*** 1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: circ(s,id()) -> s circ(circ(s,t),u) -> circ(s,circ(t,u)) circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t)) circ(cons(lift(),s),circ(cons(lift(),t),u)) -> circ(cons(lift(),circ(s,t)),u) circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t)) circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t)) circ(id(),s) -> s msubst(a,id()) -> a msubst(msubst(a,s),t) -> msubst(a,circ(s,t)) subst(a,id()) -> a Weak DP Rules: Weak TRS Rules: Signature: {circ/2,msubst/2,subst/2} / {cons/2,id/0,lift/0} Obligation: Innermost basic terms: {circ,msubst,subst}/{cons,id,lift} Applied Processor: InnermostRuleRemoval Proof: Arguments of following rules are not normal-forms. circ(cons(lift(),s),circ(cons(lift(),t),u)) -> circ(cons(lift(),circ(s,t)),u) All above mentioned rules can be savely removed. *** 1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: circ(s,id()) -> s circ(circ(s,t),u) -> circ(s,circ(t,u)) circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t)) circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t)) circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t)) circ(id(),s) -> s msubst(a,id()) -> a msubst(msubst(a,s),t) -> msubst(a,circ(s,t)) subst(a,id()) -> a Weak DP Rules: Weak TRS Rules: Signature: {circ/2,msubst/2,subst/2} / {cons/2,id/0,lift/0} Obligation: Innermost basic terms: {circ,msubst,subst}/{cons,id,lift} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs circ#(s,id()) -> c_1() circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)) circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)) circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)) circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)) circ#(id(),s) -> c_6() msubst#(a,id()) -> c_7() msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)) subst#(a,id()) -> c_9() Weak DPs and mark the set of starting terms. *** 1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: circ#(s,id()) -> c_1() circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)) circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)) circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)) circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)) circ#(id(),s) -> c_6() msubst#(a,id()) -> c_7() msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)) subst#(a,id()) -> c_9() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: circ(s,id()) -> s circ(circ(s,t),u) -> circ(s,circ(t,u)) circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t)) circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t)) circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t)) circ(id(),s) -> s msubst(a,id()) -> a msubst(msubst(a,s),t) -> msubst(a,circ(s,t)) subst(a,id()) -> a Signature: {circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0} Obligation: Innermost basic terms: {circ#,msubst#,subst#}/{cons,id,lift} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: circ(s,id()) -> s circ(circ(s,t),u) -> circ(s,circ(t,u)) circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t)) circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t)) circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t)) circ(id(),s) -> s msubst(a,id()) -> a msubst(msubst(a,s),t) -> msubst(a,circ(s,t)) circ#(s,id()) -> c_1() circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)) circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)) circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)) circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)) circ#(id(),s) -> c_6() msubst#(a,id()) -> c_7() msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)) subst#(a,id()) -> c_9() *** 1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: circ#(s,id()) -> c_1() circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)) circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)) circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)) circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)) circ#(id(),s) -> c_6() msubst#(a,id()) -> c_7() msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)) subst#(a,id()) -> c_9() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: circ(s,id()) -> s circ(circ(s,t),u) -> circ(s,circ(t,u)) circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t)) circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t)) circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t)) circ(id(),s) -> s msubst(a,id()) -> a msubst(msubst(a,s),t) -> msubst(a,circ(s,t)) Signature: {circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0} Obligation: Innermost basic terms: {circ#,msubst#,subst#}/{cons,id,lift} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,6,7,9} by application of Pre({1,6,7,9}) = {2,3,4,5,8}. Here rules are labelled as follows: 1: circ#(s,id()) -> c_1() 2: circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)) ,circ#(t,u)) 3: circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)) 4: circ#(cons(lift(),s) ,cons(a,t)) -> c_4(circ#(s,t)) 