*** 1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
circ(s,id()) -> s
circ(circ(s,t),u) -> circ(s,circ(t,u))
circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t))
circ(cons(lift(),s),circ(cons(lift(),t),u)) -> circ(cons(lift(),circ(s,t)),u)
circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t))
circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t))
circ(id(),s) -> s
msubst(a,id()) -> a
msubst(msubst(a,s),t) -> msubst(a,circ(s,t))
subst(a,id()) -> a
Weak DP Rules:
Weak TRS Rules:
Signature:
{circ/2,msubst/2,subst/2} / {cons/2,id/0,lift/0}
Obligation:
Innermost
basic terms: {circ,msubst,subst}/{cons,id,lift}
Applied Processor:
InnermostRuleRemoval
Proof:
Arguments of following rules are not normal-forms.
circ(cons(lift(),s),circ(cons(lift(),t),u)) -> circ(cons(lift(),circ(s,t)),u)
All above mentioned rules can be savely removed.
*** 1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
circ(s,id()) -> s
circ(circ(s,t),u) -> circ(s,circ(t,u))
circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t))
circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t))
circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t))
circ(id(),s) -> s
msubst(a,id()) -> a
msubst(msubst(a,s),t) -> msubst(a,circ(s,t))
subst(a,id()) -> a
Weak DP Rules:
Weak TRS Rules:
Signature:
{circ/2,msubst/2,subst/2} / {cons/2,id/0,lift/0}
Obligation:
Innermost
basic terms: {circ,msubst,subst}/{cons,id,lift}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
circ#(s,id()) -> c_1()
circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u))
circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t))
circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t))
circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t))
circ#(id(),s) -> c_6()
msubst#(a,id()) -> c_7()
msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t))
subst#(a,id()) -> c_9()
Weak DPs
and mark the set of starting terms.
*** 1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
circ#(s,id()) -> c_1()
circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u))
circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t))
circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t))
circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t))
circ#(id(),s) -> c_6()
msubst#(a,id()) -> c_7()
msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t))
subst#(a,id()) -> c_9()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
circ(s,id()) -> s
circ(circ(s,t),u) -> circ(s,circ(t,u))
circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t))
circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t))
circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t))
circ(id(),s) -> s
msubst(a,id()) -> a
msubst(msubst(a,s),t) -> msubst(a,circ(s,t))
subst(a,id()) -> a
Signature:
{circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0}
Obligation:
Innermost
basic terms: {circ#,msubst#,subst#}/{cons,id,lift}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
circ(s,id()) -> s
circ(circ(s,t),u) -> circ(s,circ(t,u))
circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t))
circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t))
circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t))
circ(id(),s) -> s
msubst(a,id()) -> a
msubst(msubst(a,s),t) -> msubst(a,circ(s,t))
circ#(s,id()) -> c_1()
circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u))
circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t))
circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t))
circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t))
circ#(id(),s) -> c_6()
msubst#(a,id()) -> c_7()
msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t))
subst#(a,id()) -> c_9()
*** 1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
circ#(s,id()) -> c_1()
circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u))
circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t))
circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t))
circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t))
circ#(id(),s) -> c_6()
msubst#(a,id()) -> c_7()
msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t))
subst#(a,id()) -> c_9()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
circ(s,id()) -> s
circ(circ(s,t),u) -> circ(s,circ(t,u))
circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t))
circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t))
circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t))
circ(id(),s) -> s
msubst(a,id()) -> a
msubst(msubst(a,s),t) -> msubst(a,circ(s,t))
Signature:
{circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0}
Obligation:
Innermost
basic terms: {circ#,msubst#,subst#}/{cons,id,lift}
Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
Proof:
We estimate the number of application of
{1,6,7,9}
by application of
Pre({1,6,7,9}) = {2,3,4,5,8}.
