*** 1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        +(x,+(y,z)) -> +(+(x,y),z)
        +(x,0()) -> x
        +(x,s(y)) -> s(+(x,y))
        +(0(),y) -> y
        +(s(x),y) -> s(+(x,y))
        f(g(f(x))) -> f(h(s(0()),x))
        f(g(h(x,y))) -> f(h(s(x),y))
        f(h(x,h(y,z))) -> f(h(+(x,y),z))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {+/2,f/1} / {0/0,g/1,h/2,s/1}
      Obligation:
        Innermost
        basic terms: {+,f}/{0,g,h,s}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
        +#(x,0()) -> c_2()
        +#(x,s(y)) -> c_3(+#(x,y))
        +#(0(),y) -> c_4()
        +#(s(x),y) -> c_5(+#(x,y))
        f#(g(f(x))) -> c_6(f#(h(s(0()),x)))
        f#(g(h(x,y))) -> c_7(f#(h(s(x),y)))
        f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
        +#(x,0()) -> c_2()
        +#(x,s(y)) -> c_3(+#(x,y))
        +#(0(),y) -> c_4()
        +#(s(x),y) -> c_5(+#(x,y))
        f#(g(f(x))) -> c_6(f#(h(s(0()),x)))
        f#(g(h(x,y))) -> c_7(f#(h(s(x),y)))
        f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        +(x,+(y,z)) -> +(+(x,y),z)
        +(x,0()) -> x
        +(x,s(y)) -> s(+(x,y))
        +(0(),y) -> y
        +(s(x),y) -> s(+(x,y))
        f(g(f(x))) -> f(h(s(0()),x))
        f(g(h(x,y))) -> f(h(s(x),y))
        f(h(x,h(y,z))) -> f(h(+(x,y),z))
      Signature:
        {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
      Obligation:
        Innermost
        basic terms: {+#,f#}/{0,g,h,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        +(x,+(y,z)) -> +(+(x,y),z)
        +(x,0()) -> x
        +(x,s(y)) -> s(+(x,y))
        +(0(),y) -> y
        +(s(x),y) -> s(+(x,y))
        +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
        +#(x,0()) -> c_2()
        +#(x,s(y)) -> c_3(+#(x,y))
        +#(0(),y) -> c_4()
        +#(s(x),y) -> c_5(+#(x,y))
        f#(g(h(x,y))) -> c_7(f#(h(s(x),y)))
        f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
*** 1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
        +#(x,0()) -> c_2()
        +#(x,s(y)) -> c_3(+#(x,y))
        +#(0(),y) -> c_4()
        +#(s(x),y) -> c_5(+#(x,y))
        f#(g(h(x,y))) -> c_7(f#(h(s(x),y)))
        f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        +(x,+(y,z)) -> +(+(x,y),z)
        +(x,0()) -> x
        +(x,s(y)) -> s(+(x,y))
        +(0(),y) -> y
        +(s(x),y) -> s(+(x,y))
      Signature:
        {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
      Obligation:
        Innermost
        basic terms: {+#,f#}/{0,g,h,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {2,4}
      by application of
        Pre({2,4}) = {1,3,5,7}.
      Here rules are labelled as follows:
        1: +#(x,+(y,z)) -> c_1(+#(+(x,y),z)
                              ,+#(x,y))    
        2: +#(x,0()) -> c_2()              
        3: +#(x,s(y)) -> c_3(+#(x,y))      
        4: +#(0(),y) -> c_4()              
        5: +#(s(x),y) -> c_5(+#(x,y))      
        6: f#(g(h(x,y))) -> c_7(f#(h(s(x)  
                                    ,y)))  
        7: f#(h(x,h(y,z))) -> c_8(f#(h(+(x 
                                        ,y)
                                      ,z)) 
                                 ,+#(x,y)) 
*** 1.1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
        +#(x,s(y)) -> c_3(+#(x,y))
        +#(s(x),y) -> c_5(+#(x,y))
        f#(g(h(x,y))) -> c_7(f#(h(s(x),y)))
        f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        +#(x,0()) -> c_2()
        +#(0(),y) -> c_4()
      Weak TRS Rules:
        +(x,+(y,z)) -> +(+(x,y),z)
        +(x,0()) -> x
        +(x,s(y)) -> s(+(x,y))
        +(0(),y) -> y
        +(s(x),y) -> s(+(x,y))
      Signature:
        {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
      Obligation:
        Innermost
        basic terms: {+#,f#}/{0,g,h,s}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
           -->_2 +#(s(x),y) -> c_5(+#(x,y)):3
           -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
           -->_2 +#(x,s(y)) -> c_3(+#(x,y)):2
           -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
           -->_2 +#(0(),y) -> c_4():7
           -->_1 +#(0(),y) -> c_4():7
           -->_2 +#(x,0()) -> c_2():6
           -->_1 +#(x,0()) -> c_2():6
           -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
           -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
        
        2:S:+#(x,s(y)) -> c_3(+#(x,y))
           -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
           -->_1 +#(0(),y) -> c_4():7
           -->_1 +#(x,0()) -> c_2():6
           -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
           -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
        