5: circ#(cons(lift(),s) ,cons(lift(),t)) -> c_5(circ#(s ,t)) 6: circ#(id(),s) -> c_6() 7: msubst#(a,id()) -> c_7() 8: msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)) ,circ#(s,t)) 9: subst#(a,id()) -> c_9() *** 1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)) circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)) circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)) circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)) msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)) Strict TRS Rules: Weak DP Rules: circ#(s,id()) -> c_1() circ#(id(),s) -> c_6() msubst#(a,id()) -> c_7() subst#(a,id()) -> c_9() Weak TRS Rules: circ(s,id()) -> s circ(circ(s,t),u) -> circ(s,circ(t,u)) circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t)) circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t)) circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t)) circ(id(),s) -> s msubst(a,id()) -> a msubst(msubst(a,s),t) -> msubst(a,circ(s,t)) Signature: {circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0} Obligation: Innermost basic terms: {circ#,msubst#,subst#}/{cons,id,lift} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)) -->_2 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4 -->_1 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4 -->_2 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3 -->_1 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3 -->_2 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2 -->_1 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2 -->_2 circ#(id(),s) -> c_6():7 -->_1 circ#(id(),s) -> c_6():7 -->_2 circ#(s,id()) -> c_1():6 -->_1 circ#(s,id()) -> c_1():6 -->_2 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1 -->_1 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1 2:S:circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)) -->_1 msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)):5 -->_2 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4 -->_2 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3 -->_1 msubst#(a,id()) -> c_7():8 -->_2 circ#(id(),s) -> c_6():7 -->_2 circ#(s,id()) -> c_1():6 -->_2 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2 -->_2 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1 3:S:circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)) -->_1 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4 -->_1 circ#(id(),s) -> c_6():7 -->_1 circ#(s,id()) -> c_1():6 -->_1 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3 -->_1 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2 -->_1 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1 4:S:circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)) -->_1 circ#(id(),s) -> c_6():7 -->_1 circ#(s,id()) -> c_1():6 -->_1 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4 -->_1 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3 -->_1 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2 -->_1 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1 5:S:msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)) -->_1 msubst#(a,id()) -> c_7():8 -->_2 circ#(id(),s) -> c_6():7 -->_2 circ#(s,id()) -> c_1():6 -->_1 msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)):5 -->_2 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4 -->_2 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3 -->_2 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2 -->_2 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1 6:W:circ#(s,id()) -> c_1() 7:W:circ#(id(),s) -> c_6() 8:W:msubst#(a,id()) -> c_7() 9:W:subst#(a,id()) -> c_9() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 9: subst#(a,id()) -> c_9() 8: msubst#(a,id()) -> c_7() 6: circ#(s,id()) -> c_1() 7: circ#(id(),s) -> c_6() *** 1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)) circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)) circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)) circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)) msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: circ(s,id()) -> s circ(circ(s,t),u) -> circ(s,circ(t,u)) circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t)) circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t)) circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t)) circ(id(),s) -> s msubst(a,id()) -> a msubst(msubst(a,s),t) -> msubst(a,circ(s,t)) Signature: {circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0} Obligation: Innermost basic terms: {circ#,msubst#,subst#}/{cons,id,lift} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)) ,circ#(t,u)) 2: circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)) 3: circ#(cons(lift(),s) ,cons(a,t)) -> c_4(circ#(s,t)) 4: circ#(cons(lift(),s) ,cons(lift(),t)) -> c_5(circ#(s ,t)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)) circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)) circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)) circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)) msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: