*** 1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) f(g(f(x))) -> f(h(s(0()),x)) f(g(h(x,y))) -> f(h(s(x),y)) f(h(x,h(y,z))) -> f(h(+(x,y),z)) Weak DP Rules: Weak TRS Rules: Signature: {+/2,f/1} / {0/0,g/1,h/2,s/1} Obligation: Innermost basic terms: {+,f}/{0,g,h,s} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,0()) -> c_2() +#(x,s(y)) -> c_3(+#(x,y)) +#(0(),y) -> c_4() +#(s(x),y) -> c_5(+#(x,y)) f#(g(f(x))) -> c_6(f#(h(s(0()),x))) f#(g(h(x,y))) -> c_7(f#(h(s(x),y))) f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,0()) -> c_2() +#(x,s(y)) -> c_3(+#(x,y)) +#(0(),y) -> c_4() +#(s(x),y) -> c_5(+#(x,y)) f#(g(f(x))) -> c_6(f#(h(s(0()),x))) f#(g(h(x,y))) -> c_7(f#(h(s(x),y))) f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) f(g(f(x))) -> f(h(s(0()),x)) f(g(h(x,y))) -> f(h(s(x),y)) f(h(x,h(y,z))) -> f(h(+(x,y),z)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,0()) -> c_2() +#(x,s(y)) -> c_3(+#(x,y)) +#(0(),y) -> c_4() +#(s(x),y) -> c_5(+#(x,y)) f#(g(h(x,y))) -> c_7(f#(h(s(x),y))) f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) *** 1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,0()) -> c_2() +#(x,s(y)) -> c_3(+#(x,y)) +#(0(),y) -> c_4() +#(s(x),y) -> c_5(+#(x,y)) f#(g(h(x,y))) -> c_7(f#(h(s(x),y))) f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {2,4} by application of Pre({2,4}) = {1,3,5,7}. Here rules are labelled as follows: 1: +#(x,+(y,z)) -> c_1(+#(+(x,y),z) ,+#(x,y)) 2: +#(x,0()) -> c_2() 3: +#(x,s(y)) -> c_3(+#(x,y)) 4: +#(0(),y) -> c_4() 5: +#(s(x),y) -> c_5(+#(x,y)) 6: f#(g(h(x,y))) -> c_7(f#(h(s(x) ,y))) 7: f#(h(x,h(y,z))) -> c_8(f#(h(+(x ,y) ,z)) ,+#(x,y)) *** 1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,s(y)) -> c_3(+#(x,y)) +#(s(x),y) -> c_5(+#(x,y)) f#(g(h(x,y))) -> c_7(f#(h(s(x),y))) f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Strict TRS Rules: Weak DP Rules: +#(x,0()) -> c_2() +#(0(),y) -> c_4() Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) -->_2 +#(s(x),y) -> c_5(+#(x,y)):3 -->_1 +#(s(x),y) -> c_5(+#(x,y)):3 -->_2 +#(x,s(y)) -> c_3(+#(x,y)):2 -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2 -->_2 +#(0(),y) -> c_4():7 -->_1 +#(0(),y) -> c_4():7 -->_2 +#(x,0()) -> c_2():6 -->_1 +#(x,0()) -> c_2():6 -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1 -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1 2:S:+#(x,s(y)) -> c_3(+#(x,y)) -->_1 +#(s(x),y) -> c_5(+#(x,y)):3 -->_1 +#(0(),y) -> c_4():7 -->_1 +#(x,0()) -> c_2():6 -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2 -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1 3:S:+#(s(x),y) -> c_5(+#(x,y)) -->_1 +#(0(),y) -> c_4():7 -->_1 +#(x,0()) -> c_2():6 -->_1 +#(s(x),y) -> c_5(+#(x,y)):3 -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2 -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1 4:S:f#(g(h(x,y))) -> c_7(f#(h(s(x),y))) -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):5 5:S:f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) -->_2 +#(0(),y) -> c_4():7 -->_2 +#(x,0()) -> c_2():6 -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):5 -->_2 +#(s(x),y) -> c_5(+#(x,y)):3 -->_2 +#(x,s(y)) -> c_3(+#(x,y)):2 -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1 6:W:+#(x,0()) -> c_2() 7:W:+#(0(),y) -> c_4() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: +#(x,0()) -> c_2() 7: +#(0(),y) -> c_4() *** 1.1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,s(y)) -> c_3(+#(x,y)) +#(s(x),y) -> c_5(+#(x,y)) f#(g(h(x,y))) -> c_7(f#(h(s(x),y))) f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: RemoveHeads Proof: Consider the dependency graph 1:S:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) -->_2 +#(s(x),y) -> c_5(+#(x,y)):3 -->_1 +#(s(x),y) -> c_5(+#(x,y)):3 -->_2 +#(x,s(y)) -> c_3(+#(x,y)):2 -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2 -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1 -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1 2:S:+#(x,s(y)) -> c_3(+#(x,y)) -->_1 +#(s(x),y) -> c_5(+#(x,y)):3 -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2 -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1 3:S:+#(s(x),y) -> c_5(+#(x,y)) -->_1 +#(s(x),y) -> c_5(+#(x,y)):3 -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2 -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1 4:S:f#(g(h(x,y))) -> c_7(f#(h(s(x),y))) -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):5 5:S:f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):5 -->_2 +#(s(x),y) -> c_5(+#(x,y)):3 -->_2 +#(x,s(y)) -> c_3(+#(x,y)):2 -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(4,f#(g(h(x,y))) -> c_7(f#(h(s(x),y))))] *** 1.1.1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,s(y)) -> c_3(+#(x,y)) +#(s(x),y) -> c_5(+#(x,y)) f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,s(y)) -> c_3(+#(x,y)) +#(s(x),y) -> c_5(+#(x,y)) Strict TRS Rules: Weak DP Rules: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Problem (S) Strict DP Rules: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Strict TRS Rules: Weak DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,s(y)) -> c_3(+#(x,y)) +#(s(x),y) -> c_5(+#(x,y)) Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} *** 1.1.1.1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,s(y)) -> c_3(+#(x,y)) +#(s(x),y) -> c_5(+#(x,y)) Strict TRS Rules: Weak DP Rules: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 2: +#(x,s(y)) -> c_3(+#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,s(y)) -> c_3(+#(x,y)) +#(s(x),y) -> c_5(+#(x,y)) Strict TRS Rules: Weak DP Rules: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_1) = {1,2}, uargs(c_3) = {1}, uargs(c_5) = {1}, uargs(c_8) = {1,2} Following symbols are considered usable: {+,+#,f#} TcT has computed the following interpretation: p(+) = [1 0 0] [1 0 0] [0] [0 1 0] x1 + [1 1 1] x2 + [1] [0 0 1] [0 0 1] [0] p(0) = [0] [0] [0] p(f) = [0] [0] [0] p(g) = [0 0 0] [0] [0 0 0] x1 + [0] [0 0 1] [0] p(h) = [0 0 0] [0 0 1] [1] [0 0 1] x1 + [0 1 1] x2 + [1] [0 0 1] [0 0 0] [0] p(s) = [0 0 0] [0] [0 0 0] x1 + [0] [0 0 1] [1] p(+#) = [0 0 1] [0] [0 0 1] x2 + [0] [0 0 0] [0] p(f#) = [0 1 0] [1] [0 1 1] x1 + [1] [0 1 1] [0] p(c_1) = [1 0 0] [1 0 0] [0] [0 0 0] x1 + [0 1 0] x2 + [0] [0 0 0] [0 0 0] [0] p(c_2) = [0] [0] [0] p(c_3) = [1 0 0] [0] [0 0 0] x1 + [0] [0 0 0] [0] p(c_4) = [0] [0] [0] p(c_5) = [1 0 0] [0] [1 0 