        3:S:+#(s(x),y) -> c_5(+#(x,y))
           -->_1 +#(0(),y) -> c_4():7
           -->_1 +#(x,0()) -> c_2():6
           -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
           -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
           -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
        
        4:S:f#(g(h(x,y))) -> c_7(f#(h(s(x),y)))
           -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):5
        
        5:S:f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
           -->_2 +#(0(),y) -> c_4():7
           -->_2 +#(x,0()) -> c_2():6
           -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):5
           -->_2 +#(s(x),y) -> c_5(+#(x,y)):3
           -->_2 +#(x,s(y)) -> c_3(+#(x,y)):2
           -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
        
        6:W:+#(x,0()) -> c_2()
           
        
        7:W:+#(0(),y) -> c_4()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        6: +#(x,0()) -> c_2()
        7: +#(0(),y) -> c_4()
*** 1.1.1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
        +#(x,s(y)) -> c_3(+#(x,y))
        +#(s(x),y) -> c_5(+#(x,y))
        f#(g(h(x,y))) -> c_7(f#(h(s(x),y)))
        f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        +(x,+(y,z)) -> +(+(x,y),z)
        +(x,0()) -> x
        +(x,s(y)) -> s(+(x,y))
        +(0(),y) -> y
        +(s(x),y) -> s(+(x,y))
      Signature:
        {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
      Obligation:
        Innermost
        basic terms: {+#,f#}/{0,g,h,s}
    Applied Processor:
      RemoveHeads
    Proof:
      Consider the dependency graph
      
      1:S:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
         -->_2 +#(s(x),y) -> c_5(+#(x,y)):3
         -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
         -->_2 +#(x,s(y)) -> c_3(+#(x,y)):2
         -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
         -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
         -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
      
      2:S:+#(x,s(y)) -> c_3(+#(x,y))
         -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
         -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
         -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
      
      3:S:+#(s(x),y) -> c_5(+#(x,y))
         -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
         -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
         -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
      
      4:S:f#(g(h(x,y))) -> c_7(f#(h(s(x),y)))
         -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):5
      
      5:S:f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
         -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):5
         -->_2 +#(s(x),y) -> c_5(+#(x,y)):3
         -->_2 +#(x,s(y)) -> c_3(+#(x,y)):2
         -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
      
      
      Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
      
      [(4,f#(g(h(x,y))) -> c_7(f#(h(s(x),y))))]
*** 1.1.1.1.1.1 Progress [(?,O(n^3))]  ***
    Considered Problem:
      Strict DP Rules:
        +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
        +#(x,s(y)) -> c_3(+#(x,y))
        +#(s(x),y) -> c_5(+#(x,y))
        f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        +(x,+(y,z)) -> +(+(x,y),z)
        +(x,0()) -> x
        +(x,s(y)) -> s(+(x,y))
        +(0(),y) -> y
        +(s(x),y) -> s(+(x,y))
      Signature:
        {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
      Obligation:
        Innermost
        basic terms: {+#,f#}/{0,g,h,s}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(x,s(y)) -> c_3(+#(x,y))
          +#(s(x),y) -> c_5(+#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        Weak TRS Rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(x,s(y)) -> s(+(x,y))
          +(0(),y) -> y
          +(s(x),y) -> s(+(x,y))
        Signature:
          {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        Obligation:
          Innermost
          basic terms: {+#,f#}/{0,g,h,s}
      
      Problem (S)
        Strict DP Rules:
          f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(x,s(y)) -> c_3(+#(x,y))
          +#(s(x),y) -> c_5(+#(x,y))
        Weak TRS Rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(x,s(y)) -> s(+(x,y))
          +(0(),y) -> y
          +(s(x),y) -> s(+(x,y))
        Signature:
          {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        Obligation:
          Innermost
          basic terms: {+#,f#}/{0,g,h,s}
  *** 1.1.1.1.1.1.1 Progress [(?,O(n^3))]  ***
      Considered Problem:
        Strict DP Rules:
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(x,s(y)) -> c_3(+#(x,y))
          +#(s(x),y) -> c_5(+#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        Weak TRS Rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(x,s(y)) -> s(+(x,y))
          +(0(),y) -> y
          +(s(x),y) -> s(+(x,y))
        Signature:
          {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        Obligation:
          Innermost
          basic terms: {+#,f#}/{0,g,h,s}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          2: +#(x,s(y)) -> c_3(+#(x,y))
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(x,s(y)) -> c_3(+#(x,y))
            +#(s(x),y) -> c_5(+#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
          Weak TRS Rules:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
          Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
          Obligation:
            Innermost
            basic terms: {+#,f#}/{0,g,h,s}
        Applied Processor:
          NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima):
          The following argument positions are considered usable:
            uargs(c_1) = {1,2},
            uargs(c_3) = {1},
            uargs(c_5) = {1},
            uargs(c_8) = {1,2}
          
