We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict Trs: { g(X) -> u(h(X), h(X), X) , u(d(), c(Y), X) -> k(Y) , h(d()) -> c(a()) , h(d()) -> c(b()) , f(k(a()), k(b()), X) -> f(X, X, X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) We add the following weak dependency pairs: Strict DPs: { g^#(X) -> c_1(u^#(h(X), h(X), X)) , u^#(d(), c(Y), X) -> c_2() , h^#(d()) -> c_3() , h^#(d()) -> c_4() , f^#(k(a()), k(b()), X) -> c_5(f^#(X, X, X)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { g^#(X) -> c_1(u^#(h(X), h(X), X)) , u^#(d(), c(Y), X) -> c_2() , h^#(d()) -> c_3() , h^#(d()) -> c_4() , f^#(k(a()), k(b()), X) -> c_5(f^#(X, X, X)) } Strict Trs: { g(X) -> u(h(X), h(X), X) , u(d(), c(Y), X) -> k(Y) , h(d()) -> c(a()) , h(d()) -> c(b()) , f(k(a()), k(b()), X) -> f(X, X, X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) We replace rewrite rules by usable rules: Strict Usable Rules: { h(d()) -> c(a()) , h(d()) -> c(b()) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { g^#(X) -> c_1(u^#(h(X), h(X), X)) , u^#(d(), c(Y), X) -> c_2() , h^#(d()) -> c_3() , h^#(d()) -> c_4() , f^#(k(a()), k(b()), X) -> c_5(f^#(X, X, X)) } Strict Trs: { h(d()) -> c(a()) , h(d()) -> c(b()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The weightgap principle applies (using the following constant growth matrix-interpretation) The following argument positions are usable: Uargs(c_1) = {1}, Uargs(u^#) = {1, 2} TcT has computed the following constructor-restricted matrix interpretation. [h](x1) = [2] [0] [d] = [0] [0] [c](x1) = [0] [0] [k](x1) = [0] [0] [a] = [0] [0] [b] = [0] [0] [g^#](x1) = [1 2] x1 + [0] [0 0] [0] [c_1](x1) = [1 0] x1 + [0] [0 1] [0] [u^#](x1, x2, x3) = [1 0] x1 + [2 0] x2 + [0] [0 0] [0 0] [0] [c_2] = [0] [0] [h^#](x1) = [0] [0] [c_3] = [0] [0] [c_4] = [0] [0] [f^#](x1, x2, x3) = [0] [0] [c_5](x1) = [0] [0] The order satisfies the following ordering constraints: [h(d())] = [2] [0] > [0] [0] = [c(a())] [h(d())] = [2] [0] > [0] [0] = [c(b())] [g^#(X)] = [1 2] X + [0] [0 0] [0] ? [6] [0] = [c_1(u^#(h(X), h(X), X))] [u^#(d(), c(Y), X)] = [0] [0] >= [0] [0] = [c_2()] [h^#(d())] = [0] [0] >= [0] [0] = [c_3()] [h^#(d())] = [0] [0] >= [0] [0] = [c_4()] [f^#(k(a()), k(b()), X)] = [0] [0] >= [0] [0] = [c_5(f^#(X, X, X))] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { g^#(X) -> c_1(u^#(h(X), h(X), X)) , u^#(d(), c(Y), X) -> c_2() , h^#(d()) -> c_3() , h^#(d()) -> c_4() , f^#(k(a()), k(b()), X) -> c_5(f^#(X, X, X)) } Weak Trs: { h(d()) -> c(a()) , h(d()) -> c(b()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) We estimate the number of application of {1,2,3,4,5} by applications of Pre({1,2,3,4,5}) = {}. Here rules are labeled as follows: DPs: { 1: g^#(X) -> c_1(u^#(h(X), h(X), X)) , 2: u^#(d(), c(Y), X) -> c_2() , 3: h^#(d()) -> c_3() , 4: h^#(d()) -> c_4() , 5: f^#(k(a()), k(b()), X) -> c_5(f^#(X, X, X)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { g^#(X) -> c_1(u^#(h(X), h(X), X)) , u^#(d(), c(Y), X) -> c_2() , h^#(d()) -> c_3() , h^#(d()) -> c_4() , f^#(k(a()), k(b()), X) -> c_5(f^#(X, X, X)) } Weak Trs: { h(d()) -> c(a()) , h(d()) -> c(b()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { g^#(X) -> c_1(u^#(h(X), h(X), X)) , u^#(d(), c(Y), X) -> c_2() , h^#(d()) -> c_3() , h^#(d()) -> c_4() , f^#(k(a()), k(b()), X) -> c_5(f^#(X, X, X)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { h(d()) -> c(a()) , h(d()) -> c(b()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(1))