*** 1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
f(x,y,z) -> g(<=(x,y),x,y,z)
g(false(),x,y,z) -> f(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y))
g(true(),x,y,z) -> z
p(0()) -> 0()
p(s(x)) -> x
Weak DP Rules:
Weak TRS Rules:
Signature:
{f/3,g/4,p/1} / {0/0,<=/2,false/0,s/1,true/0}
Obligation:
Innermost
basic terms: {f,g,p}/{0,<=,false,s,true}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
f#(x,y,z) -> c_1(g#(<=(x,y),x,y,z))
g#(false(),x,y,z) -> c_2(f#(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y)),f#(p(x),y,z),p#(x),f#(p(y),z,x),p#(y),f#(p(z),x,y),p#(z))
g#(true(),x,y,z) -> c_3()
p#(0()) -> c_4()
p#(s(x)) -> c_5()
Weak DPs
and mark the set of starting terms.
*** 1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
f#(x,y,z) -> c_1(g#(<=(x,y),x,y,z))
g#(false(),x,y,z) -> c_2(f#(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y)),f#(p(x),y,z),p#(x),f#(p(y),z,x),p#(y),f#(p(z),x,y),p#(z))
g#(true(),x,y,z) -> c_3()
p#(0()) -> c_4()
p#(s(x)) -> c_5()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
f(x,y,z) -> g(<=(x,y),x,y,z)
g(false(),x,y,z) -> f(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y))
g(true(),x,y,z) -> z
p(0()) -> 0()
p(s(x)) -> x
Signature:
{f/3,g/4,p/1,f#/3,g#/4,p#/1} / {0/0,<=/2,false/0,s/1,true/0,c_1/1,c_2/7,c_3/0,c_4/0,c_5/0}
Obligation:
Innermost
basic terms: {f#,g#,p#}/{0,<=,false,s,true}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
f(x,y,z) -> g(<=(x,y),x,y,z)
p(0()) -> 0()
p(s(x)) -> x
f#(x,y,z) -> c_1(g#(<=(x,y),x,y,z))
g#(false(),x,y,z) -> c_2(f#(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y)),f#(p(x),y,z),p#(x),f#(p(y),z,x),p#(y),f#(p(z),x,y),p#(z))
g#(true(),x,y,z) -> c_3()
p#(0()) -> c_4()
p#(s(x)) -> c_5()
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
f#(x,y,z) -> c_1(g#(<=(x,y),x,y,z))
g#(false(),x,y,z) -> c_2(f#(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y)),f#(p(x),y,z),p#(x),f#(p(y),z,x),p#(y),f#(p(z),x,y),p#(z))
g#(true(),x,y,z) -> c_3()
p#(0()) -> c_4()
p#(s(x)) -> c_5()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
f(x,y,z) -> g(<=(x,y),x,y,z)
p(0()) -> 0()
p(s(x)) -> x
Signature:
{f/3,g/4,p/1,f#/3,g#/4,p#/1} / {0/0,<=/2,false/0,s/1,true/0,c_1/1,c_2/7,c_3/0,c_4/0,c_5/0}
Obligation:
Innermost
basic terms: {f#,g#,p#}/{0,<=,false,s,true}
Applied Processor:
Trivial
Proof:
Consider the dependency graph
1:S:f#(x,y,z) -> c_1(g#(<=(x,y),x,y,z))
2:S:g#(false(),x,y,z) -> c_2(f#(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y)),f#(p(x),y,z),p#(x),f#(p(y),z,x),p#(y),f#(p(z),x,y),p#(z))
-->_7 p#(s(x)) -> c_5():5
-->_5 p#(s(x)) -> c_5():5
-->_3 p#(s(x)) -> c_5():5
-->_7 p#(0()) -> c_4():4
-->_5 p#(0()) -> c_4():4
-->_3 p#(0()) -> c_4():4
-->_6 f#(x,y,z) -> c_1(g#(<=(x,y),x,y,z)):1
-->_4 f#(x,y,z) -> c_1(g#(<=(x,y),x,y,z)):1
-->_2 f#(x,y,z) -> c_1(g#(<=(x,y),x,y,z)):1
-->_1 f#(x,y,z) -> c_1(g#(<=(x,y),x,y,z)):1
3:S:g#(true(),x,y,z) -> c_3()
4:S:p#(0()) -> c_4()
5:S:p#(s(x)) -> c_5()
The dependency graph contains no loops, we remove all dependency pairs.
*** 1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
f(x,y,z) -> g(<=(x,y),x,y,z)
p(0()) -> 0()
p(s(x)) -> x
Signature:
{f/3,g/4,p/1,f#/3,g#/4,p#/1} / {0/0,<=/2,false/0,s/1,true/0,c_1/1,c_2/7,c_3/0,c_4/0,c_5/0}
Obligation:
Innermost
basic terms: {f#,g#,p#}/{0,<=,false,s,true}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).