(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), y) → f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) → f(p(-(x, s(y))), p(-(s(y), x)))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), y) → f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) → f(p(-(x, s(y))), p(-(s(y), x)))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
p(s(x)) → x
f(s(x), y) → f(p(-(s(x), y)), p(-(y, s(x))))
f(x, s(y)) → f(p(-(x, s(y))), p(-(s(y), x)))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
-,
fThey will be analysed ascendingly in the following order:
- < f
(6) Obligation:
Innermost TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
p(
s(
x)) →
xf(
s(
x),
y) →
f(
p(
-(
s(
x),
y)),
p(
-(
y,
s(
x))))
f(
x,
s(
y)) →
f(
p(
-(
x,
s(
y))),
p(
-(
s(
y),
x)))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
-, f
They will be analysed ascendingly in the following order:
- < f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n5
0)
Induction Base:
-(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
-(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
p(
s(
x)) →
xf(
s(
x),
y) →
f(
p(
-(
s(
x),
y)),
p(
-(
y,
s(
x))))
f(
x,
s(
y)) →
f(
p(
-(
x,
s(
y))),
p(
-(
s(
y),
x)))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
f
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(11) Obligation:
Innermost TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
p(
s(
x)) →
xf(
s(
x),
y) →
f(
p(
-(
s(
x),
y)),
p(
-(
y,
s(
x))))
f(
x,
s(
y)) →
f(
p(
-(
x,
s(
y))),
p(
-(
s(
y),
x)))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
p(
s(
x)) →
xf(
s(
x),
y) →
f(
p(
-(
s(
x),
y)),
p(
-(
y,
s(
x))))
f(
x,
s(
y)) →
f(
p(
-(
x,
s(
y))),
p(
-(
s(
y),
x)))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
f :: 0':s → 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(16) BOUNDS(n^1, INF)