*** 1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        gcd(x,0()) -> x
        gcd(0(),y) -> y
        gcd(s(x),s(y)) -> if(<(x,y),gcd(s(x),-(y,x)),gcd(-(x,y),s(y)))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {gcd/2} / {-/2,0/0, c_1()
        gcd#(0(),y) -> c_2()
        gcd#(s(x),s(y)) -> c_3(gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        gcd#(x,0()) -> c_1()
        gcd#(0(),y) -> c_2()
        gcd#(s(x),s(y)) -> c_3(gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        gcd(x,0()) -> x
        gcd(0(),y) -> y
        gcd(s(x),s(y)) -> if(<(x,y),gcd(s(x),-(y,x)),gcd(-(x,y),s(y)))
      Signature:
        {gcd/2,gcd#/2} / {-/2,0/0, c_1()
        gcd#(0(),y) -> c_2()
        gcd#(s(x),s(y)) -> c_3(gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
*** 1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        gcd#(x,0()) -> c_1()
        gcd#(0(),y) -> c_2()
        gcd#(s(x),s(y)) -> c_3(gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {gcd/2,gcd#/2} / {-/2,0/0, c_1()
           
        
        2:S:gcd#(0(),y) -> c_2()
           
        
        3:S:gcd#(s(x),s(y)) -> c_3(gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y)))
           
        
      The dependency graph contains no loops, we remove all dependency pairs.
*** 1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {gcd/2,gcd#/2} / {-/2,0/0,