We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { circ(s, id()) -> s
  , circ(circ(s, t), u) -> circ(s, circ(t, u))
  , circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t))
  , circ(cons(lift(), s), circ(cons(lift(), t), u)) ->
    circ(cons(lift(), circ(s, t)), u)
  , circ(cons(lift(), s), cons(a, t)) -> cons(a, circ(s, t))
  , circ(cons(lift(), s), cons(lift(), t)) ->
    cons(lift(), circ(s, t))
  , circ(id(), s) -> s
  , msubst(a, id()) -> a
  , msubst(msubst(a, s), t) -> msubst(a, circ(s, t))
  , subst(a, id()) -> a }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

Arguments of following rules are not normal-forms:

{ circ(cons(lift(), s), circ(cons(lift(), t), u)) ->
  circ(cons(lift(), circ(s, t)), u) }

All above mentioned rules can be savely removed.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { circ(s, id()) -> s
  , circ(circ(s, t), u) -> circ(s, circ(t, u))
  , circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t))
  , circ(cons(lift(), s), cons(a, t)) -> cons(a, circ(s, t))
  , circ(cons(lift(), s), cons(lift(), t)) ->
    cons(lift(), circ(s, t))
  , circ(id(), s) -> s
  , msubst(a, id()) -> a
  , msubst(msubst(a, s), t) -> msubst(a, circ(s, t))
  , subst(a, id()) -> a }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We add the following dependency tuples:

Strict DPs:
  { circ^#(s, id()) -> c_1()
  , circ^#(circ(s, t), u) -> c_2(circ^#(s, circ(t, u)), circ^#(t, u))
  , circ^#(cons(a, s), t) -> c_3(msubst^#(a, t), circ^#(s, t))
  , circ^#(cons(lift(), s), cons(a, t)) -> c_4(circ^#(s, t))
  , circ^#(cons(lift(), s), cons(lift(), t)) -> c_5(circ^#(s, t))
  , circ^#(id(), s) -> c_6()
  , msubst^#(a, id()) -> c_7()
  , msubst^#(msubst(a, s), t) ->
    c_8(msubst^#(a, circ(s, t)), circ^#(s, t))
  , subst^#(a, id()) -> c_9() }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { circ^#(s, id()) -> c_1()
  , circ^#(circ(s, t), u) -> c_2(circ^#(s, circ(t, u)), circ^#(t, u))
  , circ^#(cons(a, s), t) -> c_3(msubst^#(a, t), circ^#(s, t))
  , circ^#(cons(lift(), s), cons(a, t)) -> c_4(circ^#(s, t))
  , circ^#(cons(lift(), s), cons(lift(), t)) -> c_5(circ^#(s, t))
  , circ^#(id(), s) -> c_6()
  , msubst^#(a, id()) -> c_7()
  , msubst^#(msubst(a, s), t) ->
    c_8(msubst^#(a, circ(s, t)), circ^#(s, t))
  , subst^#(a, id()) -> c_9() }
Weak Trs:
  { circ(s, id()) -> s
  , circ(circ(s, t), u) -> circ(s, circ(t, u))
  , circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t))
  , circ(cons(lift(), s), cons(a, t)) -> cons(a, circ(s, t))
  , circ(cons(lift(), s), cons(lift(), t)) ->
    cons(lift(), circ(s, t))
  , circ(id(), s) -> s
  , msubst(a, id()) -> a
  , msubst(msubst(a, s), t) -> msubst(a, circ(s, t))
  , subst(a, id()) -> a }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We estimate the number of application of {1,6,7,9} by applications
of Pre({1,6,7,9}) = {2,3,4,5,8}. Here rules are labeled as follows:

