(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(s(x), s(y)), s(y)))
Rewrite Strategy: INNERMOST
 
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(s(z0), s(z1)), s(z1)))
Tuples:
MINUS(z0, 0) → c
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(0, z0) → c2
LE(s(z0), 0) → c3
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(0, s(z0)) → c5
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
MINUS(z0, 0) → c
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(0, z0) → c2
LE(s(z0), 0) → c3
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(0, s(z0)) → c5
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
 
minus, le, quot
Defined Pair Symbols:
 
MINUS, LE, QUOT
Compound Symbols:
 
c, c1, c2, c3, c4, c5, c6
 
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing nodes:
MINUS(z0, 0) → c
LE(s(z0), 0) → c3
LE(0, z0) → c2
QUOT(0, s(z0)) → c5
 
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(s(z0), s(z1)), s(z1)))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
 
minus, le, quot
Defined Pair Symbols:
 
MINUS, LE, QUOT
Compound Symbols:
 
c1, c4, c6
 
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(s(z0), s(z1)), s(z1)))
 
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
 
minus
Defined Pair Symbols:
 
MINUS, LE, QUOT
Compound Symbols:
 
c1, c4, c6
 
(7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
LE(s(z0), s(z1)) → c4(LE(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0   
POL(LE(x1, x2)) = [2]x22   
POL(MINUS(x1, x2)) = 0   
POL(QUOT(x1, x2)) = 0   
POL(c1(x1)) = x1   
POL(c4(x1)) = x1   
POL(c6(x1, x2)) = x1 + x2   
POL(minus(x1, x2)) = 0   
POL(s(x1)) = [2] + x1   
 
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(s(z0), s(z1)), s(z1)), MINUS(s(z0), s(z1)))
K tuples:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
Defined Rule Symbols:
 
minus
Defined Pair Symbols:
 
MINUS, LE, QUOT
Compound Symbols:
 
c1, c4, c6
 
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace 
QUOT(
s(
z0), 
s(
z1)) → 
c6(
QUOT(
minus(
s(
z0), 
s(
z1)), 
s(
z1)), 
MINUS(
s(
z0), 
s(
z1))) by 
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
 
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
K tuples:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
Defined Rule Symbols:
 
minus
Defined Pair Symbols:
 
MINUS, LE, QUOT
Compound Symbols:
 
c1, c4, c6
 
(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0   
POL(LE(x1, x2)) = [2]x1   
POL(MINUS(x1, x2)) = 0   
POL(QUOT(x1, x2)) = [2]x1   
POL(c1(x1)) = x1   
POL(c4(x1)) = x1   
POL(c6(x1, x2)) = x1 + x2   
POL(minus(x1, x2)) = x1   
POL(s(x1)) = [4] + x1   
 
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
K tuples:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
Defined Rule Symbols:
 
minus
Defined Pair Symbols:
 
MINUS, LE, QUOT
Compound Symbols:
 
c1, c4, c6
 
(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0   
POL(LE(x1, x2)) = [2]x2 + [2]x1·x2   
POL(MINUS(x1, x2)) = [2]x1   
POL(QUOT(x1, x2)) = x12   
POL(c1(x1)) = x1   
POL(c4(x1)) = x1   
POL(c6(x1, x2)) = x1 + x2   
POL(minus(x1, x2)) = [1] + x1   
POL(s(x1)) = [3] + x1   
 
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:none
K tuples:
LE(s(z0), s(z1)) → c4(LE(z0, z1))
QUOT(s(z0), s(z1)) → c6(QUOT(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
Defined Rule Symbols:
 
minus
Defined Pair Symbols:
 
MINUS, LE, QUOT
Compound Symbols:
 
c1, c4, c6
 
(15) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(16) BOUNDS(1, 1)