0] x1 + [0] [0 0 0] [0] p(c_6) = [0] [0] [0] p(c_7) = [0] [0] [0] p(c_8) = [1 0 0] [1 0 0] [1] [0 0 0] x1 + [1 0 0] x2 + [0] [0 1 0] [0 0 0] [0] Following rules are strictly oriented: +#(x,s(y)) = [0 0 1] [1] [0 0 1] y + [1] [0 0 0] [0] > [0 0 1] [0] [0 0 0] y + [0] [0 0 0] [0] = c_3(+#(x,y)) Following rules are (at-least) weakly oriented: +#(x,+(y,z)) = [0 0 1] [0 0 1] [0] [0 0 1] y + [0 0 1] z + [0] [0 0 0] [0 0 0] [0] >= [0 0 1] [0 0 1] [0] [0 0 1] y + [0 0 0] z + [0] [0 0 0] [0 0 0] [0] = c_1(+#(+(x,y),z),+#(x,y)) +#(s(x),y) = [0 0 1] [0] [0 0 1] y + [0] [0 0 0] [0] >= [0 0 1] [0] [0 0 1] y + [0] [0 0 0] [0] = c_5(+#(x,y)) f#(h(x,h(y,z))) = [0 0 1] [0 0 2] [0 1 1] [3] [0 0 2] x + [0 0 2] y + [0 1 1] z + [3] [0 0 2] [0 0 2] [0 1 1] [2] >= [0 0 1] [0 0 2] [0 1 1] [3] [0 0 0] x + [0 0 1] y + [0 0 0] z + [0] [0 0 2] [0 0 2] [0 1 1] [2] = c_8(f#(h(+(x,y),z)),+#(x,y)) +(x,+(y,z)) = [1 0 0] [1 0 0] [1 0 0] [0] [0 1 0] x + [1 1 1] y + [2 1 2] z + [2] [0 0 1] [0 0 1] [0 0 1] [0] >= [1 0 0] [1 0 0] [1 0 0] [0] [0 1 0] x + [1 1 1] y + [1 1 1] z + [2] [0 0 1] [0 0 1] [0 0 1] [0] = +(+(x,y),z) +(x,0()) = [1 0 0] [0] [0 1 0] x + [1] [0 0 1] [0] >= [1 0 0] [0] [0 1 0] x + [0] [0 0 1] [0] = x +(x,s(y)) = [1 0 0] [0 0 0] [0] [0 1 0] x + [0 0 1] y + [2] [0 0 1] [0 0 1] [1] >= [0 0 0] [0 0 0] [0] [0 0 0] x + [0 0 0] y + [0] [0 0 1] [0 0 1] [1] = s(+(x,y)) +(0(),y) = [1 0 0] [0] [1 1 1] y + [1] [0 0 1] [0] >= [1 0 0] [0] [0 1 0] y + [0] [0 0 1] [0] = y +(s(x),y) = [0 0 0] [1 0 0] [0] [0 0 0] x + [1 1 1] y + [1] [0 0 1] [0 0 1] [1] >= [0 0 0] [0 0 0] [0] [0 0 0] x + [0 0 0] y + [0] [0 0 1] [0 0 1] [1] = s(+(x,y)) *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(s(x),y) -> c_5(+#(x,y)) Strict TRS Rules: Weak DP Rules: +#(x,s(y)) -> c_3(+#(x,y)) f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.2 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(s(x),y) -> c_5(+#(x,y)) Strict TRS Rules: Weak DP Rules: +#(x,s(y)) -> c_3(+#(x,y)) f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: +#(x,+(y,z)) -> c_1(+#(+(x,y),z) ,+#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(s(x),y) -> c_5(+#(x,y)) Strict TRS Rules: Weak DP Rules: +#(x,s(y)) -> c_3(+#(x,y)) f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_1) = {1,2}, uargs(c_3) = {1}, uargs(c_5) = {1}, uargs(c_8) = {1,2} Following symbols are considered usable: {+,+#,f#} TcT has computed the following interpretation: p(+) = [1 0 0] [1 0 1] [0] [0 1 0] x1 + [1 1 1] x2 + [0] [0 0 1] [0 0 1] [1] p(0) = [1] [1] [0] p(f) = [0] [0] [0] p(g) = [0] [0] [0] p(h) = [0 0 0] [0 1 1] [1] [0 0 0] x1 + [0 0 1] x2 + [1] [0 0 1] [0 0 1] [0] p(s) = [0 0 0] [0] [0 0 0] x1 + [1] [0 0 1] [1] p(+#) = [0 0 1] [0] [0 0 1] x2 + [0] [0 0 1] [1] p(f#) = [0 1 0] [1] [0 1 0] x1 + [1] [1 0 0] [0] p(c_1) = [1 0 0] [1 0 0] [0] [0 0 0] x1 + [0 0 1] x2 + [0] [0 0 1] [0 0 0] [1] p(c_2) = [0] [0] [0] p(c_3) = [1 0 0] [0] [0 0 1] x1 + [0] [0 0 0] [0] p(c_4) = [0] [0] [0] p(c_5) = [1 0 0] [0] [0 0 0] x1 + [0] [0 0 0] [1] p(c_6) = [0] [0] [0] p(c_7) = [0] [0] [0] p(c_8) = [1 0 0] [1 0 0] [0] [1 0 0] x1 + [0 0 0] x2 + [0] [0 0 0] [0 0 0] [0] Following rules are strictly oriented: +#(x,+(y,z)) = [0 0 