*** 1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(a()) -> b() f(c()) -> d() f(g(x,y)) -> g(f(x),f(y)) f(h(x,y)) -> g(h(y,f(x)),h(x,f(y))) g(x,x) -> h(e(),x) Weak DP Rules: Weak TRS Rules: Signature: {f/1,g/2} / {a/0,b/0,c/0,d/0,e/0,h/2} Obligation: Innermost basic terms: {f,g}/{a,b,c,d,e,h} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs f#(a()) -> c_1() f#(c()) -> c_2() f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)) f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)) g#(x,x) -> c_5() Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(a()) -> c_1() f#(c()) -> c_2() f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)) f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)) g#(x,x) -> c_5() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(a()) -> b() f(c()) -> d() f(g(x,y)) -> g(f(x),f(y)) f(h(x,y)) -> g(h(y,f(x)),h(x,f(y))) g(x,x) -> h(e(),x) Signature: {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/3,c_4/3,c_5/0} Obligation: Innermost basic terms: {f#,g#}/{a,b,c,d,e,h} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,2,5} by application of Pre({1,2,5}) = {3,4}. Here rules are labelled as follows: 1: f#(a()) -> c_1() 2: f#(c()) -> c_2() 3: f#(g(x,y)) -> c_3(g#(f(x),f(y)) ,f#(x) ,f#(y)) 4: f#(h(x,y)) -> c_4(g#(h(y,f(x)) ,h(x,f(y))) ,f#(x) ,f#(y)) 5: g#(x,x) -> c_5() *** 1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)) f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)) Strict TRS Rules: Weak DP Rules: f#(a()) -> c_1() f#(c()) -> c_2() g#(x,x) -> c_5() Weak TRS Rules: f(a()) -> b() f(c()) -> d() f(g(x,y)) -> g(f(x),f(y)) f(h(x,y)) -> g(h(y,f(x)),h(x,f(y))) g(x,x) -> h(e(),x) Signature: {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/3,c_4/3,c_5/0} Obligation: Innermost basic terms: {f#,g#}/{a,b,c,d,e,h} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)) -->_3 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2 -->_2 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2 -->_1 g#(x,x) -> c_5():5 -->_3 f#(c()) -> c_2():4 -->_2 f#(c()) -> c_2():4 -->_3 f#(a()) -> c_1():3 -->_2 f#(a()) -> c_1():3 -->_3 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1 -->_2 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1 2:S:f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)) -->_1 g#(x,x) -> c_5():5 -->_3 f#(c()) -> c_2():4 -->_2 f#(c()) -> c_2():4 -->_3 f#(a()) -> c_1():3 -->_2 f#(a()) -> c_1():3 -->_3 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2 -->_2 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2 -->_3 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1 -->_2 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1 3:W:f#(a()) -> c_1() 4:W:f#(c()) -> c_2() 5:W:g#(x,x) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: f#(a()) -> c_1() 4: f#(c()) -> c_2() 5: g#(x,x) -> c_5() *** 1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)) f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(a()) -> b() f(c()) -> d() f(g(x,y)) -> g(f(x),f(y)) f(h(x,y)) -> g(h(y,f(x)),h(x,f(y))) g(x,x) -> h(e(),x) Signature: {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/3,c_4/3,c_5/0} Obligation: Innermost basic terms: {f#,g#}/{a,b,c,d,e,h} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)) -->_3 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2 -->_2 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2 -->_3 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1 -->_2 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1 2:S:f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)) -->_3 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2 -->_2 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2 -->_3 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1 -->_2 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: f#(g(x,y)) -> c_3(f#(x),f#(y)) f#(h(x,y)) -> c_4(f#(x),f#(y)) *** 1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(g(x,y)) -> c_3(f#(x),f#(y)) f#(h(x,y)) -> c_4(f#(x),f#(y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(a()) -> b() f(c()) -> d() f(g(x,y)) -> g(f(x),f(y)) f(h(x,y)) -> g(h(y,f(x)),h(x,f(y))) g(x,x) -> h(e(),x) Signature: {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0} Obligation: Innermost basic terms: {f#,g#}/{a,b,c,d,e,h} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: f#(g(x,y)) -> c_3(f#(x),f#(y)) f#(h(x,y)) -> c_4(f#(x),f#(y)) *** 1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(g(x,y)) -> c_3(f#(x),f#(y)) f#(h(x,y)) -> c_4(f#(x),f#(y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0} Obligation: Innermost basic terms: {f#,g#}/{a,b,c,d,e,h} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: f#(g(x,y)) -> c_3(f#(x),f#(y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(g(x,y)) -> c_3(f#(x),f#(y)) f#(h(x,y)) -> c_4(f#(x),f#(y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0} Obligation: Innermost basic terms: {f#,g#}/{a,b,c,d,e,h} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1,2}, uargs(c_4) = {1,2} Following symbols are considered usable: {f#,g#} TcT has computed the following interpretation: p(a) = [0] p(b) = [4] p(c) = [0] p(d) = [0] p(e) = [2] p(f) = [1] x1 + [1] p(g) = [5] x1 + [1] x2 + [8] p(h) = [1] x1 + [1] x2 + [0] p(f#) = [2] x1 + [0] p(g#) = [0] p(c_1) = [1] p(c_2) = [0] p(c_3) = [2] x1 + [1] x2 + [13] p(c_4) = [1] x1 + [1] x2 + [0] p(c_5) = [2] Following rules are strictly oriented: f#(g(x,y)) = [10] x + [2] y + [16] > [4] x + [2] y + [13] = c_3(f#(x),f#(y)) Following rules are (at-least) weakly oriented: f#(h(x,y)) = [2] x + [2] y + [0] >= [2] x + [2] y + [0] = c_4(f#(x),f#(y)) *** 1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: f#(h(x,y)) -> c_4(f#(x),f#(y)) Strict TRS Rules: Weak DP Rules: f#(g(x,y)) -> c_3(f#(x),f#(y)) Weak TRS Rules: Signature: {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0} Obligation: Innermost basic terms: {f#,g#}/{a,b,c,d,e,h} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(h(x,y)) -> c_4(f#(x),f#(y)) Strict TRS Rules: Weak DP Rules: f#(g(x,y)) -> c_3(f#(x),f#(y)) Weak TRS Rules: Signature: {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0} Obligation: Innermost basic terms: {f#,g#}/{a,b,c,d,e,h} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: f#(h(x,y)) -> c_4(f#(x),f#(y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(h(x,y)) -> c_4(f#(x),f#(y)) Strict TRS Rules: Weak DP Rules: f#(g(x,y)) -> c_3(f#(x),f#(y)) Weak TRS Rules: Signature: {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0} Obligation: Innermost basic terms: {f#,g#}/{a,b,c,d,e,h} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1,2}, uargs(c_4) = {1,2} Following symbols are considered usable: {f#,g#} TcT has computed the following interpretation: p(a) = [1] p(b) = [2] p(c) = [1] p(d) = [0] p(e) = [0] p(f) = [0] p(g) = [2] x1 + [2] x2 + [0] p(h) = [1] x1 + [1] x2 + [1] p(f#) = [8] x1 + [0] p(g#) = [8] x1 + [2] p(c_1) = [0] p(c_2) = [1] p(c_3) = [1] x1 + [2] x2 + [0] p(c_4) = [1] x1 + [1] x2 + [0] p(c_5) = [1] Following rules are strictly oriented: f#(h(x,y)) = [8] x + [8] y + [8] > [8] x + [8] y + [0] = c_4(f#(x),f#(y)) Following rules are (at-least) weakly oriented: f#(g(x,y)) = [16] x + [16] y + [0] >= [8] x + [16] y + [0] = c_3(f#(x),f#(y)) *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f#(g(x,y)) -> c_3(f#(x),f#(y)) f#(h(x,y)) -> c_4(f#(x),f#(y)) Weak TRS Rules: Signature: {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0} Obligation: Innermost basic terms: {f#,g#}/{a,b,c,d,e,h} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f#(g(x,y)) -> c_3(f#(x),f#(y)) f#(h(x,y)) -> c_4(f#(x),f#(y)) Weak TRS Rules: Signature: {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0} Obligation: Innermost basic terms: {f#,g#}/{a,b,c,d,e,h} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:f#(g(x,y)) -> c_3(f#(x),f#(y)) -->_2 f#(h(x,y)) -> c_4(f#(x),f#(y)):2 -->_1 f#(h(x,y)) -> c_4(f#(x),f#(y)):2 -->_2 f#(g(x,y)) -> c_3(f#(x),f#(y)):1 -->_1 f#(g(x,y)) -> c_3(f#(x),f#(y)):1 2:W:f#(h(x,y)) -> c_4(f#(x),f#(y)) -->_2 f#(h(x,y)) -> c_4(f#(x),f#(y)):2 -->_1 f#(h(x,y)) -> c_4(f#(x),f#(y)):2 -->_2 f#(g(x,y)) -> c_3(f#(x),f#(y)):1 -->_1 f#(g(x,y)) -> c_3(f#(x),f#(y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: f#(g(x,y)) -> c_3(f#(x),f#(y)) 2: f#(h(x,y)) -> c_4(f#(x),f#(y)) *** 1.1.1.1.1.1.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0} Obligation: Innermost basic terms: {f#,g#}/{a,b,c,d,e,h} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).