*** 1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) g(a(),g(x,g(b(),g(a(),g(x,y))))) -> g(a(),g(a(),g(a(),g(x,g(b(),g(b(),y)))))) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Weak DP Rules: Weak TRS Rules: Signature: {f/1,g/2,h/1,i/2} / {a/0,b/0,c/0,s/1} Obligation: Innermost basic terms: {f,g,h,i}/{a,b,c,s} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) g#(x,x) -> c_3(g#(a(),b())) g#(a(),g(x,g(b(),g(a(),g(x,y))))) -> c_4(g#(a(),g(a(),g(a(),g(x,g(b(),g(b(),y)))))),g#(a(),g(a(),g(x,g(b(),g(b(),y))))),g#(a(),g(x,g(b(),g(b(),y)))),g#(x,g(b(),g(b(),y))),g#(b(),g(b(),y)),g#(b(),y)) h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)) h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) i#(x,x) -> c_8(i#(a(),b())) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) g#(x,x) -> c_3(g#(a(),b())) g#(a(),g(x,g(b(),g(a(),g(x,y))))) -> c_4(g#(a(),g(a(),g(a(),g(x,g(b(),g(b(),y)))))),g#(a(),g(a(),g(x,g(b(),g(b(),y))))),g#(a(),g(x,g(b(),g(b(),y)))),g#(x,g(b(),g(b(),y))),g#(b(),g(b(),y)),g#(b(),y)) h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)) h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) i#(x,x) -> c_8(i#(a(),b())) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) g(a(),g(x,g(b(),g(a(),g(x,y))))) -> g(a(),g(a(),g(a(),g(x,g(b(),g(b(),y)))))) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/2,c_2/2,c_3/1,c_4/6,c_5/2,c_6/4,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) g#(x,x) -> c_3(g#(a(),b())) h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)) h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) i#(x,x) -> c_8(i#(a(),b())) *** 1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) g#(x,x) -> c_3(g#(a(),b())) h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)) h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) i#(x,x) -> c_8(i#(a(),b())) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/2,c_2/2,c_3/1,c_4/6,c_5/2,c_6/4,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {3,7} by application of Pre({3,7}) = {1,4,5}. Here rules are labelled as follows: 1: f#(g(s(x),y)) -> c_1(f#(g(x ,s(y))) ,g#(x,s(y))) 2: f#(s(x)) -> c_2(f#(h(s(x))) ,h#(s(x))) 3: g#(x,x) -> c_3(g#(a(),b())) 4: h#(g(x,s(y))) -> c_5(h#(g(s(x) ,y)) ,g#(s(x),y)) 5: h#(i(x,y)) -> c_6(i#(i(c() ,h(h(y))) ,x) ,i#(c(),h(h(y))) ,h#(h(y)) ,h#(y)) 6: h#(s(f(x))) -> c_7(h#(f(x)) ,f#(x)) 7: i#(x,x) -> c_8(i#(a(),b())) *** 1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)) h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) Strict TRS Rules: Weak DP Rules: g#(x,x) -> c_3(g#(a(),b())) i#(x,x) -> c_8(i#(a(),b())) Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/2,c_2/2,c_3/1,c_4/6,c_5/2,c_6/4,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))) -->_1 f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))):2 -->_2 g#(x,x) -> c_3(g#(a(),b())):6 -->_1 f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))):1 2:S:f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) -->_2 