  DPs:
    { 1: circ^#(s, id()) -> c_1()
    , 2: circ^#(circ(s, t), u) ->
         c_2(circ^#(s, circ(t, u)), circ^#(t, u))
    , 3: circ^#(cons(a, s), t) -> c_3(msubst^#(a, t), circ^#(s, t))
    , 4: circ^#(cons(lift(), s), cons(a, t)) -> c_4(circ^#(s, t))
    , 5: circ^#(cons(lift(), s), cons(lift(), t)) -> c_5(circ^#(s, t))
    , 6: circ^#(id(), s) -> c_6()
    , 7: msubst^#(a, id()) -> c_7()
    , 8: msubst^#(msubst(a, s), t) ->
         c_8(msubst^#(a, circ(s, t)), circ^#(s, t))
    , 9: subst^#(a, id()) -> c_9() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { circ^#(circ(s, t), u) -> c_2(circ^#(s, circ(t, u)), circ^#(t, u))
  , circ^#(cons(a, s), t) -> c_3(msubst^#(a, t), circ^#(s, t))
  , circ^#(cons(lift(), s), cons(a, t)) -> c_4(circ^#(s, t))
  , circ^#(cons(lift(), s), cons(lift(), t)) -> c_5(circ^#(s, t))
  , msubst^#(msubst(a, s), t) ->
    c_8(msubst^#(a, circ(s, t)), circ^#(s, t)) }
Weak DPs:
  { circ^#(s, id()) -> c_1()
  , circ^#(id(), s) -> c_6()
  , msubst^#(a, id()) -> c_7()
  , subst^#(a, id()) -> c_9() }
Weak Trs:
  { circ(s, id()) -> s
  , circ(circ(s, t), u) -> circ(s, circ(t, u))
  , circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t))
  , circ(cons(lift(), s), cons(a, t)) -> cons(a, circ(s, t))
  , circ(cons(lift(), s), cons(lift(), t)) ->
    cons(lift(), circ(s, t))
  , circ(id(), s) -> s
  , msubst(a, id()) -> a
  , msubst(msubst(a, s), t) -> msubst(a, circ(s, t))
  , subst(a, id()) -> a }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ circ^#(s, id()) -> c_1()
, circ^#(id(), s) -> c_6()
, msubst^#(a, id()) -> c_7()
, subst^#(a, id()) -> c_9() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { circ^#(circ(s, t), u) -> c_2(circ^#(s, circ(t, u)), circ^#(t, u))
  , circ^#(cons(a, s), t) -> c_3(msubst^#(a, t), circ^#(s, t))
  , circ^#(cons(lift(), s), cons(a, t)) -> c_4(circ^#(s, t))
  , circ^#(cons(lift(), s), cons(lift(), t)) -> c_5(circ^#(s, t))
  , msubst^#(msubst(a, s), t) ->
    c_8(msubst^#(a, circ(s, t)), circ^#(s, t)) }
Weak Trs:
  { circ(s, id()) -> s
  , circ(circ(s, t), u) -> circ(s, circ(t, u))
  , circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t))
  , circ(cons(lift(), s), cons(a, t)) -> cons(a, circ(s, t))
  , circ(cons(lift(), s), cons(lift(), t)) ->
    cons(lift(), circ(s, t))
  , circ(id(), s) -> s
  , msubst(a, id()) -> a
  , msubst(msubst(a, s), t) -> msubst(a, circ(s, t))
  , subst(a, id()) -> a }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

Due to missing edges in the dependency-graph, the right-hand sides
of following rules could be simplified:

  { circ^#(circ(s, t), u) -> c_2(circ^#(s, circ(t, u)), circ^#(t, u))
  , msubst^#(msubst(a, s), t) ->
    c_8(msubst^#(a, circ(s, t)), circ^#(s, t)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { circ^#(circ(s, t), u) -> c_1(circ^#(t, u))
  , circ^#(cons(a, s), t) -> c_2(msubst^#(a, t), circ^#(s, t))
  , circ^#(cons(lift(), s), cons(a, t)) -> c_3(circ^#(s, t))
  , circ^#(cons(lift(), s), cons(lift(), t)) -> c_4(circ^#(s, t))
  , msubst^#(msubst(a, s), t) -> c_5(circ^#(s, t)) }
Weak Trs:
  { circ(s, id()) -> s
  , circ(circ(s, t), u) -> circ(s, circ(t, u))
  , circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t))
  , circ(cons(lift(), s), cons(a, t)) -> cons(a, circ(s, t))
  , circ(cons(lift(), s), cons(lift(), t)) ->
    cons(lift(), circ(s, t))
  , circ(id(), s) -> s
  , msubst(a, id()) -> a
  , msubst(msubst(a, s), t) -> msubst(a, circ(s, t))
  , subst(a, id()) -> a }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

No rule is usable, rules are removed from the input problem.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { circ^#(circ(s, t), u) -> c_1(circ^#(t, u))
  , circ^#(cons(a, s), t) -> c_2(msubst^#(a, t), circ^#(s, t))
  , circ^#(cons(lift(), s), cons(a, t)) -> c_3(circ^#(s, t))
  , circ^#(cons(lift(), s), cons(lift(), t)) -> c_4(circ^#(s, t))
  , msubst^#(msubst(a, s), t) -> c_5(circ^#(s, t)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 1: circ^#(circ(s, t), u) -> c_1(circ^#(t, u)) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
    Uargs(c_4) = {1}, Uargs(c_5) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
        [circ](x1, x2) = [2] x2 + [2]         
                                              
        [cons](x1, x2) = [1] x1 + [1] x2 + [0]
                                              
      [msubst](x1, x2) = [1] x1 + [5] x2 + [0]
                                              
                [lift] = [0]                  
                                              
      [circ^#](x1, x2) = [4] x1 + [0]         
                                              
    [msubst^#](x1, x2) = [1] x1 + [0]         
                                              
             [c_1](x1) = [1] x1 + [1]         
                                              
         [c_2](x1, x2) = [4] x1 + [1] x2 + [0]
                                              
             [c_3](x1) = [1] x1 + [0]         
                                              
             [c_4](x1) = [1] x1 + [0]         
                                              
             [c_5](x1) = [1] x1 + [0]         
  
  The order satisfies the following ordering constraints:
  
                       [circ^#(circ(s, t), u)] =  [8] t + [8]                        
                                               >  [4] t + [1]                        
                                               =  [c_1(circ^#(t, u))]                
                                                                                     