1] [0 0 1] [1] [0 0 1] y + [0 0 1] z + [1] [0 0 1] [0 0 1] [2] > [0 0 1] [0 0 1] [0] [0 0 1] y + [0 0 0] z + [1] [0 0 0] [0 0 1] [2] = c_1(+#(+(x,y),z),+#(x,y)) Following rules are (at-least) weakly oriented: +#(x,s(y)) = [0 0 1] [1] [0 0 1] y + [1] [0 0 1] [2] >= [0 0 1] [0] [0 0 1] y + [1] [0 0 0] [0] = c_3(+#(x,y)) +#(s(x),y) = [0 0 1] [0] [0 0 1] y + [0] [0 0 1] [1] >= [0 0 1] [0] [0 0 0] y + [0] [0 0 0] [1] = c_5(+#(x,y)) f#(h(x,h(y,z))) = [0 0 1] [0 0 1] [2] [0 0 1] y + [0 0 1] z + [2] [0 0 1] [0 0 2] [2] >= [0 0 1] [0 0 1] [2] [0 0 0] y + [0 0 1] z + [2] [0 0 0] [0 0 0] [0] = c_8(f#(h(+(x,y),z)),+#(x,y)) +(x,+(y,z)) = [1 0 0] [1 0 1] [1 0 2] [1] [0 1 0] x + [1 1 1] y + [2 1 3] z + [1] [0 0 1] [0 0 1] [0 0 1] [2] >= [1 0 0] [1 0 1] [1 0 1] [0] [0 1 0] x + [1 1 1] y + [1 1 1] z + [0] [0 0 1] [0 0 1] [0 0 1] [2] = +(+(x,y),z) +(x,0()) = [1 0 0] [1] [0 1 0] x + [2] [0 0 1] [1] >= [1 0 0] [0] [0 1 0] x + [0] [0 0 1] [0] = x +(x,s(y)) = [1 0 0] [0 0 1] [1] [0 1 0] x + [0 0 1] y + [2] [0 0 1] [0 0 1] [2] >= [0 0 0] [0 0 0] [0] [0 0 0] x + [0 0 0] y + [1] [0 0 1] [0 0 1] [2] = s(+(x,y)) +(0(),y) = [1 0 1] [1] [1 1 1] y + [1] [0 0 1] [1] >= [1 0 0] [0] [0 1 0] y + [0] [0 0 1] [0] = y +(s(x),y) = [0 0 0] [1 0 1] [0] [0 0 0] x + [1 1 1] y + [1] [0 0 1] [0 0 1] [2] >= [0 0 0] [0 0 0] [0] [0 0 0] x + [0 0 0] y + [1] [0 0 1] [0 0 1] [2] = s(+(x,y)) *** 1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: +#(s(x),y) -> c_5(+#(x,y)) Strict TRS Rules: Weak DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,s(y)) -> c_3(+#(x,y)) f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.2.2 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: +#(s(x),y) -> c_5(+#(x,y)) Strict TRS Rules: Weak DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,s(y)) -> c_3(+#(x,y)) f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) and a lower component +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,s(y)) -> c_3(+#(x,y)) +#(s(x),y) -> c_5(+#(x,y)) Further, following extension rules are added to the lower component. f#(h(x,h(y,z))) -> +#(x,y) f#(h(x,h(y,z))) -> f#(h(+(x,y),z)) *** 1.1.1.1.1.1.1.2.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: f#(h(x,h(y,z))) -> c_8(f#(h(+(x ,y) ,z)) ,+#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.2.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_8) = {1} Following symbols are considered usable: {+#,f#} TcT has computed the following interpretation: p(+) = [1] x2 + [8] p(0) = [0] p(f) = [1] x1 + [4] p(g) = [1] x1 + [0] p(h) = [1] x2 + [2] p(s) = [1] x1 + [2] p(+#) = [1] x2 + [0] p(f#) = [4] x1 + [0] p(c_1) = [0] p(c_2) = [0] p(c_3) = [1] x1 + [1] p(c_4) = [1] p(c_5) = [1] x1 + [0] p(c_6) = [2] p(c_7) = [1] p(c_8) = [1] x1 + [6] Following rules are strictly oriented: f#(h(x,h(y,z))) = [4] z + [16] > [4] z + [14] = c_8(f#(h(+(x,y),z)),+#(x,y)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.1.2.2.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.2.2.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: f#(h(x,h(y,z))) -> c_8(f#(h(+(x ,y) ,z)) ,+#(x,y)) *** 1.1.1.1.1.1.1.2.2.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.2.2.