*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: ++(x,g(y,z)) -> g(++(x,y),z) ++(x,nil()) -> x f(x,g(y,z)) -> g(f(x,y),z) f(x,nil()) -> g(nil(),x) max(g(g(g(x,y),z),u())) -> max'(max(g(g(x,y),z)),u()) max(g(g(nil(),x),y)) -> max'(x,y) mem(x,max(x)) -> not(null(x)) mem(g(x,y),z) -> or(=(y,z),mem(x,z)) mem(nil(),y) -> false() null(g(x,y)) -> false() null(nil()) -> true() Weak DP Rules: Weak TRS Rules: Signature: {++/2,f/2,max/1,mem/2,null/1} / {=/2,false/0,g/2,max'/2,nil/0,not/1,or/2,true/0,u/0} Obligation: Innermost basic terms: {++,f,max,mem,null}/{=,false,g,max',nil,not,or,true,u} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(g) = {1}, uargs(max') = {1}, uargs(not) = {1}, uargs(or) = {2} Following symbols are considered usable: {} TcT has computed the following interpretation: p(++) = [2] x1 + [12] x2 + [1] p(=) = [10] p(f) = [1] x1 + [12] x2 + [0] p(false) = [0] p(g) = [1] x1 + [1] x2 + [0] p(max) = [1] x1 + [0] p(max') = [1] x1 + [1] x2 + [0] p(mem) = [0] p(nil) = [0] p(not) = [1] x1 + [1] p(null) = [0] p(or) = [1] x1 + [1] x2 + [0] p(true) = [0] p(u) = [0] Following rules are strictly oriented: ++(x,nil()) = [2] x + [1] > [1] x + [0] = x Following rules are (at-least) weakly oriented: ++(x,g(y,z)) = [2] x + [12] y + [12] z + [1] >= [2] x + [12] y + [1] z + [1] = g(++(x,y),z) f(x,g(y,z)) = [1] x + [12] y + [12] z + [0] >= [1] x + [12] y + [1] z + [0] = g(f(x,y),z) f(x,nil()) = [1] x + [0] >= [1] x + [0] = g(nil(),x) max(g(g(g(x,y),z),u())) = [1] x + [1] y + [1] z + [0] >= [1] x + [1] y + [1] z + [0] = max'(max(g(g(x,y),z)),u()) max(g(g(nil(),x),y)) = [1] x + [1] y + [0] >= [1] x + [1] y + [0] = max'(x,y) mem(x,max(x)) = [0] >= [1] = not(null(x)) mem(g(x,y),z) = [0] >= [10] = or(=(y,z),mem(x,z)) mem(nil(),y) = [0] >= [0] = false() null(g(x,y)) = [0] >= [0] = false() null(nil()) = [0] >= [0] = true() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: ++(x,g(y,z)) -> g(++(x,y),z) f(x,g(y,z)) -> g(f(x,y),z) f(x,nil()) -> g(nil(),x) max(g(g(g(x,y),z),u())) -> max'(max(g(g(x,y),z)),u()) max(g(g(nil(),x),y)) -> max'(x,y) mem(x,max(x)) -> not(null(x)) mem(g(x,y),z) -> or(=(y,z),mem(x,z)) mem(nil(),y) -> false() null(g(x,y)) -> false() null(nil()) -> true() Weak DP Rules: Weak TRS Rules: ++(x,nil()) -> x Signature: {++/2,f/2,max/1,mem/2,null/1} / {=/2,false/0,g/2,max'/2,nil/0,not/1,or/2,true/0,u/0} Obligation: Innermost basic terms: {++,f,max,mem,null}/{=,false,g,max',nil,not,or,true,u} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(g) = {1}, uargs(max') = {1}, uargs(not) = {1}, uargs(or) = {2} Following symbols are considered usable: {} TcT has computed the following interpretation: p(++) = [4] x1 + [1] x2 + [0] p(=) = [0] p(f) = [1] x1 + [1] x2 + [5] p(false) = [0] p(g) = [1] x1 + [1] x2 + [2] p(max) = [1] x1 + [3] p(max') = [1] x1 + [0] p(mem) = [0] p(nil) = [0] p(not) = [1] x1 + [0] p(null) = [3] p(or) = [1] x1 + [1] x2 + [0] p(true) = [0] p(u) = [0] Following rules are strictly oriented: f(x,nil()) = [1] x + [5] > [1] x + [2] = g(nil(),x) max(g(g(g(x,y),z),u())) = [1] x + [1] y + [1] z + [9] > [1] x + [1] y + [1] z + [7] = max'(max(g(g(x,y),z)),u()) max(g(g(nil(),x),y)) = [1] x + [1] y + [7] > [1] x + [0] = max'(x,y) null(g(x,y)) = [3] > [0] = false() null(nil()) = [3] > [0] = true() Following rules are (at-least) weakly oriented: ++(x,g(y,z)) = [4] x + [1] y + [1] z + [2] >= [4] x + [1] y + [1] z + [2] = g(++(x,y),z) ++(x,nil()) = [4] x + [0] >= [1] x + [0] = x f(x,g(y,z)) = [1] x + [1] y + [1] z + [7] >= [1] x + [1] y + [1] z + [7] = g(f(x,y),z) mem(x,max(x)) = [0] >= [3] = not(null(x)) mem(g(x,y),z) = [0] >= [0] = or(=(y,z),mem(x,z)) mem(nil(),y) = [0] >= [0] = false() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: ++(x,g(y,z)) -> g(++(x,y),z) f(x,g(y,z)) -> g(f(x,y),z) mem(x,max(x)) -> not(null(x)) mem(g(x,y),z) -> or(=(y,z),mem(x,z)) mem(nil(),y) -> false() Weak DP Rules: Weak TRS Rules: ++(x,nil()) -> x f(x,nil()) -> g(nil(),x) max(g(g(g(x,y),z),u())) -> max'(max(g(g(x,y),z)),u()) max(g(g(nil(),x),y)) -> max'(x,y) null(g(x,y)) -> false() null(nil()) -> true() Signature: {++/2,f/2,max/1,mem/2,null/1} / {=/2,false/0,g/2,max'/2,nil/0,not/1,or/2,true/0,u/0} Obligation: Innermost basic terms: {++,f,max,mem,null}/{=,false,g,max',nil,not,or,true,u} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(g) = {1}, uargs(max') = {1}, uargs(not) = {1}, uargs(or) = {2} Following symbols are considered usable: {} TcT has computed the following interpretation: p(++) = [1] x1 + [3] x2 + [5] p(=) = [0] p(f) = [4] x1 + [2] x2 + [0] p(false) = [2] p(g) = [1] x1 + [1] x2 + [2] p(max) = [2] x1 + [0] p(max') = [1] x1 + [1] p(mem) = [2] x1 + [0] p(nil) = [3] p(not) = [1] x1 + [4] p(null) = [2] p(or) = [1] x2 + [0] p(true) = [1] p(u) = [1] Following rules are strictly oriented: ++(x,g(y,z)) = [1] x + [3] y + [3] z + [11] > [1] x + [3] y + [1] z + [7] = g(++(x,y),z) f(x,g(y,z)) = [4] x + [2] y + [2] z + [4] > [4] x + [2] y + [1] z + [2] = g(f(x,y),z) mem(g(x,y),z) = [2] x + [2] y + [4] > [2] x + [0] = or(=(y,z),mem(x,z)) mem(nil(),y) = [6] > [2] = false() Following rules are (at-least) weakly oriented: ++(x,nil()) = [1] x + [14] >= [1] x + [0] = x f(x,nil()) = [4] x + [6] >= [1] x + [5] = g(nil(),x) max(g(g(g(x,y),z),u())) = [2] x + [2] y + [2] z + [14] >= [2] x + [2] y + [2] z + [9] = max'(max(g(g(x,y),z)),u()) max(g(g(nil(),x),y)) = [2] x + [2] y + [14] >= [1] x + [1] = max'(x,y) mem(x,max(x)) = [2] x + [0] >= [6] = not(null(x)) null(g(x,y)) = [2] >= [2] = false() null(nil()) = [2] >= [1] = true() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: mem(x,max(x)) -> not(null(x)) Weak DP Rules: Weak TRS Rules: ++(x,g(y,z)) -> g(++(x,y),z) ++(x,nil()) -> x f(x,g(y,z)) -> g(f(x,y),z) f(x,nil()) -> g(nil(),x) max(g(g(g(x,y),z),u())) -> max'(max(g(g(x,y),z)),u()) max(g(g(nil(),x),y)) -> max'(x,y) mem(g(x,y),z) -> or(=(y,z),mem(x,z)) mem(nil(),y) -> false() null(g(x,y)) -> false() null(nil()) -> true() Signature: {++/2,f/2,max/1,mem/2,null/1} / {=/2,false/0,g/2,max'/2,nil/0,not/1,or/2,true/0,u/0} Obligation: Innermost basic terms: {++,f,max,mem,null}/{=,false,g,max',nil,not,or,true,u} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(g) = {1}, uargs(max') = {1}, uargs(not) = {1}, uargs(or) = {2} Following symbols are considered usable: {} TcT has computed the following interpretation: p(++) = [1] x1 + [2] x2 + [1] p(=) = [1] x1 + [1] x2 + [0] p(f) = [2] x1 + [5] x2 + [4] p(false) = [0] p(g) = [1] x1 + [1] x2 + [2] p(max) = [1] x1 + [0] p(max') = [1] x1 + [4] p(mem) = [7] x2 + [5] p(nil) = [1] p(not) = [1] x1 + [1] p(null) = [3] p(or) = [1] x2 + [0] p(true) = [3] p(u) = [2] Following rules are strictly oriented: mem(x,max(x)) = [7] x + [5] > [4] = not(null(x)) Following rules are (at-least) weakly oriented: ++(x,g(y,z)) = [1] x + [2] y + [2] z + [5] >= [1] x + [2] y + [1] z + [3] = g(++(x,y),z) ++(x,nil()) = [1] x + [3] >= [1] x + [0] = x f(x,g(y,z)) = [2] x + [5] y + [5] z + [14] >= [2] x + [5] y + [1] z + [6] = g(f(x,y),z) f(x,nil()) = [2] x + [9] >= [1] x + [3] = g(nil(),x) max(g(g(g(x,y),z),u())) = [1] x + [1] y + [1] z + [8] >= [1] x + [1] y + [1] z + [8] = max'(max(g(g(x,y),z)),u()) max(g(g(nil(),x),y)) = [1] x + [1] y + [5] >= [1] x + [4] = max'(x,y) mem(g(x,y),z) = [7] z + [5] >= [7] z + [5] = or(=(y,z),mem(x,z)) mem(nil(),y) = [7] y + [5] >= [0] = false() null(g(x,y)) = [3] >= [0] = false() null(nil()) = [3] >= [3] = true() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: ++(x,g(y,z)) -> g(++(x,y),z) ++(x,nil()) -> x f(x,g(y,z)) -> g(f(x,y),z) f(x,nil()) -> g(nil(),x) max(g(g(g(x,y),z),u())) -> max'(max(g(g(x,y),z)),u()) max(g(g(nil(),x),y)) -> max'(x,y) mem(x,max(x)) -> not(null(x)) mem(g(x,y),z) -> or(=(y,z),mem(x,z)) mem(nil(),y) -> false() null(g(x,y)) -> false() null(nil()) -> true() Signature: {++/2,f/2,max/1,mem/2,null/1} / {=/2,false/0,g/2,max'/2,nil/0,not/1,or/2,true/0,u/0} Obligation: Innermost basic terms: {++,f,max,mem,null}/{=,false,g,max',nil,not,or,true,u} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).