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5 -->_1 f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))):2 -->_1 f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))):1 3:S:h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)) -->_1 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5 -->_1 h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)):4 -->_2 g#(x,x) -> c_3(g#(a(),b())):6 -->_1 h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)):3 4:S:h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)) -->_4 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5 -->_3 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5 -->_2 i#(x,x) -> c_8(i#(a(),b())):7 -->_1 i#(x,x) -> c_8(i#(a(),b())):7 -->_4 h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)):4 -->_3 h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)):4 -->_4 h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)):3 -->_3 h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)):3 5:S:h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) -->_1 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5 -->_1 h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)):4 -->_1 h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)):3 -->_2 f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))):2 -->_2 f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))):1 6:W:g#(x,x) -> c_3(g#(a(),b())) 7:W:i#(x,x) -> c_8(i#(a(),b())) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: g#(x,x) -> c_3(g#(a(),b())) 7: i#(x,x) -> c_8(i#(a(),b())) *** 1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)) h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/2,c_2/2,c_3/1,c_4/6,c_5/2,c_6/4,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))) -->_1 f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))):2 -->_1 f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))):1 2:S:f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) -->_2 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5 -->_1 f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))):2 -->_1 f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))):1 3:S:h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)) -->_1 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5 -->_1 h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)):4 -->_1 h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)):3 4:S:h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)) -->_4 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5 -->_3 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5 -->_4 h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)):4 -->_3 h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)):4 -->_4 h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)):3 -->_3 h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)):3 5:S:h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) -->_1 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5 -->_1 h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)):4 -->_1 h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)):3 -->_2 f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))):2 -->_2 f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))) h#(g(x,s(y))) -> c_5(h#(g(s(x),y))) h#(i(x,y)) -> c_6(h#(h(y)),h#(y)) *** 1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) h#(g(x,s(y))) -> c_5(h#(g(s(x),y))) h#(i(x,y)) -> c_6(h#(h(y)),h#(y)) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 5: h#(s(f(x))) -> c_7(h#(f(x)) ,f#(x)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) h#(g(x,s(y))) -> c_5(h#(g(s(x),y))) h#(i(x,y)) -> c_6(h#(h(y)),h#(y)) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1,2}, uargs(c_5) = {1}, uargs(c_6) = {1,2}, uargs(c_7) = {2} Following symbols are considered usable: {f,g,h,i,f#,g#,h#,i#} TcT has computed the following interpretation: p(a) = [0] [0] p(b) = [0] [0] p(c) = [0] [0] p(f) = [2 0] x1 + [0] [2 0] [0] p(g) = [0] [0] p(h) = [0 0] x1 + [0] [2 0] [0] p(i) = [2 1] x1 + [0 0] x2 + [0] [0 0] [2 2] [0] p(s) = [0 1] x1 + [2] [0 1] [2] p(f#) = [2 0] x1 + [0] [0 0] [0] p(g#) = [2 1] x1 + [2] [2 0] [1] p(h#) = [0 2] x1 + [0] [0 0] [0] p(i#) = [2 1] x1 + [1 0] x2 + [0] [0 0] [0 2] [0] p(c_1) = [2 0] x1 + [0] [0 1] [0] p(c_2) = [2 0] x1 + [1 0] x2 + [0] [1 0] [0 2] [0] p(c_3) = [2 0] x1 + [1] [0 1] [2] p(c_4) = [1 1] x3 + [0 0] x4 + [0] [0 1] [0 1] [0] p(c_5) = [2 0] x1 + [0] [0 2] [0] p(c_6) = [1 0] x1 + [2 0] x2 + [0] [0 0] [0 0] [0] p(c_7) = [2 0] x2 + [2] [0 0] [0] p(c_8) = [0 0] x1 + [0] [0 1] [0] Following rules are strictly oriented: h#(s(f(x))) = [4 0] x + [4] [0 0] [0] > [4 0] x + [2] [0 0] [0] = c_7(h#(f(x)),f#(x)) Following rules are (at-least) weakly oriented: f#(g(s(x),y)) = [0] [0] >= [0] [0] = c_1(f#(g(x,s(y)))) f#(s(x)) = [0 2] x + [4] [0 0] [0] >= [0 2] x + [4] [0 0] [0] = c_2(f#(h(s(x))),h#(s(x))) h#(g(x,s(y))) = [0] [0] >= [0] [0] = c_5(h#(g(s(x),y))) h#(i(x,y)) = [4 4] y + [0] [0 0] [0] >= [4 4] y + [0] [0 0] [0] = c_6(h#(h(y)),h#(y)) f(g(s(x),y)) = [0] [0] >= [0] [0] = f(g(x,s(y))) f(s(x)) = [0 2] x + [4] [0 2] [4] >= [4] [4] = s(s(f(h(s(x))))) g(x,x) = [0] [0] >= [0] [0] = g(a(),b()) h(g(x,s(y))) = [0] [0] >= [0] [0] = h(g(s(x),y)) h(i(x,y)) = [0 0] x + [0] [4 2] [0] >= [0 0] x + [0] [2 2] [0] = i(i(c(),h(h(y))),x) h(s(f(x))) = [0 0] x + [0] [4 0] [4] >= [0 0] x + [0] [4 0] [0] = h(f(x)) i(x,x) = [2 1] x + [0] [2 2] [0] >= [0] [0] = i(a(),b()) *** 1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) h#(g(x,s(y))) -> c_5(h#(g(s(x),y))) h#(i(x,y)) -> c_6(h#(h(y)),h#(y)) Strict TRS Rules: Weak DP Rules: h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) h#(g(x,s(y))) -> c_5(h#(g(s(x),y))) h#(i(x,y)) -> c_6(h#(h(y)),h#(y)) Strict TRS Rules: Weak DP Rules: h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 3: h#(g(x,s(y))) -> c_5(h#(g(s(x) ,y))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) h#(g(x,s(y))) -> c_5(h#(g(s(x),y))) h#(i(x,y)) -> c_6(h#(h(y)),h#(y)) Strict TRS Rules: Weak DP Rules: h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1,2}, uargs(c_5) = {1}, uargs(c_6) = {1,2}, uargs(c_7) = {2} Following symbols are considered usable: {f,g,h,i,f#,g#,h#,i#} TcT has computed the following interpretation: p(a) = [0] [0] p(b) = [0] [0] p(c) = [0] [0] p(f) = [0 2] x1 + [2] [0 2] [0] p(g) = [0 2] x2 + [2] [0 0] [0] p(h) = [0 1] x1 + [0] [0 0] [0] p(i) = [0 0] x1 + [2 1] x2 + [0] [2 2] [0 0] [0] p(s) = [0 0] x1 + [0] [0 1] [1] p(f#) = [0 0] x1 + [0] [1 0] [1] p(g#) = [0] [2] p(h#) = [1 0] x1 + [0] [0 1] [0] p(i#) = [0 0] x1 + [2] [0 1] [2] p(c_1) = [2 0] x1 + [0] [0 0] [3] p(c_2) = [2 0] x1 + [2 0] x2 + [0] [0 0] [0 0] [1] p(c_3) = [0 0] x1 + [1] [2 0] [0] p(c_4) = [0 2] x2 + [2 0] x3 + [1 2] x5 + [0 2] x6 + [1] [0 0] [0 1] [0 2] [0 2] [1] p(c_5) = [1 0] x1 + [0] [0 0] [0] p(c_6) = [1 0] x1 + [2 0] x2 + [0] [0 1] [0 0] [0] p(c_7) = [0 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [1] p(c_8) = [0 0] x1 + [0] [0 1] [0] Following rules are strictly oriented: h#(g(x,s(y))) = [0 2] y + [4] [0 0] [0] > [0 2] y + [2] [0 0] [0] = c_5(h#(g(s(x),y))) Following rules are (at-least) weakly oriented: f#(g(s(x),y)) = [0 0] y + [0] [0 2] [3] >= [0] [3] = c_1(f#(g(x,s(y)))) f#(s(x)) = [0] [1] >= [0] [1] = c_2(f#(h(s(x))),h#(s(x))) h#(i(x,y)) = [0 0] x + [2 1] y + [0] [2 2] [0 0] [0] >= [2 1] y + [0] [0 0] [0] = c_6(h#(h(y)),h#(y)) h#(s(f(x))) = [0 0] x + [0] [0 2] [1] >= [0 0] x + [0] [0 2] [1] = c_7(h#(f(x)),f#(x)) f(g(s(x),y)) = [2] [0] >= [2] [0] = f(g(x,s(y))) f(s(x)) = [0 2] x + [4] [0 2] [2] >= [0] [2] = s(s(f(h(s(x))))) g(x,x) = [0 2] x + [2] [0 0] [0] >= [2] [0] = g(a(),b()) h(g(x,s(y))) = [0] [0] >= [0] [0] = h(g(s(x),y)) h(i(x,y)) = [2 2] x + [0] [0 0] [0] >= [2 1] x + [0] [0 0] [0] = i(i(c(),h(h(y))),x) h(s(f(x))) = [0 2] x + [1] [0 0] [0] >= [0 2] x + [0] [0 0] [0] = h(f(x)) i(x,x) = [2 1] x + [0] [2 2] [0] >= [0] [0] = i(a(),b()) *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) h#(i(x,y)) -> c_6(h#(h(y)),h#(y)) Strict TRS Rules: Weak DP Rules: h#(g(x,s(y))) -> c_5(h#(g(s(x),y))) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) h#(i(x,y)) -> c_6(h#(h(y)),h#(y)) Strict TRS Rules: Weak DP Rules: h#(g(x,s(y))) -> c_5(h#(g(s(x),y))) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: f#(g(s(x),y)) -> c_1(f#(g(x ,s(y)))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) h#(i(x,y)) -> c_6(h#(h(y)),h#(y)) Strict TRS Rules: Weak DP Rules: h#(g(x,s(y))) -> c_5(h#(g(s(x),y))) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1,2}, uargs(c_5) = {1}, uargs(c_6) = {1,2}, uargs(c_7) = {2} Following symbols are considered usable: {f,g,h,i,f#,g#,h#,i#} TcT has computed the following interpretation: p(a) = [0] [0] p(b) = [0] [0] p(c) = [0] [0] p(f) = [0 0] x1 + [0] [0 2] [0] p(g) = [0 0] x1 + [0 2] x2 + [0] [0 1] [0 0] [0] p(h) = [0 0] x1 + [0] [1 0] [0] p(i) = [2 2] x1 + [0 0] x2 + [0] [0 0] [2 2] [0] p(s) = [0 0] x1 + [0] [0 1] [2] p(f#) = [0 2] x1 + [0] [0 0] [1] p(g#) = [1 0] x1 + [1] [2 0] [0] p(h#) = [1 2] x1 + [0] [1 