          Following symbols are considered usable:
            {+,+#,f#}
          TcT has computed the following interpretation:
              p(+) = [1 0 0]      [1 0 0]      [0]
                     [0 1 0] x1 + [1 1 1] x2 + [1]
                     [0 0 1]      [0 0 1]      [0]
              p(0) = [0]                          
                     [0]                          
                     [0]                          
              p(f) = [0]                          
                     [0]                          
                     [0]                          
              p(g) = [0 0 0]      [0]             
                     [0 0 0] x1 + [0]             
                     [0 0 1]      [0]             
              p(h) = [0 0 0]      [0 0 1]      [1]
                     [0 0 1] x1 + [0 1 1] x2 + [1]
                     [0 0 1]      [0 0 0]      [0]
              p(s) = [0 0 0]      [0]             
                     [0 0 0] x1 + [0]             
                     [0 0 1]      [1]             
             p(+#) = [0 0 1]      [0]             
                     [0 0 1] x2 + [0]             
                     [0 0 0]      [0]             
             p(f#) = [0 1 0]      [1]             
                     [0 1 1] x1 + [1]             
                     [0 1 1]      [0]             
            p(c_1) = [1 0 0]      [1 0 0]      [0]
                     [0 0 0] x1 + [0 1 0] x2 + [0]
                     [0 0 0]      [0 0 0]      [0]
            p(c_2) = [0]                          
                     [0]                          
                     [0]                          
            p(c_3) = [1 0 0]      [0]             
                     [0 0 0] x1 + [0]             
                     [0 0 0]      [0]             
            p(c_4) = [0]                          
                     [0]                          
                     [0]                          
            p(c_5) = [1 0 0]      [0]             
                     [1 0 0] x1 + [0]             
                     [0 0 0]      [0]             
            p(c_6) = [0]                          
                     [0]                          
                     [0]                          
            p(c_7) = [0]                          
                     [0]                          
                     [0]                          
            p(c_8) = [1 0 0]      [1 0 0]      [1]
                     [0 0 0] x1 + [1 0 0] x2 + [0]
                     [0 1 0]      [0 0 0]      [0]
          
          Following rules are strictly oriented:
          +#(x,s(y)) = [0 0 1]     [1]
                       [0 0 1] y + [1]
                       [0 0 0]     [0]
                     > [0 0 1]     [0]
                       [0 0 0] y + [0]
                       [0 0 0]     [0]
                     = c_3(+#(x,y))   
          
          
          Following rules are (at-least) weakly oriented:
             +#(x,+(y,z)) =  [0 0 1]     [0 0 1]     [0] 
                             [0 0 1] y + [0 0 1] z + [0] 
                             [0 0 0]     [0 0 0]     [0] 
                          >= [0 0 1]     [0 0 1]     [0] 
                             [0 0 1] y + [0 0 0] z + [0] 
                             [0 0 0]     [0 0 0]     [0] 
                          =  c_1(+#(+(x,y),z),+#(x,y))   
          
               +#(s(x),y) =  [0 0 1]     [0]             
                             [0 0 1] y + [0]             
                             [0 0 0]     [0]             
                          >= [0 0 1]     [0]             
                             [0 0 1] y + [0]             
                             [0 0 0]     [0]             
                          =  c_5(+#(x,y))                
          
          f#(h(x,h(y,z))) =  [0 0 1]     [0 0 2]     [0 1
                             1]     [3]                  
                             [0 0 2] x + [0 0 2] y + [0 1
                             1] z + [3]                  
                             [0 0 2]     [0 0 2]     [0 1
                             1]     [2]                  
                          >= [0 0 1]     [0 0 2]     [0 1
                             1]     [3]                  
                             [0 0 0] x + [0 0 1] y + [0 0
                             0] z + [0]                  
                             [0 0 2]     [0 0 2]     [0 1
                             1]     [2]                  
                          =  c_8(f#(h(+(x,y),z)),+#(x,y))
          
              +(x,+(y,z)) =  [1 0 0]     [1 0 0]     [1 0
                             0]     [0]                  
                             [0 1 0] x + [1 1 1] y + [2 1
                             2] z + [2]                  
                             [0 0 1]     [0 0 1]     [0 0
                             1]     [0]                  
                          >= [1 0 0]     [1 0 0]     [1 0
                             0]     [0]                  
                             [0 1 0] x + [1 1 1] y + [1 1
                             1] z + [2]                  
                             [0 0 1]     [0 0 1]     [0 0
                             1]     [0]                  
                          =  +(+(x,y),z)                 
          
                 +(x,0()) =  [1 0 0]     [0]             
                             [0 1 0] x + [1]             
                             [0 0 1]     [0]             
                          >= [1 0 0]     [0]             
                             [0 1 0] x + [0]             
                             [0 0 1]     [0]             
                          =  x                           
          
                +(x,s(y)) =  [1 0 0]     [0 0 0]     [0] 
                             [0 1 0] x + [0 0 1] y + [2] 
                             [0 0 1]     [0 0 1]     [1] 
                          >= [0 0 0]     [0 0 0]     [0] 
                             [0 0 0] x + [0 0 0] y + [0] 
                             [0 0 1]     [0 0 1]     [1] 
                          =  s(+(x,y))                   
          
