*** 1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(k(a()),k(b()),X) -> f(X,X,X) g(X) -> u(h(X),h(X),X) h(d()) -> c(a()) h(d()) -> c(b()) u(d(),c(Y),X) -> k(Y) Weak DP Rules: Weak TRS Rules: Signature: {f/3,g/1,h/1,u/3} / {a/0,b/0,c/1,d/0,k/1} Obligation: Innermost basic terms: {f,g,h,u}/{a,b,c,d,k} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) g#(X) -> c_2(u#(h(X),h(X),X),h#(X),h#(X)) h#(d()) -> c_3() h#(d()) -> c_4() u#(d(),c(Y),X) -> c_5() Weak DPs and mark the set of starting terms. *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) g#(X) -> c_2(u#(h(X),h(X),X),h#(X),h#(X)) h#(d()) -> c_3() h#(d()) -> c_4() u#(d(),c(Y),X) -> c_5() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(k(a()),k(b()),X) -> f(X,X,X) g(X) -> u(h(X),h(X),X) h(d()) -> c(a()) h(d()) -> c(b()) u(d(),c(Y),X) -> k(Y) Signature: {f/3,g/1,h/1,u/3,f#/3,g#/1,h#/1,u#/3} / {a/0,b/0,c/1,d/0,k/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/0} Obligation: Innermost basic terms: {f#,g#,h#,u#}/{a,b,c,d,k} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: h(d()) -> c(a()) h(d()) -> c(b()) f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) g#(X) -> c_2(u#(h(X),h(X),X),h#(X),h#(X)) h#(d()) -> c_3() h#(d()) -> c_4() u#(d(),c(Y),X) -> c_5() *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) g#(X) -> c_2(u#(h(X),h(X),X),h#(X),h#(X)) h#(d()) -> c_3() h#(d()) -> c_4() u#(d(),c(Y),X) -> c_5() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: h(d()) -> c(a()) h(d()) -> c(b()) Signature: {f/3,g/1,h/1,u/3,f#/3,g#/1,h#/1,u#/3} / {a/0,b/0,c/1,d/0,k/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/0} Obligation: Innermost basic terms: {f#,g#,h#,u#}/{a,b,c,d,k} Applied Processor: Trivial Proof: Consider the dependency graph 1:S:f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) 2:S:g#(X) -> c_2(u#(h(X),h(X),X),h#(X),h#(X)) -->_1 u#(d(),c(Y),X) -> c_5():5 -->_3 h#(d()) -> c_4():4 -->_2 h#(d()) -> c_4():4 -->_3 h#(d()) -> c_3():3 -->_2 h#(d()) -> c_3():3 3:S:h#(d()) -> c_3() 4:S:h#(d()) -> c_4() 5:S:u#(d(),c(Y),X) -> c_5() The dependency graph contains no loops, we remove all dependency pairs. *** 1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: h(d()) -> c(a()) h(d()) -> c(b()) Signature: {f/3,g/1,h/1,u/3,f#/3,g#/1,h#/1,u#/3} / {a/0,b/0,c/1,d/0,k/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/0} Obligation: Innermost basic terms: {f#,g#,h#,u#}/{a,b,c,d,k} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).