*** 1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(x,y,z) -> g(<=(x,y),x,y,z) g(false(),x,y,z) -> f(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y)) g(true(),x,y,z) -> z p(0()) -> 0() p(s(x)) -> x Weak DP Rules: Weak TRS Rules: Signature: {f/3,g/4,p/1} / {0/0,<=/2,false/0,s/1,true/0} Obligation: Innermost basic terms: {f,g,p}/{0,<=,false,s,true} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs f#(x,y,z) -> c_1(g#(<=(x,y),x,y,z)) g#(false(),x,y,z) -> c_2(f#(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y)),f#(p(x),y,z),p#(x),f#(p(y),z,x),p#(y),f#(p(z),x,y),p#(z)) g#(true(),x,y,z) -> c_3() p#(0()) -> c_4() p#(s(x)) -> c_5() Weak DPs and mark the set of starting terms. *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: f#(x,y,z) -> c_1(g#(<=(x,y),x,y,z)) g#(false(),x,y,z) -> c_2(f#(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y)),f#(p(x),y,z),p#(x),f#(p(y),z,x),p#(y),f#(p(z),x,y),p#(z)) g#(true(),x,y,z) -> c_3() p#(0()) -> c_4() p#(s(x)) -> c_5() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(x,y,z) -> g(<=(x,y),x,y,z) g(false(),x,y,z) -> f(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y)) g(true(),x,y,z) -> z p(0()) -> 0() p(s(x)) -> x Signature: {f/3,g/4,p/1,f#/3,g#/4,p#/1} / {0/0,<=/2,false/0,s/1,true/0,c_1/1,c_2/7,c_3/0,c_4/0,c_5/0} Obligation: Innermost basic terms: {f#,g#,p#}/{0,<=,false,s,true} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: f(x,y,z) -> g(<=(x,y),x,y,z) p(0()) -> 0() p(s(x)) -> x f#(x,y,z) -> c_1(g#(<=(x,y),x,y,z)) g#(false(),x,y,z) -> c_2(f#(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y)),f#(p(x),y,z),p#(x),f#(p(y),z,x),p#(y),f#(p(z),x,y),p#(z)) g#(true(),x,y,z) -> c_3() p#(0()) -> c_4() p#(s(x)) -> c_5() *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: f#(x,y,z) -> c_1(g#(<=(x,y),x,y,z)) g#(false(),x,y,z) -> c_2(f#(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y)),f#(p(x),y,z),p#(x),f#(p(y),z,x),p#(y),f#(p(z),x,y),p#(z)) g#(true(),x,y,z) -> c_3() p#(0()) -> c_4() p#(s(x)) -> c_5() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(x,y,z) -> g(<=(x,y),x,y,z) p(0()) -> 0() p(s(x)) -> x Signature: {f/3,g/4,p/1,f#/3,g#/4,p#/1} / {0/0,<=/2,false/0,s/1,true/0,c_1/1,c_2/7,c_3/0,c_4/0,c_5/0} Obligation: Innermost basic terms: {f#,g#,p#}/{0,<=,false,s,true} Applied Processor: Trivial Proof: Consider the dependency graph 1:S:f#(x,y,z) -> c_1(g#(<=(x,y),x,y,z)) 2:S:g#(false(),x,y,z) -> c_2(f#(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y)),f#(p(x),y,z),p#(x),f#(p(y),z,x),p#(y),f#(p(z),x,y),p#(z)) -->_7 p#(s(x)) -> c_5():5 -->_5 p#(s(x)) -> c_5():5 -->_3 p#(s(x)) -> c_5():5 -->_7 p#(0()) -> c_4():4 -->_5 p#(0()) -> c_4():4 -->_3 p#(0()) -> c_4():4 -->_6 f#(x,y,z) -> c_1(g#(<=(x,y),x,y,z)):1 -->_4 f#(x,y,z) -> c_1(g#(<=(x,y),x,y,z)):1 -->_2 f#(x,y,z) -> c_1(g#(<=(x,y),x,y,z)):1 -->_1 f#(x,y,z) -> c_1(g#(<=(x,y),x,y,z)):1 3:S:g#(true(),x,y,z) -> c_3() 4:S:p#(0()) -> c_4() 5:S:p#(s(x)) -> c_5() The dependency graph contains no loops, we remove all dependency pairs. *** 1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(x,y,z) -> g(<=(x,y),x,y,z) p(0()) -> 0() p(s(x)) -> x Signature: {f/3,g/4,p/1,f#/3,g#/4,p#/1} / {0/0,<=/2,false/0,s/1,true/0,c_1/1,c_2/7,c_3/0,c_4/0,c_5/0} Obligation: Innermost basic terms: {f#,g#,p#}/{0,<=,false,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).