                 +(0(),y) =  [1 0 0]     [0]             
                             [1 1 1] y + [1]             
                             [0 0 1]     [0]             
                          >= [1 0 0]     [0]             
                             [0 1 0] y + [0]             
                             [0 0 1]     [0]             
                          =  y                           
          
                +(s(x),y) =  [0 0 0]     [1 0 0]     [0] 
                             [0 0 0] x + [1 1 1] y + [1] 
                             [0 0 1]     [0 0 1]     [1] 
                          >= [0 0 0]     [0 0 0]     [0] 
                             [0 0 0] x + [0 0 0] y + [0] 
                             [0 0 1]     [0 0 1]     [1] 
                          =  s(+(x,y))                   
          
    *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(s(x),y) -> c_5(+#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            +#(x,s(y)) -> c_3(+#(x,y))
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
          Weak TRS Rules:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
          Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
          Obligation:
            Innermost
            basic terms: {+#,f#}/{0,g,h,s}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.1.2 Progress [(?,O(n^3))]  ***
        Considered Problem:
          Strict DP Rules:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(s(x),y) -> c_5(+#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            +#(x,s(y)) -> c_3(+#(x,y))
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
          Weak TRS Rules:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
          Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
          Obligation:
            Innermost
            basic terms: {+#,f#}/{0,g,h,s}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: +#(x,+(y,z)) -> c_1(+#(+(x,y),z)
                                  ,+#(x,y))    
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
              +#(s(x),y) -> c_5(+#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              +#(x,s(y)) -> c_3(+#(x,y))
              f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
            Weak TRS Rules:
              +(x,+(y,z)) -> +(+(x,y),z)
              +(x,0()) -> x
              +(x,s(y)) -> s(+(x,y))
              +(0(),y) -> y
              +(s(x),y) -> s(+(x,y))
            Signature:
              {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
            Obligation:
              Innermost
              basic terms: {+#,f#}/{0,g,h,s}
          Applied Processor:
            NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima):
            The following argument positions are considered usable:
              uargs(c_1) = {1,2},
              uargs(c_3) = {1},
              uargs(c_5) = {1},
              uargs(c_8) = {1,2}
            
            Following symbols are considered usable:
              {+,+#,f#}
            TcT has computed the following interpretation:
                p(+) = [1 0 0]      [1 0 1]      [0]
                       [0 1 0] x1 + [1 1 1] x2 + [0]
                       [0 0 1]      [0 0 1]      [1]
                p(0) = [1]                          
                       [1]                          
                       [0]                          
                p(f) = [0]                          
                       [0]                          
                       [0]                          
                p(g) = [0]                          
                       [0]                          
                       [0]                          
                p(h) = [0 0 0]      [0 1 1]      [1]
                       [0 0 0] x1 + [0 0 1] x2 + [1]
                       [0 0 1]      [0 0 1]      [0]
                p(s) = [0 0 0]      [0]             
                       [0 0 0] x1 + [1]             
                       [0 0 1]      [1]             
               p(+#) = [0 0 1]      [0]             
                       [0 0 1] x2 + [0]             
                       [0 0 1]      [1]             
               p(f#) = [0 1 0]      [1]             
                       [0 1 0] x1 + [1]             
                       [1 0 0]      [0]             
              p(c_1) = [1 0 0]      [1 0 0]      [0]
                       [0 0 0] x1 + [0 0 1] x2 + [0]
                       [0 0 1]      [0 0 0]      [1]
              p(c_2) = [0]                          
                       [0]                          
                       [0]                          
              p(c_3) = [1 0 0]      [0]             
                       [0 0 1] x1 + [0]             
                       [0 0 0]      [0]             
              p(c_4) = [0]                          
                       [0]                          
                       [0]                          
              p(c_5) = [1 0 0]      [0]             
                       [0 0 0] x1 + [0]             
                       [0 0 0]      [1]             
              p(c_6) = [0]                          
                       [0]                          
                       [0]                          
              p(c_7) = [0]                          
                       [0]                          
                       [0]                          
              p(c_8) = [1 0 0]      [1 0 0]      [0]
                       [1 0 0] x1 + [0 0 0] x2 + [0]
                       [0 0 0]      [0 0 0]      [0]
            
            Following rules are strictly oriented:
            +#(x,+(y,z)) = [0 0 1]     [0 0 1]     [1]
                           [0 0 1] y + [0 0 1] z + [1]
                           [0 0 1]     [0 0 1]     [2]
                         > [0 0 1]     [0 0 1]     [0]
                           [0 0 1] y + [0 0 0] z + [1]
                           [0 0 0]     [0 0 1]     [2]
                         = c_1(+#(+(x,y),z),+#(x,y))  
            
            
            Following rules are (at-least) weakly oriented:
                 +#(x,s(y)) =  [0 0 1]     [1]             
                               [0 0 1] y + [1]             
                               [0 0 1]     [2]             
                            >= [0 0 1]     [0]             
                               [0 0 1] y + [1]             
                               [0 0 0]     [0]             
                            =  c_3(+#(x,y))                
            
