*** 1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        f(a()) -> b()
        f(c()) -> d()
        f(g(x,y)) -> g(f(x),f(y))
        f(h(x,y)) -> g(h(y,f(x)),h(x,f(y)))
        g(x,x) -> h(e(),x)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {f/1,g/2} / {a/0,b/0,c/0,d/0,e/0,h/2}
      Obligation:
        Innermost
        basic terms: {f,g}/{a,b,c,d,e,h}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        f#(a()) -> c_1()
        f#(c()) -> c_2()
        f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y))
        f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y))
        g#(x,x) -> c_5()
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        f#(a()) -> c_1()
        f#(c()) -> c_2()
        f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y))
        f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y))
        g#(x,x) -> c_5()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        f(a()) -> b()
        f(c()) -> d()
        f(g(x,y)) -> g(f(x),f(y))
        f(h(x,y)) -> g(h(y,f(x)),h(x,f(y)))
        g(x,x) -> h(e(),x)
      Signature:
        {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/3,c_4/3,c_5/0}
      Obligation:
        Innermost
        basic terms: {f#,g#}/{a,b,c,d,e,h}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,2,5}
      by application of
        Pre({1,2,5}) = {3,4}.
      Here rules are labelled as follows:
        1: f#(a()) -> c_1()               
        2: f#(c()) -> c_2()               
        3: f#(g(x,y)) -> c_3(g#(f(x),f(y))
                            ,f#(x)        
                            ,f#(y))       
        4: f#(h(x,y)) -> c_4(g#(h(y,f(x)) 
                               ,h(x,f(y)))
                            ,f#(x)        
                            ,f#(y))       
        5: g#(x,x) -> c_5()               
*** 1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y))
        f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y))
      Strict TRS Rules:
        
      Weak DP Rules:
        f#(a()) -> c_1()
        f#(c()) -> c_2()
        g#(x,x) -> c_5()
      Weak TRS Rules:
        f(a()) -> b()
        f(c()) -> d()
        f(g(x,y)) -> g(f(x),f(y))
        f(h(x,y)) -> g(h(y,f(x)),h(x,f(y)))
        g(x,x) -> h(e(),x)
      Signature:
        {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/3,c_4/3,c_5/0}
      Obligation:
        Innermost
        basic terms: {f#,g#}/{a,b,c,d,e,h}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y))
           -->_3 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2
           -->_2 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2
           -->_1 g#(x,x) -> c_5():5
           -->_3 f#(c()) -> c_2():4
           -->_2 f#(c()) -> c_2():4
           -->_3 f#(a()) -> c_1():3
           -->_2 f#(a()) -> c_1():3
           -->_3 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1
           -->_2 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1
        
        2:S:f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y))
           -->_1 g#(x,x) -> c_5():5
           -->_3 f#(c()) -> c_2():4
           -->_2 f#(c()) -> c_2():4
           -->_3 f#(a()) -> c_1():3
           -->_2 f#(a()) -> c_1():3
           -->_3 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2
           -->_2 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2
           -->_3 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1
           -->_2 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1
        
        3:W:f#(a()) -> c_1()
           
        
        4:W:f#(c()) -> c_2()
           
        
        5:W:g#(x,x) -> c_5()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        3: f#(a()) -> c_1()
        4: f#(c()) -> c_2()
        5: g#(x,x) -> c_5()
*** 1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y))
        f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        f(a()) -> b()
        f(c()) -> d()
        f(g(x,y)) -> g(f(x),f(y))
        f(h(x,y)) -> g(h(y,f(x)),h(x,f(y)))
        g(x,x) -> h(e(),x)
      Signature:
        {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/3,c_4/3,c_5/0}
      Obligation:
        Innermost
        basic terms: {f#,g#}/{a,b,c,d,e,h}
    Applied Processor:
      SimplifyRHS
    Proof:
      Consider the dependency graph
        1:S:f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y))
           -->_3 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2
           -->_2 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2
           -->_3 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1
           -->_2 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1
        
        2:S:f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y))
           -->_3 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2
           -->_2 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2
           -->_3 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1
           -->_2 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        f#(g(x,y)) -> c_3(f#(x),f#(y))
        f#(h(x,y)) -> c_4(f#(x),f#(y))
*** 1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        f#(g(x,y)) -> c_3(f#(x),f#(y))
        f#(h(x,y)) -> c_4(f#(x),f#(y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        f(a()) -> b()
        f(c()) -> d()
        f(g(x,y)) -> g(f(x),f(y))
        f(h(x,y)) -> g(h(y,f(x)),h(x,f(y)))
        g(x,x) -> h(e(),x)
      Signature:
        {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0}
      Obligation:
        Innermost
        basic terms: {f#,g#}/{a,b,c,d,e,h}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        f#(g(x,y)) -> c_3(f#(x),f#(y))
        f#(h(x,y)) -> c_4(f#(x),f#(y))
*** 1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        f#(g(x,y)) -> c_3(f#(x),f#(y))
        f#(h(x,y)) -> c_4(f#(x),f#(y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0}
      Obligation:
        Innermost
        basic terms: {f#,g#}/{a,b,c,d,e,h}
    Applied Processor:
      PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
    Proof:
      We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
        1: f#(g(x,y)) -> c_3(f#(x),f#(y))
        
      The strictly oriented rules are moved into the weak component.
  *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          f#(g(x,y)) -> c_3(f#(x),f#(y))
          f#(h(x,y)) -> c_4(f#(x),f#(y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          
        Signature:
          {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0}
        Obligation:
          Innermost
          basic terms: {f#,g#}/{a,b,c,d,e,h}
      Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
      Proof:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_3) = {1,2},
          uargs(c_4) = {1,2}
        
