(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
+'(0', y) → y
+'(s(x), y) → s(+'(x, y))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
*'(x, 0') → 0'
*'(x, s(y)) → +'(x, *'(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *'(s(x), s(y)))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
+'(0', y) → y
+'(s(x), y) → s(+'(x, y))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
*'(x, 0') → 0'
*'(x, s(y)) → +'(x, *'(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *'(s(x), s(y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
min,
max,
+',
-,
*',
fThey will be analysed ascendingly in the following order:
min < f
max < f
+' < *'
- < f
*' < f
(6) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
min(
s(
x),
s(
y)),
max(
s(
x),
s(
y))),
*'(
s(
x),
s(
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
min, max, +', -, *', f
They will be analysed ascendingly in the following order:
min < f
max < f
+' < *'
- < f
*' < f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
min(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
gen_0':s3_0(
n5_0), rt ∈ Ω(1 + n5
0)
Induction Base:
min(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
min(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
s(min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0))) →IH
s(gen_0':s3_0(c6_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
min(
s(
x),
s(
y)),
max(
s(
x),
s(
y))),
*'(
s(
x),
s(
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
max, +', -, *', f
They will be analysed ascendingly in the following order:
max < f
+' < *'
- < f
*' < f
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
max(
gen_0':s3_0(
n425_0),
gen_0':s3_0(
n425_0)) →
gen_0':s3_0(
n425_0), rt ∈ Ω(1 + n425
0)
Induction Base:
max(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
max(gen_0':s3_0(+(n425_0, 1)), gen_0':s3_0(+(n425_0, 1))) →RΩ(1)
s(max(gen_0':s3_0(n425_0), gen_0':s3_0(n425_0))) →IH
s(gen_0':s3_0(c426_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
min(
s(
x),
s(
y)),
max(
s(
x),
s(
y))),
*'(
s(
x),
s(
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n425_0), gen_0':s3_0(n425_0)) → gen_0':s3_0(n425_0), rt ∈ Ω(1 + n4250)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
+', -, *', f
They will be analysed ascendingly in the following order:
+' < *'
- < f
*' < f
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_0':s3_0(
n957_0),
gen_0':s3_0(
b)) →
gen_0':s3_0(
+(
n957_0,
b)), rt ∈ Ω(1 + n957
0)
Induction Base:
+'(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
gen_0':s3_0(b)
Induction Step:
+'(gen_0':s3_0(+(n957_0, 1)), gen_0':s3_0(b)) →RΩ(1)
s(+'(gen_0':s3_0(n957_0), gen_0':s3_0(b))) →IH
s(gen_0':s3_0(+(b, c958_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
min(
s(
x),
s(
y)),
max(
s(
x),
s(
y))),
*'(
s(
x),
s(
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n425_0), gen_0':s3_0(n425_0)) → gen_0':s3_0(n425_0), rt ∈ Ω(1 + n4250)
+'(gen_0':s3_0(n957_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n957_0, b)), rt ∈ Ω(1 + n9570)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
-, *', f
They will be analysed ascendingly in the following order:
- < f
*' < f
(16) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_0':s3_0(
n1702_0),
gen_0':s3_0(
n1702_0)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n1702
0)
Induction Base:
-(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
-(gen_0':s3_0(+(n1702_0, 1)), gen_0':s3_0(+(n1702_0, 1))) →RΩ(1)
-(gen_0':s3_0(n1702_0), gen_0':s3_0(n1702_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(17) Complex Obligation (BEST)
(18) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
min(
s(
x),
s(
y)),
max(
s(
x),
s(
y))),
*'(
s(
x),
s(
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n425_0), gen_0':s3_0(n425_0)) → gen_0':s3_0(n425_0), rt ∈ Ω(1 + n4250)
+'(gen_0':s3_0(n957_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n957_0, b)), rt ∈ Ω(1 + n9570)
-(gen_0':s3_0(n1702_0), gen_0':s3_0(n1702_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n17020)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
*', f
They will be analysed ascendingly in the following order:
*' < f
(19) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
*'(
gen_0':s3_0(
a),
gen_0':s3_0(
n2118_0)) →