                 +#(s(x),y) =  [0 0 1]     [0]             
                               [0 0 1] y + [0]             
                               [0 0 1]     [1]             
                            >= [0 0 1]     [0]             
                               [0 0 0] y + [0]             
                               [0 0 0]     [1]             
                            =  c_5(+#(x,y))                
            
            f#(h(x,h(y,z))) =  [0 0 1]     [0 0 1]     [2] 
                               [0 0 1] y + [0 0 1] z + [2] 
                               [0 0 1]     [0 0 2]     [2] 
                            >= [0 0 1]     [0 0 1]     [2] 
                               [0 0 0] y + [0 0 1] z + [2] 
                               [0 0 0]     [0 0 0]     [0] 
                            =  c_8(f#(h(+(x,y),z)),+#(x,y))
            
                +(x,+(y,z)) =  [1 0 0]     [1 0 1]     [1 0
                               2]     [1]                  
                               [0 1 0] x + [1 1 1] y + [2 1
                               3] z + [1]                  
                               [0 0 1]     [0 0 1]     [0 0
                               1]     [2]                  
                            >= [1 0 0]     [1 0 1]     [1 0
                               1]     [0]                  
                               [0 1 0] x + [1 1 1] y + [1 1
                               1] z + [0]                  
                               [0 0 1]     [0 0 1]     [0 0
                               1]     [2]                  
                            =  +(+(x,y),z)                 
            
                   +(x,0()) =  [1 0 0]     [1]             
                               [0 1 0] x + [2]             
                               [0 0 1]     [1]             
                            >= [1 0 0]     [0]             
                               [0 1 0] x + [0]             
                               [0 0 1]     [0]             
                            =  x                           
            
                  +(x,s(y)) =  [1 0 0]     [0 0 1]     [1] 
                               [0 1 0] x + [0 0 1] y + [2] 
                               [0 0 1]     [0 0 1]     [2] 
                            >= [0 0 0]     [0 0 0]     [0] 
                               [0 0 0] x + [0 0 0] y + [1] 
                               [0 0 1]     [0 0 1]     [2] 
                            =  s(+(x,y))                   
            
                   +(0(),y) =  [1 0 1]     [1]             
                               [1 1 1] y + [1]             
                               [0 0 1]     [1]             
                            >= [1 0 0]     [0]             
                               [0 1 0] y + [0]             
                               [0 0 1]     [0]             
                            =  y                           
            
                  +(s(x),y) =  [0 0 0]     [1 0 1]     [0] 
                               [0 0 0] x + [1 1 1] y + [1] 
                               [0 0 1]     [0 0 1]     [2] 
                            >= [0 0 0]     [0 0 0]     [0] 
                               [0 0 0] x + [0 0 0] y + [1] 
                               [0 0 1]     [0 0 1]     [2] 
                            =  s(+(x,y))                   
            
      *** 1.1.1.1.1.1.1.2.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              +#(s(x),y) -> c_5(+#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
              +#(x,s(y)) -> c_3(+#(x,y))
              f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
            Weak TRS Rules:
              +(x,+(y,z)) -> +(+(x,y),z)
              +(x,0()) -> x
              +(x,s(y)) -> s(+(x,y))
              +(0(),y) -> y
              +(s(x),y) -> s(+(x,y))
            Signature:
              {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
            Obligation:
              Innermost
              basic terms: {+#,f#}/{0,g,h,s}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.2.2 Progress [(?,O(n^3))]  ***
          Considered Problem:
            Strict DP Rules:
              +#(s(x),y) -> c_5(+#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
              +#(x,s(y)) -> c_3(+#(x,y))
              f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
            Weak TRS Rules:
              +(x,+(y,z)) -> +(+(x,y),z)
              +(x,0()) -> x
              +(x,s(y)) -> s(+(x,y))
              +(0(),y) -> y
              +(s(x),y) -> s(+(x,y))
            Signature:
              {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
            Obligation:
              Innermost
              basic terms: {+#,f#}/{0,g,h,s}
          Applied Processor:
            DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
          Proof:
            We decompose the input problem according to the dependency graph into the upper component
              f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
            and a lower component
              +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
              +#(x,s(y)) -> c_3(+#(x,y))
              +#(s(x),y) -> c_5(+#(x,y))
            Further, following extension rules are added to the lower component.
              f#(h(x,h(y,z))) -> +#(x,y)
              f#(h(x,h(y,z))) -> f#(h(+(x,y),z))
        *** 1.1.1.1.1.1.1.2.2.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                +(x,+(y,z)) -> +(+(x,y),z)
                +(x,0()) -> x
                +(x,s(y)) -> s(+(x,y))
                +(0(),y) -> y
                +(s(x),y) -> s(+(x,y))
              Signature:
                {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
              Obligation:
                Innermost
                basic terms: {+#,f#}/{0,g,h,s}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                1: f#(h(x,h(y,z))) -> c_8(f#(h(+(x 
                                                ,y)
                                              ,z)) 
                                         ,+#(x,y)) 
                