        Following symbols are considered usable:
          {f#,g#}
        TcT has computed the following interpretation:
            p(a) = [0]                   
            p(b) = [4]                   
            p(c) = [0]                   
            p(d) = [0]                   
            p(e) = [2]                   
            p(f) = [1] x1 + [1]          
            p(g) = [5] x1 + [1] x2 + [8] 
            p(h) = [1] x1 + [1] x2 + [0] 
           p(f#) = [2] x1 + [0]          
           p(g#) = [0]                   
          p(c_1) = [1]                   
          p(c_2) = [0]                   
          p(c_3) = [2] x1 + [1] x2 + [13]
          p(c_4) = [1] x1 + [1] x2 + [0] 
          p(c_5) = [2]                   
        
        Following rules are strictly oriented:
        f#(g(x,y)) = [10] x + [2] y + [16]
                   > [4] x + [2] y + [13] 
                   = c_3(f#(x),f#(y))     
        
        
        Following rules are (at-least) weakly oriented:
        f#(h(x,y)) =  [2] x + [2] y + [0]
                   >= [2] x + [2] y + [0]
                   =  c_4(f#(x),f#(y))   
        
  *** 1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          f#(h(x,y)) -> c_4(f#(x),f#(y))
        Strict TRS Rules:
          
        Weak DP Rules:
          f#(g(x,y)) -> c_3(f#(x),f#(y))
        Weak TRS Rules:
          
        Signature:
          {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0}
        Obligation:
          Innermost
          basic terms: {f#,g#}/{a,b,c,d,e,h}
      Applied Processor:
        Assumption
      Proof:
        ()
  
  *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          f#(h(x,y)) -> c_4(f#(x),f#(y))
        Strict TRS Rules:
          
        Weak DP Rules:
          f#(g(x,y)) -> c_3(f#(x),f#(y))
        Weak TRS Rules:
          
        Signature:
          {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0}
        Obligation:
          Innermost
          basic terms: {f#,g#}/{a,b,c,d,e,h}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: f#(h(x,y)) -> c_4(f#(x),f#(y))
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            f#(h(x,y)) -> c_4(f#(x),f#(y))
          Strict TRS Rules:
            
          Weak DP Rules:
            f#(g(x,y)) -> c_3(f#(x),f#(y))
          Weak TRS Rules:
            
          Signature:
            {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0}
          Obligation:
            Innermost
            basic terms: {f#,g#}/{a,b,c,d,e,h}
        Applied Processor:
          NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_3) = {1,2},
            uargs(c_4) = {1,2}
          
          Following symbols are considered usable:
            {f#,g#}
          TcT has computed the following interpretation:
              p(a) = [1]                  
              p(b) = [2]                  
              p(c) = [1]                  
              p(d) = [0]                  
              p(e) = [0]                  
              p(f) = [0]                  
              p(g) = [2] x1 + [2] x2 + [0]
              p(h) = [1] x1 + [1] x2 + [1]
             p(f#) = [8] x1 + [0]         
             p(g#) = [8] x1 + [2]         
            p(c_1) = [0]                  
            p(c_2) = [1]                  
            p(c_3) = [1] x1 + [2] x2 + [0]
            p(c_4) = [1] x1 + [1] x2 + [0]
            p(c_5) = [1]                  
          
          Following rules are strictly oriented:
          f#(h(x,y)) = [8] x + [8] y + [8]
                     > [8] x + [8] y + [0]
                     = c_4(f#(x),f#(y))   
          
          
          Following rules are (at-least) weakly oriented:
          f#(g(x,y)) =  [16] x + [16] y + [0]
                     >= [8] x + [16] y + [0] 
                     =  c_3(f#(x),f#(y))     
          
    *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            f#(g(x,y)) -> c_3(f#(x),f#(y))
            f#(h(x,y)) -> c_4(f#(x),f#(y))
          Weak TRS Rules:
            
          Signature:
            {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0}
          Obligation:
            Innermost
            basic terms: {f#,g#}/{a,b,c,d,e,h}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.2.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            f#(g(x,y)) -> c_3(f#(x),f#(y))
            f#(h(x,y)) -> c_4(f#(x),f#(y))
          Weak TRS Rules:
            
          Signature:
            {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0}
          Obligation:
            Innermost
            basic terms: {f#,g#}/{a,b,c,d,e,h}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:f#(g(x,y)) -> c_3(f#(x),f#(y))
               -->_2 f#(h(x,y)) -> c_4(f#(x),f#(y)):2
               -->_1 f#(h(x,y)) -> c_4(f#(x),f#(y)):2
               -->_2 f#(g(x,y)) -> c_3(f#(x),f#(y)):1
               -->_1 f#(g(x,y)) -> c_3(f#(x),f#(y)):1
            
            2:W:f#(h(x,y)) -> c_4(f#(x),f#(y))
               -->_2 f#(h(x,y)) -> c_4(f#(x),f#(y)):2
               -->_1 f#(h(x,y)) -> c_4(f#(x),f#(y)):2
               -->_2 f#(g(x,y)) -> c_3(f#(x),f#(y)):1
               -->_1 f#(g(x,y)) -> c_3(f#(x),f#(y)):1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: f#(g(x,y)) -> c_3(f#(x),f#(y))
            2: f#(h(x,y)) -> c_4(f#(x),f#(y))
    *** 1.1.1.1.1.1.2.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0}
          Obligation:
            Innermost
            basic terms: {f#,g#}/{a,b,c,d,e,h}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).