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: +#(s(x),y) -> c_5(+#(x,y)) Strict TRS Rules: Weak DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,s(y)) -> c_3(+#(x,y)) f#(h(x,h(y,z))) -> +#(x,y) f#(h(x,h(y,z))) -> f#(h(+(x,y),z)) Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: +#(s(x),y) -> c_5(+#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.2.2.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: +#(s(x),y) -> c_5(+#(x,y)) Strict TRS Rules: Weak DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,s(y)) -> c_3(+#(x,y)) f#(h(x,h(y,z))) -> +#(x,y) f#(h(x,h(y,z))) -> f#(h(+(x,y),z)) Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_1) = {1,2}, uargs(c_3) = {1}, uargs(c_5) = {1} Following symbols are considered usable: {+,+#,f#} TcT has computed the following interpretation: p(+) = 1 + x1 + x2 p(0) = 0 p(f) = x1^2 p(g) = x1 p(h) = 1 + x1 + x2 p(s) = 1 + x1 p(+#) = x1 + 2*x1*x2 + 3*x2 + x2^2 p(f#) = 2 + x1^2 p(c_1) = 1 + x1 + x2 p(c_2) = 0 p(c_3) = 1 + x1 p(c_4) = 0 p(c_5) = x1 p(c_6) = 1 + x1 p(c_7) = x1 p(c_8) = 1 Following rules are strictly oriented: +#(s(x),y) = 1 + x + 2*x*y + 5*y + y^2 > x + 2*x*y + 3*y + y^2 = c_5(+#(x,y)) Following rules are (at-least) weakly oriented: +#(x,+(y,z)) = 4 + 3*x + 2*x*y + 2*x*z + 5*y + 2*y*z + y^2 + 5*z + z^2 >= 2 + 2*x + 2*x*y + 2*x*z + 4*y + 2*y*z + y^2 + 5*z + z^2 = c_1(+#(+(x,y),z),+#(x,y)) +#(x,s(y)) = 4 + 3*x + 2*x*y + 5*y + y^2 >= 1 + x + 2*x*y + 3*y + y^2 = c_3(+#(x,y)) f#(h(x,h(y,z))) = 6 + 4*x + 2*x*y + 2*x*z + x^2 + 4*y + 2*y*z + y^2 + 4*z + z^2 >= x + 2*x*y + 3*y + y^2 = +#(x,y) f#(h(x,h(y,z))) = 6 + 4*x + 2*x*y + 2*x*z + x^2 + 4*y + 2*y*z + y^2 + 4*z + z^2 >= 6 + 4*x + 2*x*y + 2*x*z + x^2 + 4*y + 2*y*z + y^2 + 4*z + z^2 = f#(h(+(x,y),z)) +(x,+(y,z)) = 2 + x + y + z >= 2 + x + y + z = +(+(x,y),z) +(x,0()) = 1 + x >= x = x +(x,s(y)) = 2 + x + y >= 2 + x + y = s(+(x,y)) +(0(),y) = 1 + y >= y = y +(s(x),y) = 2 + x + y >= 2 + x + y = s(+(x,y)) *** 1.1.1.1.1.1.1.2.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,s(y)) -> c_3(+#(x,y)) +#(s(x),y) -> c_5(+#(x,y)) f#(h(x,h(y,z))) -> +#(x,y) f#(h(x,h(y,z))) -> f#(h(+(x,y),z)) Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.2.2.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,s(y)) -> c_3(+#(x,y)) +#(s(x),y) -> c_5(+#(x,y)) f#(h(x,h(y,z))) -> +#(x,y) f#(h(x,h(y,z))) -> f#(h(+(x,y),z)) Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) -->_2 +#(s(x),y) -> c_5(+#(x,y)):3 -->_1 +#(s(x),y) -> c_5(+#(x,y)):3 -->_2 +#(x,s(y)) -> c_3(+#(x,y)):2 -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2 -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1 -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1 2:W:+#(x,s(y)) -> c_3(+#(x,y)) -->_1 +#(s(x),y) -> c_5(+#(x,y)):3 -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2 -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1 3:W:+#(s(x),y) -> c_5(+#(x,y)) -->_1 +#(s(x),y) -> c_5(+#(x,y)):3 -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2 -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1 4:W:f#(h(x,h(y,z))) -> +#(x,y) -->_1 +#(s(x),y) -> c_5(+#(x,y)):3 -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2 -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1 5:W:f#(h(x,h(y,z))) -> f#(h(+(x,y),z)) -->_1 f#(h(x,h(y,z))) -> f#(h(+(x,y),z)):5 -->_1 f#(h(x,h(y,z))) -> +#(x,y):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: f#(h(x,h(y,z))) -> f#(h(+(x,y) ,z)) 4: f#(h(x,h(y,z))) -> +#(x,y) 1: +#(x,+(y,z)) -> c_1(+#(+(x,y),z) ,+#(x,y)) 3: +#(s(x),y) -> c_5(+#(x,y)) 2: +#(x,s(y)) -> c_3(+#(x,y)) *** 1.1.1.1.1.1.1.2.2.