                       [circ^#(cons(a, s), t)] =  [4] a + [4] s + [0]                
                                               >= [4] a + [4] s + [0]                
                                               =  [c_2(msubst^#(a, t), circ^#(s, t))]
                                                                                     
         [circ^#(cons(lift(), s), cons(a, t))] =  [4] s + [0]                        
                                               >= [4] s + [0]                        
                                               =  [c_3(circ^#(s, t))]                
                                                                                     
    [circ^#(cons(lift(), s), cons(lift(), t))] =  [4] s + [0]                        
                                               >= [4] s + [0]                        
                                               =  [c_4(circ^#(s, t))]                
                                                                                     
                   [msubst^#(msubst(a, s), t)] =  [1] a + [5] s + [0]                
                                               >= [4] s + [0]                        
                                               =  [c_5(circ^#(s, t))]                
                                                                                     

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { circ^#(cons(a, s), t) -> c_2(msubst^#(a, t), circ^#(s, t))
  , circ^#(cons(lift(), s), cons(a, t)) -> c_3(circ^#(s, t))
  , circ^#(cons(lift(), s), cons(lift(), t)) -> c_4(circ^#(s, t))
  , msubst^#(msubst(a, s), t) -> c_5(circ^#(s, t)) }
Weak DPs: { circ^#(circ(s, t), u) -> c_1(circ^#(t, u)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We use the processor 'matrix interpretation of dimension 1' to
orient following rules strictly.

DPs:
  { 1: circ^#(cons(a, s), t) -> c_2(msubst^#(a, t), circ^#(s, t))
  , 2: circ^#(cons(lift(), s), cons(a, t)) -> c_3(circ^#(s, t))
  , 3: circ^#(cons(lift(), s), cons(lift(), t)) -> c_4(circ^#(s, t))
  , 4: msubst^#(msubst(a, s), t) -> c_5(circ^#(s, t)) }

Sub-proof:
----------
  The following argument positions are usable:
    Uargs(c_1) = {1}, Uargs(c_2) = {1, 2}, Uargs(c_3) = {1},
    Uargs(c_4) = {1}, Uargs(c_5) = {1}
  
  TcT has computed the following constructor-based matrix
  interpretation satisfying not(EDA).
  
        [circ](x1, x2) = [4] x1 + [2] x2 + [0]
                                              
        [cons](x1, x2) = [1] x1 + [1] x2 + [4]
                                              
      [msubst](x1, x2) = [1] x1 + [4] x2 + [0]
                                              
                [lift] = [0]                  
                                              
      [circ^#](x1, x2) = [2] x1 + [0]         
                                              
    [msubst^#](x1, x2) = [2] x1 + [1]         
                                              
             [c_1](x1) = [2] x1 + [0]         
                                              
         [c_2](x1, x2) = [1] x1 + [1] x2 + [6]
                                              
             [c_3](x1) = [1] x1 + [0]         
                                              
             [c_4](x1) = [1] x1 + [0]         
                                              
             [c_5](x1) = [4] x1 + [0]         
  
  The order satisfies the following ordering constraints:
  
                       [circ^#(circ(s, t), u)] =  [8] s + [4] t + [0]                
                                               >= [4] t + [0]                        
                                               =  [c_1(circ^#(t, u))]                
                                                                                     
                       [circ^#(cons(a, s), t)] =  [2] a + [2] s + [8]                
                                               >  [2] a + [2] s + [7]                
                                               =  [c_2(msubst^#(a, t), circ^#(s, t))]
                                                                                     
         [circ^#(cons(lift(), s), cons(a, t))] =  [2] s + [8]                        
                                               >  [2] s + [0]                        
                                               =  [c_3(circ^#(s, t))]                
                                                                                     
    [circ^#(cons(lift(), s), cons(lift(), t))] =  [2] s + [8]                        
                                               >  [2] s + [0]                        
                                               =  [c_4(circ^#(s, t))]                
                                                                                     
                   [msubst^#(msubst(a, s), t)] =  [2] a + [8] s + [1]                
                                               >  [8] s + [0]                        
                                               =  [c_5(circ^#(s, t))]                
                                                                                     

The strictly oriented rules are moved into the weak component.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak DPs:
  { circ^#(circ(s, t), u) -> c_1(circ^#(t, u))
  , circ^#(cons(a, s), t) -> c_2(msubst^#(a, t), circ^#(s, t))
  , circ^#(cons(lift(), s), cons(a, t)) -> c_3(circ^#(s, t))
  , circ^#(cons(lift(), s), cons(lift(), t)) -> c_4(circ^#(s, t))
  , msubst^#(msubst(a, s), t) -> c_5(circ^#(s, t)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ circ^#(circ(s, t), u) -> c_1(circ^#(t, u))
, circ^#(cons(a, s), t) -> c_2(msubst^#(a, t), circ^#(s, t))
, circ^#(cons(lift(), s), cons(a, t)) -> c_3(circ^#(s, t))
, circ^#(cons(lift(), s), cons(lift(), t)) -> c_4(circ^#(s, t))
, msubst^#(msubst(a, s), t) -> c_5(circ^#(s, t)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Rules: Empty
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^1))