circ(s,id()) -> s circ(circ(s,t),u) -> circ(s,circ(t,u)) circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t)) circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t)) circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t)) circ(id(),s) -> s msubst(a,id()) -> a msubst(msubst(a,s),t) -> msubst(a,circ(s,t)) Signature: {circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0} Obligation: Innermost basic terms: {circ#,msubst#,subst#}/{cons,id,lift} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1,2}, uargs(c_3) = {1,2}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_8) = {1,2} Following symbols are considered usable: {circ#,msubst#,subst#} TcT has computed the following interpretation: p(circ) = [2] x1 + [1] x2 + [3] p(cons) = [1] x1 + [1] x2 + [2] p(id) = [0] p(lift) = [0] p(msubst) = [2] x1 + [2] x2 + [1] p(subst) = [0] p(circ#) = [4] x1 + [2] p(msubst#) = [4] x1 + [5] p(subst#) = [1] x1 + [0] p(c_1) = [0] p(c_2) = [1] x1 + [1] x2 + [5] p(c_3) = [1] x1 + [1] x2 + [1] p(c_4) = [1] x1 + [5] p(c_5) = [1] x1 + [5] p(c_6) = [0] p(c_7) = [1] p(c_8) = [1] x1 + [1] x2 + [2] p(c_9) = [0] Following rules are strictly oriented: circ#(circ(s,t),u) = [8] s + [4] t + [14] > [4] s + [4] t + [9] = c_2(circ#(s,circ(t,u)) ,circ#(t,u)) circ#(cons(a,s),t) = [4] a + [4] s + [10] > [4] a + [4] s + [8] = c_3(msubst#(a,t),circ#(s,t)) circ#(cons(lift(),s),cons(a,t)) = [4] s + [10] > [4] s + [7] = c_4(circ#(s,t)) circ#(cons(lift(),s) = [4] s + [10] ,cons(lift(),t)) > [4] s + [7] = c_5(circ#(s,t)) Following rules are (at-least) weakly oriented: msubst#(msubst(a,s),t) = [8] a + [8] s + [9] >= [4] a + [4] s + [9] = c_8(msubst#(a,circ(s,t)) ,circ#(s,t)) *** 1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)) Strict TRS Rules: Weak DP Rules: circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)) circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)) circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)) circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)) Weak TRS Rules: circ(s,id()) -> s circ(circ(s,t),u) -> circ(s,circ(t,u)) circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t)) circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t)) circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t)) circ(id(),s) -> s msubst(a,id()) -> a msubst(msubst(a,s),t) -> msubst(a,circ(s,t)) Signature: {circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0} Obligation: Innermost basic terms: {circ#,msubst#,subst#}/{cons,id,lift} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)) Strict TRS Rules: Weak DP Rules: circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)) circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)) circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)) circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)) Weak TRS Rules: circ(s,id()) -> s circ(circ(s,t),u) -> circ(s,circ(t,u)) circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t)) circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t)) circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t)) circ(id(),s) -> s msubst(a,id()) -> a msubst(msubst(a,s),t) -> msubst(a,circ(s,t)) Signature: {circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0} Obligation: Innermost basic terms: {circ#,msubst#,subst#}/{cons,id,lift} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)) ,circ#(s,t)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)) Strict TRS Rules: Weak DP Rules: circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)) circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)) circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)) circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)) Weak TRS Rules: circ(s,id()) -> s circ(circ(s,t),u) -> circ(s,circ(t,u)) circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t)) circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t)) circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t)) circ(id(),s) -> s msubst(a,id()) -> a msubst(msubst(a,s),t) -> msubst(a,circ(s,t)) Signature: {circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0} Obligation: Innermost basic terms: {circ#,msubst#,subst#}/{cons,id,lift} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1,2}, uargs(c_3) = {1,2}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_8) = {1,2} Following symbols are considered usable: {circ#,msubst#,subst#} TcT has computed the following interpretation: p(circ) = [2] x1 + [1] x2 + [0] p(cons) = [1] x1 + [1] x2 + [0] p(id) = [0] p(lift) = [0] p(msubst) = [2] x1 + [7] x2 + [2] p(subst) = [1] x1 + [4] p(circ#) = [6] x1 + [0] p(msubst#) = [1] x1 + [0] p(subst#) = [1] x1 + [1] x2 + [0] p(c_1) = [4] p(c_2) = [1] x1 + [1] x2 + [0] p(c_3) = [6] x1 + [1] x2 + [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] x1 + [0] p(c_6) = [0] p(c_7) = [0] p(c_8) = [2] x1 + [1] x2 + [1] p(c_9) = [1] Following rules are strictly oriented: msubst#(msubst(a,s),t) = [2] a + [7] s + [2] > [2] a + [6] s + [1] = c_8(msubst#(a,circ(s,t)) ,circ#(s,t)) Following rules are (at-least) weakly oriented: circ#(circ(s,t),u) = [12] s + [6] t + [0] >= [6] s + [6] t + [0] = c_2(circ#(s,circ(t,u)) ,circ#(t,u)) circ#(cons(a,s),t) = [6] a + [6] s + [0] >= [6] a + [6] s + [0] = c_3(msubst#(a,t),circ#(s,t)) circ#(cons(lift(),s),cons(a,t)) = [6] s + [0] >= [6] s + [0] = c_4(circ#(s,t)) circ#(cons(lift(),s) = [6] s + [0] ,cons(lift(),t)) >= [6] s + [0] = c_5(circ#(s,t)) *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)) circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)) circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)) circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)) msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)) Weak TRS Rules: circ(s,id()) -> s circ(circ(s,t),u) -> circ(s,circ(t,u)) circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t)) circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t)) circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t)) circ(id(),s) -> s msubst(a,id()) -> a msubst(msubst(a,s),t) -> msubst(a,circ(s,t)) Signature: {circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0} Obligation: Innermost basic terms: {circ#,msubst#,subst#}/{cons,id,lift} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)) circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)) circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)) circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)) msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)) Weak TRS Rules: circ(s,id()) -> s circ(circ(s,t),u) -> circ(s,circ(t,u)) circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t)) circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t)) circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t)) circ(id(),s) -> s msubst(a,id()) -> a msubst(msubst(a,s),t) -> msubst(a,circ(s,t)) Signature: {circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0} Obligation: Innermost basic terms: {circ#,msubst#,subst#}/{cons,id,lift} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)) -->_2 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4 -->_1 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4 -->_2 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3 -->_1 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3 -->_2 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2 -->_1 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2 -->_2 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1 -->_1 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1 2:W:circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)) -->_1 msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)):5 -->_2 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4 -->_2 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3 -->_2 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2 -->_2 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1 3:W:circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)) -->_1 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4 -->_1 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3 -->_1 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2 -->_1 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1 4:W:circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)) -->_1 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4 -->_1 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3 -->_1 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2 -->_1 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1 5:W:msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)) -->_1 msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)),circ#(s,t)):5 -->_2 circ#(cons(lift(),s),cons(lift(),t)) -> c_5(circ#(s,t)):4 -->_2 circ#(cons(lift(),s),cons(a,t)) -> c_4(circ#(s,t)):3 -->_2 circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)):2 -->_2 circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)),circ#(t,u)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: circ#(circ(s,t),u) -> c_2(circ#(s,circ(t,u)) ,circ#(t,u)) 5: msubst#(msubst(a,s),t) -> c_8(msubst#(a,circ(s,t)) ,circ#(s,t)) 2: circ#(cons(a,s),t) -> c_3(msubst#(a,t),circ#(s,t)) 4: circ#(cons(lift(),s) ,cons(lift(),t)) -> c_5(circ#(s ,t)) 3: circ#(cons(lift(),s) ,cons(a,t)) -> c_4(circ#(s,t)) *** 1.1.1.1.1.1.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: circ(s,id()) -> s circ(circ(s,t),u) -> circ(s,circ(t,u)) circ(cons(a,s),t) -> cons(msubst(a,t),circ(s,t)) circ(cons(lift(),s),cons(a,t)) -> cons(a,circ(s,t)) circ(cons(lift(),s),cons(lift(),t)) -> cons(lift(),circ(s,t)) circ(id(),s) -> s msubst(a,id()) -> a msubst(msubst(a,s),t) -> msubst(a,circ(s,t)) Signature: {circ/2,msubst/2,subst/2,circ#/2,msubst#/2,subst#/2} / {cons/2,id/0,lift/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/1,c_6/0,c_7/0,c_8/2,c_9/0} Obligation: Innermost basic terms: {circ#,msubst#,subst#}/{cons,id,lift} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).