Here rules are labelled as follows:
1: circ#(s,id()) -> c_1()
2: circ#(circ(s,t),u) ->
c_2(circ#(s,circ(t,u))
,circ#(t,u))
3: circ#(cons(a,s),t) ->
c_3(msubst#(a,t),circ#(s,t))
4: circ#(cons(lift(),s)
,cons(a,t)) -> c_4(circ#(s,t))
5: circ#(cons(lift(),s)
,cons(lift(),t)) -> c_5(circ#(s
,t))
6: circ#(id(),s) -> c_6()
7: msubst#(a,id()) -> c_7()
8: msubst#(msubst(a,s),t) ->
c_8(msubst#(a,circ(s,t))
,circ#(s,t))
9: subst#(a,id()) -> c_9()
*** 1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u))
circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t))
circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t))
circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t))
msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t))
Strict TRS Rules:
Weak DP Rules:
circ#(s,id()) -> c_1()
circ#(id(),s) -> c_6()
msubst#(a,id()) -> c_7()
subst#(a,id()) -> c_9()
Weak TRS Rules:
circ(s,id()) -> s
circ(circ(s,t),u) -> circ(s,circ(t,u))
circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t))
circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t))
circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t))
circ(id(),s) -> s
msubst(a,id()) -> a
msubst(msubst(a,s),t) -> msubst(a,circ(s,t))
Signature:
{circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0}
Obligation:
Innermost
basic terms: {circ#,msubst#,subst#}/{cons,id,lift}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u))
-->_2 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4
-->_1 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4
-->_2 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3
-->_1 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3
-->_2 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2
-->_1 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2
-->_2 circ#(id(),s) -> c_6():7
-->_1 circ#(id(),s) -> c_6():7
-->_2 circ#(s,id()) -> c_1():6
-->_1 circ#(s,id()) -> c_1():6
-->_2 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1
-->_1 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1
2:S:circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t))
-->_1 msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)):5
-->_2 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4
-->_2 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3
-->_1 msubst#(a,id()) -> c_7():8
-->_2 circ#(id(),s) -> c_6():7
-->_2 circ#(s,id()) -> c_1():6
-->_2 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2
-->_2 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1
3:S:circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t))
-->_1 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4
-->_1 circ#(id(),s) -> c_6():7
-->_1 circ#(s,id()) -> c_1():6
-->_1 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3
-->_1 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2
-->_1 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1
4:S:circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t))
-->_1 circ#(id(),s) -> c_6():7
-->_1 circ#(s,id()) -> c_1():6
-->_1 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4
-->_1 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3
-->_1 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2
-->_1 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1
5:S:msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t))
-->_1 msubst#(a,id()) -> c_7():8
-->_2 circ#(id(),s) -> c_6():7
-->_2 circ#(s,id()) -> c_1():6
-->_1 msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)):5
-->_2 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4
-->_2 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3
-->_2 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2
-->_2 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1
6:W:circ#(s,id()) -> c_1()
7:W:circ#(id(),s) -> c_6()
8:W:msubst#(a,id()) -> c_7()
9:W:subst#(a,id()) -> c_9()
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
9: subst#(a,id()) -> c_9()
8: msubst#(a,id()) -> c_7()
6: circ#(s,id()) -> c_1()
7: circ#(id(),s) -> c_6()
*** 1.1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u))
circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t))
circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t))
circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t))
msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
circ(s,id()) -> s
circ(circ(s,t),u) -> circ(s,circ(t,u))
circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t))
circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t))
circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t))
circ(id(),s) -> s
msubst(a,id()) -> a
msubst(msubst(a,s),t) -> msubst(a,circ(s,t))
Signature:
{circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0}
Obligation:
Innermost
basic terms: {circ#,msubst#,subst#}/{cons,id,lift}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: circ#(circ(s,t),u) ->
c_2(circ#(s,circ(t,u))
,circ#(t,u))
2: circ#(cons(a,s),t) ->
c_3(msubst#(a,t),circ#(s,t))
3: circ#(cons(lift(),s)
,cons(a,t)) -> c_4(circ#(s,t))
4: circ#(cons(lift(),s)
,cons(lift(),t)) -> c_5(circ#(s
,t))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u))
circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t))
circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t))
circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t))
msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
circ(s,id()) -> s
circ(circ(s,t),u) -> circ(s,circ(t,u))
circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t))
circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t))
circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t))
circ(id(),s) -> s
msubst(a,id()) -> a
msubst(msubst(a,s),t) -> msubst(a,circ(s,t))
Signature:
{circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0}
Obligation:
Innermost
basic terms: {circ#,msubst#,subst#}/{cons,id,lift}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_2) = {1,2},
uargs(c_3) = {1,2},
uargs(c_4) = {1},
uargs(c_5) = {1},
uargs(c_8) = {1,2}
Following symbols are considered usable:
{circ#,msubst#,subst#}
TcT has computed the following interpretation:
p(circ) = [2] x1 + [1] x2 + [3]
p(cons) = [1] x1 + [1] x2 + [2]
p(id) = [0]
p(lift) = [0]
p(msubst) = [2] x1 + [2] x2 + [1]
p(subst) = [0]
p(circ#) = [4] x1 + [2]
p(msubst#) = [4] x1 + [5]
p(subst#) = [1] x1 + [0]
p(c_1) = [0]
p(c_2) = [1] x1 + [1] x2 + [5]
p(c_3) = [1] x1 + [1] x2 + [1]
p(c_4) = [1] x1 + [5]
p(c_5) = [1] x1 + [5]
p(c_6) = [0]
p(c_7) = [1]
p(c_8) = [1] x1 + [1] x2 + [2]
p(c_9) = [0]
Following rules are strictly oriented:
circ#(circ(s,t),u) = [8] s + [4] t + [14]
> [4] s + [4] t + [9]
= c_2(circ#(s,circ(t,u))
,circ#(t,u))
circ#(cons(a,s),t) = [4] a + [4] s + [10]
> [4] a + [4] s + [8]
= c_3(msubst#(a,t),circ#(s,t))
circ#(cons(lift(),s),cons(a,t)) = [4] s + [10]
> [4] s + [7]
= c_4(circ#(s,t))
circ#(cons(lift(),s) = [4] s + [10]
,cons(lift(),t))
> [4] s + [7]
= c_5(circ#(s,t))
Following rules are (at-least) weakly oriented:
msubst#(msubst(a,s),t) = [8] a + [8] s + [9]
>= [4] a + [4] s + [9]
= c_8(msubst#(a,circ(s,t))
,circ#(s,t))
*** 1.1.1.1.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t))
Strict TRS Rules:
Weak DP Rules:
circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u))
circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t))
circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t))
circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t))
Weak TRS Rules:
circ(s,id()) -> s
circ(circ(s,t),u) -> circ(s,circ(t,u))
circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t))
circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t))
circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t))
circ(id(),s) -> s
msubst(a,id()) -> a
msubst(msubst(a,s),t) -> msubst(a,circ(s,t))
Signature:
{circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0}
Obligation:
Innermost
basic terms: {circ#,msubst#,subst#}/{cons,id,lift}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.2 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t))
Strict TRS Rules:
Weak DP Rules:
circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u))
circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t))
circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t))
circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t))
Weak TRS Rules:
circ(s,id()) -> s
circ(circ(s,t),u) -> circ(s,circ(t,u))
circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t))
circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t))
circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t))
circ(id(),s) -> s
msubst(a,id()) -> a
msubst(msubst(a,s),t) -> msubst(a,circ(s,t))
Signature:
{circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0}
Obligation:
Innermost
basic terms: {circ#,msubst#,subst#}/{cons,id,lift}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: msubst#(msubst(a,s),t) ->
c_8(msubst#(a,circ(s,t))
,circ#(s,t))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t))
Strict TRS Rules:
Weak DP Rules:
circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u))
circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t))
circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t))
circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t))
Weak TRS Rules:
circ(s,id()) -> s
circ(circ(s,t),u) -> circ(s,circ(t,u))
circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t))
circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t))
circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t))
circ(id(),s) -> s
msubst(a,id()) -> a
msubst(msubst(a,s),t) -> msubst(a,circ(s,t))
Signature:
{circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0}
Obligation:
Innermost
basic terms: {circ#,msubst#,subst#}/{cons,id,lift}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_2) = {1,2},
uargs(c_3) = {1,2},
uargs(c_4) = {1},
uargs(c_5) = {1},
uargs(c_8) = {1,2}
Following symbols are considered usable:
{circ#,msubst#,subst#}
TcT has computed the following interpretation:
p(circ) = [2] x1 + [1] x2 + [0]
p(cons) = [1] x1 + [1] x2 + [0]
p(id) = [0]
p(lift) = [0]
p(msubst) = [2] x1 + [7] x2 + [2]
p(subst) = [1] x1 + [4]
p(circ#) = [6] x1 + [0]
p(msubst#) = [1] x1 + [0]
p(subst#) = [1] x1 + [1] x2 + [0]
p(c_1) = [4]
p(c_2) = [1] x1 + [1] x2 + [0]
p(c_3) = [6] x1 + [1] x2 + [0]