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Strict TRS Rules: Weak DP Rules: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) +#(x,s(y)) -> c_3(+#(x,y)) +#(s(x),y) -> c_5(+#(x,y)) Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) -->_2 +#(s(x),y) -> c_5(+#(x,y)):4 -->_2 +#(x,s(y)) -> c_3(+#(x,y)):3 -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):2 -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):1 2:W:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)) -->_2 +#(s(x),y) -> c_5(+#(x,y)):4 -->_1 +#(s(x),y) -> c_5(+#(x,y)):4 -->_2 +#(x,s(y)) -> c_3(+#(x,y)):3 -->_1 +#(x,s(y)) -> c_3(+#(x,y)):3 -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):2 -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):2 3:W:+#(x,s(y)) -> c_3(+#(x,y)) -->_1 +#(s(x),y) -> c_5(+#(x,y)):4 -->_1 +#(x,s(y)) -> c_3(+#(x,y)):3 -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):2 4:W:+#(s(x),y) -> c_5(+#(x,y)) -->_1 +#(s(x),y) -> c_5(+#(x,y)):4 -->_1 +#(x,s(y)) -> c_3(+#(x,y)):3 -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: +#(s(x),y) -> c_5(+#(x,y)) 3: +#(x,s(y)) -> c_3(+#(x,y)) 2: +#(x,+(y,z)) -> c_1(+#(+(x,y),z) ,+#(x,y)) *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)) -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z))) *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/1} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: f#(h(x,h(y,z))) -> c_8(f#(h(+(x ,y) ,z))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/1} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_8) = {1} Following symbols are considered usable: {+#,f#} TcT has computed the following interpretation: p(+) = [0] p(0) = [1] p(f) = [2] p(g) = [1] x1 + [1] p(h) = [1] x2 + [1] p(s) = [0] p(+#) = [1] x1 + [2] x2 + [1] p(f#) = [4] x1 + [8] p(c_1) = [1] x2 + [1] p(c_2) = [1] p(c_3) = [2] x1 + [2] p(c_4) = [8] p(c_5) = [4] x1 + [0] p(c_6) = [1] x1 + [0] p(c_7) = [2] p(c_8) = [1] x1 + [0] Following rules are strictly oriented: f#(h(x,h(y,z))) = [4] z + [16] > [4] z + [12] = c_8(f#(h(+(x,y),z))) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z))) Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/1} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z))) Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/1} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z))) -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: f#(h(x,h(y,z))) -> c_8(f#(h(+(x ,y) ,z))) *** 1.1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: +(x,+(y,z)) -> +(+(x,y),z) +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +(0(),y) -> y +(s(x),y) -> s(+(x,y)) Signature: {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/1} Obligation: Innermost basic terms: {+#,f#}/{0,g,h,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).