1] [0] p(i#) = [0] [0] p(c_1) = [1 2] x1 + [0] [0 1] [0] p(c_2) = [2 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] p(c_3) = [0 1] x1 + [0] [2 1] [0] p(c_4) = [0 0] x2 + [0 1] x3 + [1 1] x4 + [2] [0 1] [0 0] [2 0] [0] p(c_5) = [1 0] x1 + [0] [0 0] [1] p(c_6) = [1 1] x1 + [1 0] x2 + [0] [0 0] [0 1] [0] p(c_7) = [2 1] x2 + [2] [1 1] [0] p(c_8) = [2 1] x1 + [0] [0 0] [2] Following rules are strictly oriented: f#(g(s(x),y)) = [0 2] x + [4] [0 0] [1] > [0 2] x + [2] [0 0] [1] = c_1(f#(g(x,s(y)))) Following rules are (at-least) weakly oriented: f#(s(x)) = [0 2] x + [4] [0 0] [1] >= [0 2] x + [4] [0 0] [1] = c_2(f#(h(s(x))),h#(s(x))) h#(g(x,s(y))) = [0 2] x + [0 2] y + [4] [0 1] [0 2] [4] >= [0 2] x + [0 2] y + [4] [0 0] [0 0] [1] = c_5(h#(g(s(x),y))) h#(i(x,y)) = [2 2] x + [4 4] y + [0] [2 2] [2 2] [0] >= [4 2] y + [0] [1 1] [0] = c_6(h#(h(y)),h#(y)) h#(s(f(x))) = [0 4] x + [4] [0 2] [2] >= [0 4] x + [3] [0 2] [1] = c_7(h#(f(x)),f#(x)) f(g(s(x),y)) = [0 0] x + [0] [0 2] [4] >= [0 0] x + [0] [0 2] [0] = f(g(x,s(y))) f(s(x)) = [0 0] x + [0] [0 2] [4] >= [0] [4] = s(s(f(h(s(x))))) g(x,x) = [0 2] x + [0] [0 1] [0] >= [0] [0] = g(a(),b()) h(g(x,s(y))) = [0 0] y + [0] [0 2] [4] >= [0 0] y + [0] [0 2] [0] = h(g(s(x),y)) h(i(x,y)) = [0 0] x + [0] [2 2] [0] >= [0 0] x + [0] [2 2] [0] = i(i(c(),h(h(y))),x) h(s(f(x))) = [0] [0] >= [0] [0] = h(f(x)) i(x,x) = [2 2] x + [0] [2 2] [0] >= [0] [0] = i(a(),b()) *** 1.1.1.1.1.1.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) h#(i(x,y)) -> c_6(h#(h(y)),h#(y)) Strict TRS Rules: Weak DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))) h#(g(x,s(y))) -> c_5(h#(g(s(x),y))) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.2.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) h#(i(x,y)) -> c_6(h#(h(y)),h#(y)) Strict TRS Rules: Weak DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))) h#(g(x,s(y))) -> c_5(h#(g(s(x),y))) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: f#(s(x)) -> c_2(f#(h(s(x))) ,h#(s(x))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.2.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) h#(i(x,y)) -> c_6(h#(h(y)),h#(y)) Strict TRS Rules: Weak DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))) h#(g(x,s(y))) -> c_5(h#(g(s(x),y))) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1,2}, uargs(c_5) = {1}, uargs(c_6) = {1,2}, uargs(c_7) = {2} Following symbols are considered usable: {f,g,h,i,f#,g#,h#,i#} TcT has computed the following interpretation: p(a) = [0] [0] p(b) = [0] [0] p(c) = [0] [0] p(f) = [0 2] x1 + [0] [0 2] [0] p(g) = [0 1] x1 + [0 2] x2 + [3] [0 0] [0 0] [0] p(h) = [0 1] x1 + [0] [0 0] [0] p(i) = [0 0] x1 + [1 1] x2 + [0] [2 2] [0 0] [0] p(s) = [0 1] x1 + [0] [0 1] [2] p(f#) = [0 1] x1 + [0] [0 1] [0] p(g#) = [0 0] x1 + [1 0] x2 + [0] [2 0] [0 0] [0] p(h#) = [1 0] x1 + [0] [0 0] [2] p(i#) = [1 1] x2 + [0] [0 0] [0] p(c_1) = [1 0] x1 + [0] [0 0] [0] p(c_2) = [2 0] x1 + [1 0] x2 + [0] [1 2] [1 1] [0] p(c_3) = [0 1] x1 + [0] [0 1] [0] p(c_4) = [0 2] x1 + [0 