gen_0':s3_0(
*(
n2118_0,
a)), rt ∈ Ω(1 + a·n2118
0 + n2118
0)
Induction Base:
*'(gen_0':s3_0(a), gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
*'(gen_0':s3_0(a), gen_0':s3_0(+(n2118_0, 1))) →RΩ(1)
+'(gen_0':s3_0(a), *'(gen_0':s3_0(a), gen_0':s3_0(n2118_0))) →IH
+'(gen_0':s3_0(a), gen_0':s3_0(*(c2119_0, a))) →LΩ(1 + a)
gen_0':s3_0(+(a, *(n2118_0, a)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(20) Complex Obligation (BEST)
(21) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
min(
s(
x),
s(
y)),
max(
s(
x),
s(
y))),
*'(
s(
x),
s(
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n425_0), gen_0':s3_0(n425_0)) → gen_0':s3_0(n425_0), rt ∈ Ω(1 + n4250)
+'(gen_0':s3_0(n957_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n957_0, b)), rt ∈ Ω(1 + n9570)
-(gen_0':s3_0(n1702_0), gen_0':s3_0(n1702_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n17020)
*'(gen_0':s3_0(a), gen_0':s3_0(n2118_0)) → gen_0':s3_0(*(n2118_0, a)), rt ∈ Ω(1 + a·n21180 + n21180)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
f
(22) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(23) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
min(
s(
x),
s(
y)),
max(
s(
x),
s(
y))),
*'(
s(
x),
s(
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n425_0), gen_0':s3_0(n425_0)) → gen_0':s3_0(n425_0), rt ∈ Ω(1 + n4250)
+'(gen_0':s3_0(n957_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n957_0, b)), rt ∈ Ω(1 + n9570)
-(gen_0':s3_0(n1702_0), gen_0':s3_0(n1702_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n17020)
*'(gen_0':s3_0(a), gen_0':s3_0(n2118_0)) → gen_0':s3_0(*(n2118_0, a)), rt ∈ Ω(1 + a·n21180 + n21180)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
*'(gen_0':s3_0(a), gen_0':s3_0(n2118_0)) → gen_0':s3_0(*(n2118_0, a)), rt ∈ Ω(1 + a·n21180 + n21180)
(25) BOUNDS(n^2, INF)
(26) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
min(
s(
x),
s(
y)),
max(
s(
x),
s(
y))),
*'(
s(
x),
s(
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n425_0), gen_0':s3_0(n425_0)) → gen_0':s3_0(n425_0), rt ∈ Ω(1 + n4250)
+'(gen_0':s3_0(n957_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n957_0, b)), rt ∈ Ω(1 + n9570)
-(gen_0':s3_0(n1702_0), gen_0':s3_0(n1702_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n17020)
*'(gen_0':s3_0(a), gen_0':s3_0(n2118_0)) → gen_0':s3_0(*(n2118_0, a)), rt ∈ Ω(1 + a·n21180 + n21180)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
*'(gen_0':s3_0(a), gen_0':s3_0(n2118_0)) → gen_0':s3_0(*(n2118_0, a)), rt ∈ Ω(1 + a·n21180 + n21180)
(28) BOUNDS(n^2, INF)
(29) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
min(
s(
x),
s(
y)),
max(
s(
x),
s(
y))),
*'(
s(
x),
s(
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n425_0), gen_0':s3_0(n425_0)) → gen_0':s3_0(n425_0), rt ∈ Ω(1 + n4250)
+'(gen_0':s3_0(n957_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n957_0, b)), rt ∈ Ω(1 + n9570)
-(gen_0':s3_0(n1702_0), gen_0':s3_0(n1702_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n17020)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(30) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(31) BOUNDS(n^1, INF)
(32) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
min(
s(
x),
s(
y)),
max(
s(
x),
s(
y))),
*'(
s(
x),
s(
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n425_0), gen_0':s3_0(n425_0)) → gen_0':s3_0(n425_0), rt ∈ Ω(1 + n4250)
+'(gen_0':s3_0(n957_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n957_0, b)), rt ∈ Ω(1 + n9570)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(33) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(34) BOUNDS(n^1, INF)
(35) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
min(
s(
x),
s(
y)),
max(
s(
x),
s(
y))),
*'(
s(
x),
s(
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n425_0), gen_0':s3_0(n425_0)) → gen_0':s3_0(n425_0), rt ∈ Ω(1 + n4250)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(36) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(37) BOUNDS(n^1, INF)
(38) Obligation:
Innermost TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
p(
s(
x)) →
xf(
s(
x),
s(
y)) →
f(
-(
min(
s(
x),
s(
y)),
max(
s(
x),
s(
y))),
*'(
s(
x),
s(
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(39) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(40) BOUNDS(n^1, INF)