p(c_4) = [1] x1 + [0]
p(c_5) = [1] x1 + [0]
p(c_6) = [0]
p(c_7) = [0]
p(c_8) = [2] x1 + [1] x2 + [1]
p(c_9) = [1]
Following rules are strictly oriented:
msubst#(msubst(a,s),t) = [2] a + [7] s + [2]
> [2] a + [6] s + [1]
= c_8(msubst#(a,circ(s,t))
,circ#(s,t))
Following rules are (at-least) weakly oriented:
circ#(circ(s,t),u) = [12] s + [6] t + [0]
>= [6] s + [6] t + [0]
= c_2(circ#(s,circ(t,u))
,circ#(t,u))
circ#(cons(a,s),t) = [6] a + [6] s + [0]
>= [6] a + [6] s + [0]
= c_3(msubst#(a,t),circ#(s,t))
circ#(cons(lift(),s),cons(a,t)) = [6] s + [0]
>= [6] s + [0]
= c_4(circ#(s,t))
circ#(cons(lift(),s) = [6] s + [0]
,cons(lift(),t))
>= [6] s + [0]
= c_5(circ#(s,t))
*** 1.1.1.1.1.1.2.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u))
circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t))
circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t))
circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t))
msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t))
Weak TRS Rules:
circ(s,id()) -> s
circ(circ(s,t),u) -> circ(s,circ(t,u))
circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t))
circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t))
circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t))
circ(id(),s) -> s
msubst(a,id()) -> a
msubst(msubst(a,s),t) -> msubst(a,circ(s,t))
Signature:
{circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0}
Obligation:
Innermost
basic terms: {circ#,msubst#,subst#}/{cons,id,lift}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.2.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u))
circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t))
circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t))
circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t))
msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t))
Weak TRS Rules:
circ(s,id()) -> s
circ(circ(s,t),u) -> circ(s,circ(t,u))
circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t))
circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t))
circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t))
circ(id(),s) -> s
msubst(a,id()) -> a
msubst(msubst(a,s),t) -> msubst(a,circ(s,t))
Signature:
{circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0}
Obligation:
Innermost
basic terms: {circ#,msubst#,subst#}/{cons,id,lift}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u))
-->_2 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4
-->_1 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4
-->_2 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3
-->_1 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3
-->_2 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2
-->_1 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2
-->_2 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1
-->_1 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1
2:W:circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t))
-->_1 msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)):5
-->_2 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4
-->_2 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3
-->_2 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2
-->_2 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1
3:W:circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t))
-->_1 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4
-->_1 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3
-->_1 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2
-->_1 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1
4:W:circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t))
-->_1 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4
-->_1 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3
-->_1 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2
-->_1 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1
5:W:msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t))
-->_1 msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)):5
-->_2 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4
-->_2 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3
-->_2 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2
-->_2 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: circ#(circ(s,t),u) ->
c_2(circ#(s,circ(t,u))
,circ#(t,u))
5: msubst#(msubst(a,s),t) ->
c_8(msubst#(a,circ(s,t))
,circ#(s,t))
2: circ#(cons(a,s),t) ->
c_3(msubst#(a,t),circ#(s,t))
4: circ#(cons(lift(),s)
,cons(lift(),t)) -> c_5(circ#(s
,t))
3: circ#(cons(lift(),s)
,cons(a,t)) -> c_4(circ#(s,t))
*** 1.1.1.1.1.1.2.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
circ(s,id()) -> s
circ(circ(s,t),u) -> circ(s,circ(t,u))
circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t))
circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t))
circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t))
circ(id(),s) -> s
msubst(a,id()) -> a
msubst(msubst(a,s),t) -> msubst(a,circ(s,t))
Signature:
{circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0}
Obligation:
Innermost
basic terms: {circ#,msubst#,subst#}/{cons,id,lift}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).