1] x2 + [0 0] x4 + [0] [0 0] [0 1] [2 1] [0] p(c_5) = [1 0] x1 + [2] [0 1] [0] p(c_6) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [2] p(c_7) = [1 1] x2 + [0] [0 0] [2] p(c_8) = [0 1] x1 + [0] [1 0] [0] Following rules are strictly oriented: f#(s(x)) = [0 1] x + [2] [0 1] [2] > [0 1] x + [0] [0 1] [2] = c_2(f#(h(s(x))),h#(s(x))) Following rules are (at-least) weakly oriented: f#(g(s(x),y)) = [0] [0] >= [0] [0] = c_1(f#(g(x,s(y)))) h#(g(x,s(y))) = [0 1] x + [0 2] y + [7] [0 0] [0 0] [2] >= [0 1] x + [0 2] y + [7] [0 0] [0 0] [2] = c_5(h#(g(s(x),y))) h#(i(x,y)) = [1 1] y + [0] [0 0] [2] >= [1 1] y + [0] [0 0] [2] = c_6(h#(h(y)),h#(y)) h#(s(f(x))) = [0 2] x + [0] [0 0] [2] >= [0 2] x + [0] [0 0] [2] = c_7(h#(f(x)),f#(x)) f(g(s(x),y)) = [0] [0] >= [0] [0] = f(g(x,s(y))) f(s(x)) = [0 2] x + [4] [0 2] [4] >= [2] [4] = s(s(f(h(s(x))))) g(x,x) = [0 3] x + [3] [0 0] [0] >= [3] [0] = g(a(),b()) h(g(x,s(y))) = [0] [0] >= [0] [0] = h(g(s(x),y)) h(i(x,y)) = [2 2] x + [0] [0 0] [0] >= [1 1] x + [0] [0 0] [0] = i(i(c(),h(h(y))),x) h(s(f(x))) = [0 2] x + [2] [0 0] [0] >= [0 2] x + [0] [0 0] [0] = h(f(x)) i(x,x) = [1 1] x + [0] [2 2] [0] >= [0] [0] = i(a(),b()) *** 1.1.1.1.1.1.2.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: h#(i(x,y)) -> c_6(h#(h(y)),h#(y)) Strict TRS Rules: Weak DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) h#(g(x,s(y))) -> c_5(h#(g(s(x),y))) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.2.2.2 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: h#(i(x,y)) -> c_6(h#(h(y)),h#(y)) Strict TRS Rules: Weak DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) h#(g(x,s(y))) -> c_5(h#(g(s(x),y))) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: h#(i(x,y)) -> c_6(h#(h(y)) ,h#(y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.2.2.2.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: h#(i(x,y)) -> c_6(h#(h(y)),h#(y)) Strict TRS Rules: Weak DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) h#(g(x,s(y))) -> c_5(h#(g(s(x),y))) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1,2}, uargs(c_5) = {1}, uargs(c_6) = {1,2}, uargs(c_7) = {2} Following symbols are considered usable: {f,g,h,i,f#,g#,h#,i#} TcT has computed the following interpretation: p(a) = [0] [0] p(b) = [0] [0] p(c) = [0] [0] p(f) = [0] [0] p(g) = [0 0] x1 + [0] [0 1] [0] p(h) = [0 1] x1 + [0] [3 0] [0] p(i) = [0 0] x1 + [1 1] x2 + [2] [1 1] [0 0] [2] p(s) = [0] [0] p(f#) = [0] [1] p(g#) = [0] [0] p(h#) = [2 0] x1 + [0] [0 0] [1] p(i#) = [2 0] x1 + [0 0] x2 + [0] [1 0] [2 0] [0] p(c_1) = [1 0] x1 + [0] [0 0] [0] p(c_2) = [1 0] x1 + [2 0] x2 + [0] [0 1] [0 0] [0] p(c_3) = [0 0] x1 + [1] [1 1] [0] p(c_4) = [0 1] x1 + [0 2] x6 + [1] [1 1] [2 0] [0] p(c_5) = [1 0] x1 + [0] [0 0] [0] p(c_6) = [1 0] x1 + [1 3] x2 + [0] [0 1] [0 0] [0] p(c_7) = [2 0] x2 + [0] [1 0] [1] p(c_8) = [2 0] x1 + [0] [0 0] [0] Following rules are strictly oriented: h#(i(x,y)) = [2 2] y + [4] [0 0] [1] > [2 2] y + [3] [0 0] [1] = c_6(h#(h(y)),h#(y)) Following