              The strictly oriented rules are moved into the weak component.
          *** 1.1.1.1.1.1.1.2.2.1.1 Progress [(?,O(n^1))]  ***
              Considered Problem:
                Strict DP Rules:
                  f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(x,0()) -> x
                  +(x,s(y)) -> s(+(x,y))
                  +(0(),y) -> y
                  +(s(x),y) -> s(+(x,y))
                Signature:
                  {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
                Obligation:
                  Innermost
                  basic terms: {+#,f#}/{0,g,h,s}
              Applied Processor:
                NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a matrix interpretation of kind constructor based matrix interpretation:
                The following argument positions are considered usable:
                  uargs(c_8) = {1}
                
                Following symbols are considered usable:
                  {+#,f#}
                TcT has computed the following interpretation:
                    p(+) = [1] x2 + [8]
                    p(0) = [0]         
                    p(f) = [1] x1 + [4]
                    p(g) = [1] x1 + [0]
                    p(h) = [1] x2 + [2]
                    p(s) = [1] x1 + [2]
                   p(+#) = [1] x2 + [0]
                   p(f#) = [4] x1 + [0]
                  p(c_1) = [0]         
                  p(c_2) = [0]         
                  p(c_3) = [1] x1 + [1]
                  p(c_4) = [1]         
                  p(c_5) = [1] x1 + [0]
                  p(c_6) = [2]         
                  p(c_7) = [1]         
                  p(c_8) = [1] x1 + [6]
                
                Following rules are strictly oriented:
                f#(h(x,h(y,z))) = [4] z + [16]                
                                > [4] z + [14]                
                                = c_8(f#(h(+(x,y),z)),+#(x,y))
                
                
                Following rules are (at-least) weakly oriented:
                
          *** 1.1.1.1.1.1.1.2.2.1.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
                Weak TRS Rules:
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(x,0()) -> x
                  +(x,s(y)) -> s(+(x,y))
                  +(0(),y) -> y
                  +(s(x),y) -> s(+(x,y))
                Signature:
                  {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
                Obligation:
                  Innermost
                  basic terms: {+#,f#}/{0,g,h,s}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.2.2.1.2 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
                Weak TRS Rules:
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(x,0()) -> x
                  +(x,s(y)) -> s(+(x,y))
                  +(0(),y) -> y
                  +(s(x),y) -> s(+(x,y))
                Signature:
                  {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
                Obligation:
                  Innermost
                  basic terms: {+#,f#}/{0,g,h,s}
              Applied Processor:
                RemoveWeakSuffixes
              Proof:
                Consider the dependency graph
                  1:W:f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
                     -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):1
                  
                The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                  1: f#(h(x,h(y,z))) -> c_8(f#(h(+(x 
                                                  ,y)
                                                ,z)) 
                                           ,+#(x,y)) 
          *** 1.1.1.1.1.1.1.2.2.1.2.1 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(x,0()) -> x
                  +(x,s(y)) -> s(+(x,y))
                  +(0(),y) -> y
                  +(s(x),y) -> s(+(x,y))
                Signature:
                  {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
                Obligation:
                  Innermost
                  basic terms: {+#,f#}/{0,g,h,s}
              Applied Processor:
                EmptyProcessor
              Proof:
                The problem is already closed. The intended complexity is O(1).
          
        *** 1.1.1.1.1.1.1.2.2.2 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                +#(s(x),y) -> c_5(+#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
                +#(x,s(y)) -> c_3(+#(x,y))
                f#(h(x,h(y,z))) -> +#(x,y)
                f#(h(x,h(y,z))) -> f#(h(+(x,y),z))
              Weak TRS Rules:
                +(x,+(y,z)) -> +(+(x,y),z)
                +(x,0()) -> x
                +(x,s(y)) -> s(+(x,y))
                +(0(),y) -> y
                +(s(x),y) -> s(+(x,y))
              Signature:
                {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
              Obligation:
                Innermost
                basic terms: {+#,f#}/{0,g,h,s}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                1: +#(s(x),y) -> c_5(+#(x,y))
                
              The strictly oriented rules are moved into the weak component.
          *** 1.1.1.1.1.1.1.2.2.2.1 Progress [(?,O(n^2))]  ***
              Considered Problem:
                Strict DP Rules:
                  +#(s(x),y) -> c_5(+#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
                  +#(x,s(y)) -> c_3(+#(x,y))
                  f#(h(x,h(y,z))) -> +#(x,y)
                  f#(h(x,h(y,z))) -> f#(h(+(x,y),z))
                Weak TRS Rules:
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(x,0()) -> x
                  +(x,s(y)) -> s(+(x,y))
                  +(0(),y) -> y
                  +(s(x),y) -> s(+(x,y))
                Signature:
                  {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
                Obligation:
                  Innermost
                  basic terms: {+#,f#}/{0,g,h,s}
              Applied Processor:
                NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a polynomial interpretation of kind constructor-based(mixed(2)):
                The following argument positions are considered usable:
                  uargs(c_1) = {1,2},
                  uargs(c_3) = {1},
                  uargs(c_5) = {1}
                
