*** 1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(x,x,y) -> x f(x,y,y) -> y f(x,y,g(y)) -> x f(f(x,y,z),u,f(x,y,v)) -> f(x,y,f(z,u,v)) f(g(x),x,y) -> y Weak DP Rules: Weak TRS Rules: Signature: {f/3} / {g/1} Obligation: Innermost basic terms: {f}/{g} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs f#(x,x,y) -> c_1() f#(x,y,y) -> c_2() f#(x,y,g(y)) -> c_3() f#(f(x,y,z),u,f(x,y,v)) -> c_4(f#(x,y,f(z,u,v)),f#(z,u,v)) f#(g(x),x,y) -> c_5() Weak DPs and mark the set of starting terms. *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: f#(x,x,y) -> c_1() f#(x,y,y) -> c_2() f#(x,y,g(y)) -> c_3() f#(f(x,y,z),u,f(x,y,v)) -> c_4(f#(x,y,f(z,u,v)),f#(z,u,v)) f#(g(x),x,y) -> c_5() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(x,x,y) -> x f(x,y,y) -> y f(x,y,g(y)) -> x f(f(x,y,z),u,f(x,y,v)) -> f(x,y,f(z,u,v)) f(g(x),x,y) -> y Signature: {f/3,f#/3} / {g/1,c_1/0,c_2/0,c_3/0,c_4/2,c_5/0} Obligation: Innermost basic terms: {f#}/{g} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: f#(x,x,y) -> c_1() f#(x,y,y) -> c_2() f#(x,y,g(y)) -> c_3() f#(g(x),x,y) -> c_5() *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: f#(x,x,y) -> c_1() f#(x,y,y) -> c_2() f#(x,y,g(y)) -> c_3() f#(g(x),x,y) -> c_5() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/3,f#/3} / {g/1,c_1/0,c_2/0,c_3/0,c_4/2,c_5/0} Obligation: Innermost basic terms: {f#}/{g} Applied Processor: Trivial Proof: Consider the dependency graph 1:S:f#(x,x,y) -> c_1() 2:S:f#(x,y,y) -> c_2() 3:S:f#(x,y,g(y)) -> c_3() 4:S:f#(g(x),x,y) -> c_5() The dependency graph contains no loops, we remove all dependency pairs. *** 1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/3,f#/3} / {g/1,c_1/0,c_2/0,c_3/0,c_4/2,c_5/0} Obligation: Innermost basic terms: {f#}/{g} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).