rules are (at-least) weakly oriented: f#(g(s(x),y)) = [0] [1] >= [0] [0] = c_1(f#(g(x,s(y)))) f#(s(x)) = [0] [1] >= [0] [1] = c_2(f#(h(s(x))),h#(s(x))) h#(g(x,s(y))) = [0] [1] >= [0] [0] = c_5(h#(g(s(x),y))) h#(s(f(x))) = [0] [1] >= [0] [1] = c_7(h#(f(x)),f#(x)) f(g(s(x),y)) = [0] [0] >= [0] [0] = f(g(x,s(y))) f(s(x)) = [0] [0] >= [0] [0] = s(s(f(h(s(x))))) g(x,x) = [0 0] x + [0] [0 1] [0] >= [0] [0] = g(a(),b()) h(g(x,s(y))) = [0 1] x + [0] [0 0] [0] >= [0] [0] = h(g(s(x),y)) h(i(x,y)) = [1 1] x + [0 0] y + [2] [0 0] [3 3] [6] >= [1 1] x + [0 0] y + [2] [0 0] [3 3] [6] = i(i(c(),h(h(y))),x) h(s(f(x))) = [0] [0] >= [0] [0] = h(f(x)) i(x,x) = [1 1] x + [2] [1 1] [2] >= [2] [2] = i(a(),b()) *** 1.1.1.1.1.1.2.2.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) h#(g(x,s(y))) -> c_5(h#(g(s(x),y))) h#(i(x,y)) -> c_6(h#(h(y)),h#(y)) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.2.2.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))) f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) h#(g(x,s(y))) -> c_5(h#(g(s(x),y))) h#(i(x,y)) -> c_6(h#(h(y)),h#(y)) h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))) -->_1 f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))):2 -->_1 f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))):1 2:W:f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))) -->_2 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5 -->_1 f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))):2 -->_1 f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))):1 3:W:h#(g(x,s(y))) -> c_5(h#(g(s(x),y))) -->_1 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5 -->_1 h#(i(x,y)) -> c_6(h#(h(y)),h#(y)):4 -->_1 h#(g(x,s(y))) -> c_5(h#(g(s(x),y))):3 4:W:h#(i(x,y)) -> c_6(h#(h(y)),h#(y)) -->_2 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5 -->_1 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5 -->_2 h#(i(x,y)) -> c_6(h#(h(y)),h#(y)):4 -->_1 h#(i(x,y)) -> c_6(h#(h(y)),h#(y)):4 -->_2 h#(g(x,s(y))) -> c_5(h#(g(s(x),y))):3 -->_1 h#(g(x,s(y))) -> c_5(h#(g(s(x),y))):3 5:W:h#(s(f(x))) -> c_7(h#(f(x)),f#(x)) -->_1 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5 -->_1 h#(i(x,y)) -> c_6(h#(h(y)),h#(y)):4 -->_1 h#(g(x,s(y))) -> c_5(h#(g(s(x),y))):3 -->_2 f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))):2 -->_2 f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: f#(g(s(x),y)) -> c_1(f#(g(x ,s(y)))) 5: h#(s(f(x))) -> c_7(h#(f(x)) ,f#(x)) 4: h#(i(x,y)) -> c_6(h#(h(y)) ,h#(y)) 3: h#(g(x,s(y))) -> c_5(h#(g(s(x) ,y))) 2: f#(s(x)) -> c_2(f#(h(s(x))) ,h#(s(x))) *** 1.1.1.1.1.1.2.2.2.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(g(s(x),y)) -> f(g(x,s(y))) f(s(x)) -> s(s(f(h(s(x))))) g(x,x) -> g(a(),b()) h(g(x,s(y))) -> h(g(s(x),y)) h(i(x,y)) -> i(i(c(),h(h(y))),x) h(s(f(x))) -> h(f(x)) i(x,x) -> i(a(),b()) Signature: {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1} Obligation: Innermost basic terms: {f#,g#,h#,i#}/{a,b,c,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).