                Following symbols are considered usable:
                  {+,+#,f#}
                TcT has computed the following interpretation:
                    p(+) = 1 + x1 + x2               
                    p(0) = 0                         
                    p(f) = x1^2                      
                    p(g) = x1                        
                    p(h) = 1 + x1 + x2               
                    p(s) = 1 + x1                    
                   p(+#) = x1 + 2*x1*x2 + 3*x2 + x2^2
                   p(f#) = 2 + x1^2                  
                  p(c_1) = 1 + x1 + x2               
                  p(c_2) = 0                         
                  p(c_3) = 1 + x1                    
                  p(c_4) = 0                         
                  p(c_5) = x1                        
                  p(c_6) = 1 + x1                    
                  p(c_7) = x1                        
                  p(c_8) = 1                         
                
                Following rules are strictly oriented:
                +#(s(x),y) = 1 + x + 2*x*y + 5*y + y^2
                           > x + 2*x*y + 3*y + y^2    
                           = c_5(+#(x,y))             
                
                
                Following rules are (at-least) weakly oriented:
                   +#(x,+(y,z)) =  4 + 3*x + 2*x*y + 2*x*z + 5*y + 2*y*z + y^2 + 5*z + z^2      
                                >= 2 + 2*x + 2*x*y + 2*x*z + 4*y + 2*y*z + y^2 + 5*z + z^2      
                                =  c_1(+#(+(x,y),z),+#(x,y))                                    
                
                     +#(x,s(y)) =  4 + 3*x + 2*x*y + 5*y + y^2                                  
                                >= 1 + x + 2*x*y + 3*y + y^2                                    
                                =  c_3(+#(x,y))                                                 
                
                f#(h(x,h(y,z))) =  6 + 4*x + 2*x*y + 2*x*z + x^2 + 4*y + 2*y*z + y^2 + 4*z + z^2
                                >= x + 2*x*y + 3*y + y^2                                        
                                =  +#(x,y)                                                      
                
                f#(h(x,h(y,z))) =  6 + 4*x + 2*x*y + 2*x*z + x^2 + 4*y + 2*y*z + y^2 + 4*z + z^2
                                >= 6 + 4*x + 2*x*y + 2*x*z + x^2 + 4*y + 2*y*z + y^2 + 4*z + z^2
                                =  f#(h(+(x,y),z))                                              
                
                    +(x,+(y,z)) =  2 + x + y + z                                                
                                >= 2 + x + y + z                                                
                                =  +(+(x,y),z)                                                  
                
                       +(x,0()) =  1 + x                                                        
                                >= x                                                            
                                =  x                                                            
                
                      +(x,s(y)) =  2 + x + y                                                    
                                >= 2 + x + y                                                    
                                =  s(+(x,y))                                                    
                
                       +(0(),y) =  1 + y                                                        
                                >= y                                                            
                                =  y                                                            
                
                      +(s(x),y) =  2 + x + y                                                    
                                >= 2 + x + y                                                    
                                =  s(+(x,y))                                                    
                
          *** 1.1.1.1.1.1.1.2.2.2.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
                  +#(x,s(y)) -> c_3(+#(x,y))
                  +#(s(x),y) -> c_5(+#(x,y))
                  f#(h(x,h(y,z))) -> +#(x,y)
                  f#(h(x,h(y,z))) -> f#(h(+(x,y),z))
                Weak TRS Rules:
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(x,0()) -> x
                  +(x,s(y)) -> s(+(x,y))
                  +(0(),y) -> y
                  +(s(x),y) -> s(+(x,y))
                Signature:
                  {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
                Obligation:
                  Innermost
                  basic terms: {+#,f#}/{0,g,h,s}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.2.2.2.2 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
                  +#(x,s(y)) -> c_3(+#(x,y))
                  +#(s(x),y) -> c_5(+#(x,y))
                  f#(h(x,h(y,z))) -> +#(x,y)
                  f#(h(x,h(y,z))) -> f#(h(+(x,y),z))
                Weak TRS Rules:
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(x,0()) -> x
                  +(x,s(y)) -> s(+(x,y))
                  +(0(),y) -> y
                  +(s(x),y) -> s(+(x,y))
                Signature:
                  {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
                Obligation:
                  Innermost
                  basic terms: {+#,f#}/{0,g,h,s}
              Applied Processor:
                RemoveWeakSuffixes
              Proof:
                Consider the dependency graph
                  1:W:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
                     -->_2 +#(s(x),y) -> c_5(+#(x,y)):3
                     -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
                     -->_2 +#(x,s(y)) -> c_3(+#(x,y)):2
                     -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
                     -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
                     -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
                  
                  2:W:+#(x,s(y)) -> c_3(+#(x,y))
                     -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
                     -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
                     -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
                  
                  3:W:+#(s(x),y) -> c_5(+#(x,y))
                     -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
                     -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
                     -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
                  
                  4:W:f#(h(x,h(y,z))) -> +#(x,y)
                     -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
                     -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
                     -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
                  
                  5:W:f#(h(x,h(y,z))) -> f#(h(+(x,y),z))
                     -->_1 f#(h(x,h(y,z))) -> f#(h(+(x,y),z)):5
                     -->_1 f#(h(x,h(y,z))) -> +#(x,y):4
                  
