*** 1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
f(x,x,y) -> x
f(x,y,y) -> y
f(x,y,g(y)) -> x
f(f(x,y,z),u,f(x,y,v)) -> f(x,y,f(z,u,v))
f(g(x),x,y) -> y
Weak DP Rules:
Weak TRS Rules:
Signature:
{f/3} / {g/1}
Obligation:
Innermost
basic terms: {f}/{g}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
f#(x,x,y) -> c_1()
f#(x,y,y) -> c_2()
f#(x,y,g(y)) -> c_3()
f#(f(x,y,z),u,f(x,y,v)) -> c_4(f#(x,y,f(z,u,v)),f#(z,u,v))
f#(g(x),x,y) -> c_5()
Weak DPs
and mark the set of starting terms.
*** 1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
f#(x,x,y) -> c_1()
f#(x,y,y) -> c_2()
f#(x,y,g(y)) -> c_3()
f#(f(x,y,z),u,f(x,y,v)) -> c_4(f#(x,y,f(z,u,v)),f#(z,u,v))
f#(g(x),x,y) -> c_5()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
f(x,x,y) -> x
f(x,y,y) -> y
f(x,y,g(y)) -> x
f(f(x,y,z),u,f(x,y,v)) -> f(x,y,f(z,u,v))
f(g(x),x,y) -> y
Signature:
{f/3,f#/3} / {g/1,c_1/0,c_2/0,c_3/0,c_4/2,c_5/0}
Obligation:
Innermost
basic terms: {f#}/{g}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
f#(x,x,y) -> c_1()
f#(x,y,y) -> c_2()
f#(x,y,g(y)) -> c_3()
f#(g(x),x,y) -> c_5()
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
f#(x,x,y) -> c_1()
f#(x,y,y) -> c_2()
f#(x,y,g(y)) -> c_3()
f#(g(x),x,y) -> c_5()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{f/3,f#/3} / {g/1,c_1/0,c_2/0,c_3/0,c_4/2,c_5/0}
Obligation:
Innermost
basic terms: {f#}/{g}
Applied Processor:
Trivial
Proof:
Consider the dependency graph
1:S:f#(x,x,y) -> c_1()
2:S:f#(x,y,y) -> c_2()
3:S:f#(x,y,g(y)) -> c_3()
4:S:f#(g(x),x,y) -> c_5()
The dependency graph contains no loops, we remove all dependency pairs.
*** 1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{f/3,f#/3} / {g/1,c_1/0,c_2/0,c_3/0,c_4/2,c_5/0}
Obligation:
Innermost
basic terms: {f#}/{g}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).