0] [0 1 0 0] y + [0] [0 0 1 0] [1] [0 0 0 1] [1] >= [1 0 0 0] [0] [0 1 0 0] y + [0] [0 0 1 0] [0] [0 0 0 1] [0] = [y] [sum^#(cons(s(n), x), cons(m, y))] = [0 0 0 1] [1 0 0 1] [1] [0 0 0 0] n + [0 0 0 0] x + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [0] > [0 0 0 1] [1 0 0 1] [0] [0 0 0 0] n + [0 0 0 0] x + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [0] = [c_1(sum^#(cons(n, x), cons(s(m), y)))] [sum^#(cons(0(), x), y)] = [1 0 0 1] [0] [0 0 0 0] x + [0] [0 0 0 0] [0] [0 0 0 0] [0] >= [1 0 0 0] [0] [0 0 0 0] x + [0] [0 0 0 0] [0] [0 0 0 0] [0] = [c_2(sum^#(x, y))] [weight^#(cons(n, cons(m, x)))] = [0 0 0 1] [1 0 2 1] [0 0 0 3] [3] [0 0 0 0] n + [0 0 0 0] x + [0 0 0 0] m + [0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0] > [0 0 0 1] [1 0 1 1] [0 0 0 2] [1] [0 0 0 0] n + [0 0 0 0] x + [0 0 0 0] m + [0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0] = [sum^#(cons(n, cons(m, x)), cons(0(), x))] [weight^#(cons(n, cons(m, x)))] = [0 0 0 1] [1 0 2 1] [0 0 0 3] [3] [0 0 0 0] n + [0 0 0 0] x + [0 0 0 0] m + [0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0] >= [0 0 0 1] [1 0 2 1] [0 0 0 1] [3] [0 0 0 0] n + [0 0 0 0] x + [0 0 0 0] m + [0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0] = [weight^#(sum(cons(n, cons(m, x)), cons(0(), x)))] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { sum^#(cons(s(n), x), cons(m, y)) -> c_1(sum^#(cons(n, x), cons(s(m), y))) , sum^#(cons(0(), x), y) -> c_2(sum^#(x, y)) , weight^#(cons(n, cons(m, x))) -> sum^#(cons(n, cons(m, x)), cons(0(), x)) , weight^#(cons(n, cons(m, x))) -> weight^#(sum(cons(n, cons(m, x)), cons(0(), x))) } Weak Trs: { sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) , sum(cons(0(), x), y) -> sum(x, y) , sum(nil(), y) -> y } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^5))