                The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                  5: f#(h(x,h(y,z))) -> f#(h(+(x,y)  
                                            ,z))     
                  4: f#(h(x,h(y,z))) -> +#(x,y)      
                  1: +#(x,+(y,z)) -> c_1(+#(+(x,y),z)
                                        ,+#(x,y))    
                  3: +#(s(x),y) -> c_5(+#(x,y))      
                  2: +#(x,s(y)) -> c_3(+#(x,y))      
          *** 1.1.1.1.1.1.1.2.2.2.2.1 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  +(x,+(y,z)) -> +(+(x,y),z)
                  +(x,0()) -> x
                  +(x,s(y)) -> s(+(x,y))
                  +(0(),y) -> y
                  +(s(x),y) -> s(+(x,y))
                Signature:
                  {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
                Obligation:
                  Innermost
                  basic terms: {+#,f#}/{0,g,h,s}
              Applied Processor:
                EmptyProcessor
              Proof:
                The problem is already closed. The intended complexity is O(1).
          
  *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(x,s(y)) -> c_3(+#(x,y))
          +#(s(x),y) -> c_5(+#(x,y))
        Weak TRS Rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(x,s(y)) -> s(+(x,y))
          +(0(),y) -> y
          +(s(x),y) -> s(+(x,y))
        Signature:
          {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        Obligation:
          Innermost
          basic terms: {+#,f#}/{0,g,h,s}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
             -->_2 +#(s(x),y) -> c_5(+#(x,y)):4
             -->_2 +#(x,s(y)) -> c_3(+#(x,y)):3
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):2
             -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):1
          
          2:W:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
             -->_2 +#(s(x),y) -> c_5(+#(x,y)):4
             -->_1 +#(s(x),y) -> c_5(+#(x,y)):4
             -->_2 +#(x,s(y)) -> c_3(+#(x,y)):3
             -->_1 +#(x,s(y)) -> c_3(+#(x,y)):3
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):2
          
          3:W:+#(x,s(y)) -> c_3(+#(x,y))
             -->_1 +#(s(x),y) -> c_5(+#(x,y)):4
             -->_1 +#(x,s(y)) -> c_3(+#(x,y)):3
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):2
          
          4:W:+#(s(x),y) -> c_5(+#(x,y))
             -->_1 +#(s(x),y) -> c_5(+#(x,y)):4
             -->_1 +#(x,s(y)) -> c_3(+#(x,y)):3
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: +#(s(x),y) -> c_5(+#(x,y))      
          3: +#(x,s(y)) -> c_3(+#(x,y))      
          2: +#(x,+(y,z)) -> c_1(+#(+(x,y),z)
                                ,+#(x,y))    
  *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(x,s(y)) -> s(+(x,y))
          +(0(),y) -> y
          +(s(x),y) -> s(+(x,y))
        Signature:
          {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        Obligation:
          Innermost
          basic terms: {+#,f#}/{0,g,h,s}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
             -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)))
  *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(x,s(y)) -> s(+(x,y))
          +(0(),y) -> y
          +(s(x),y) -> s(+(x,y))
        Signature:
          {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/1}
        Obligation:
          Innermost
          basic terms: {+#,f#}/{0,g,h,s}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: f#(h(x,h(y,z))) -> c_8(f#(h(+(x 
                                          ,y)
                                        ,z)))
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
          Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/1}
          Obligation:
            Innermost
            basic terms: {+#,f#}/{0,g,h,s}
        Applied Processor:
          NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_8) = {1}
          
          Following symbols are considered usable:
            {+#,f#}
          TcT has computed the following interpretation:
              p(+) = [0]                  
              p(0) = [1]                  
              p(f) = [2]                  
              p(g) = [1] x1 + [1]         
              p(h) = [1] x2 + [1]         
              p(s) = [0]                  
             p(+#) = [1] x1 + [2] x2 + [1]
             p(f#) = [4] x1 + [8]         
            p(c_1) = [1] x2 + [1]         
            p(c_2) = [1]                  
            p(c_3) = [2] x1 + [2]         
            p(c_4) = [8]                  
            p(c_5) = [4] x1 + [0]         
            p(c_6) = [1] x1 + [0]         
            p(c_7) = [2]                  
            p(c_8) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
          f#(h(x,h(y,z))) = [4] z + [16]        
                          > [4] z + [12]        
                          = c_8(f#(h(+(x,y),z)))
          
          
          Following rules are (at-least) weakly oriented:
          
    *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)))
          Weak TRS Rules:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
          Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/1}
          Obligation:
            Innermost
            basic terms: {+#,f#}/{0,g,h,s}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)))
          Weak TRS Rules:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
          Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/1}
          Obligation:
            Innermost
            basic terms: {+#,f#}/{0,g,h,s}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)))
               -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z))):1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: f#(h(x,h(y,z))) -> c_8(f#(h(+(x 
                                            ,y)
                                          ,z)))
    *** 1.1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
          Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/1}
          Obligation:
            Innermost
            basic terms: {+#,f#}/{0,g,h,s}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).